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Abstract: Prevention of pregnancy complications related to the “great obstetrical syndromes”
(preeclampsia, fetal growth restriction, spontaneous preterm labor, and stillbirth) is a global re-
search and clinical management priority. These syndromes share many common pathophysiological
mechanisms that may contribute to altered placental development and function. The resulting adverse
pregnancy outcomes are associated with increased maternal and perinatal morbidity and mortality
and increased post-partum risk of cardiometabolic disease. Maternal nutritional and environmental
factors are known to play a significant role in altering bidirectional communication between fetal-
derived trophoblast cells and maternal decidual cells and contribute to abnormal placentation. As a
result, lifestyle-based interventions have increasingly been recommended before, during, and after
pregnancy, in order to reduce maternal and perinatal morbidity and mortality and decrease long-term
risk. Antenatal screening strategies have been developed following extensive studies in diverse
populations. Multivariate preeclampsia screening using a combination of maternal, biophysical, and
serum biochemical markers is recommended at 11–14 weeks’ gestation and can be performed at
the same time as the first-trimester ultrasound and blood tests. Women identified as high-risk can
be offered prophylactic low dose aspirin and monitored with angiogenic factor assessment from
22 weeks’ gestation, in combination with clinical assessment, serum biochemistry, and ultrasound.
Lifestyle factors can be reassessed during counseling related to antenatal screening interventions.
The integration of lifestyle interventions, pregnancy screening, and medical management represents
a conceptual advance in pregnancy care that has the potential to significantly reduce pregnancy
complications and associated later life cardiometabolic adverse outcomes.

Keywords: pre-eclampsia; fetal growth restriction; preterm labor; stillbirth; lifestyle; nutrition;
exercise; multivariate screening; angiogenic ratio; aspirin

1. Introduction

The combined impact of obstetric syndromes related to placental dysfunction makes a
significant contribution to global maternal and perinatal morbidity and mortality [1–3]. As
a result, considerable international effort has been directed at understanding the pathogene-
sis and pathophysiology of these related conditions to inform prevention and management
strategies. Given the heterogeneity of causes of placental dysfunction, it is recognized
that a clinically effective approach to prevention and treatment will involve a multimodal
intervention strategy [4,5]. The introduction of a combined approach using lifestyle, screen-
ing, and medical management, as outlined in this review, has the potential to significantly
reduce morbidity and mortality, decrease transgenerational transmission of chronic disease,
and improve long-term maternal and neonatal health following pregnancy [6].

The causes of placental dysfunction can be genetic, epigenetic, or environmental. In
recent times, there has been increasing interest in the contribution of pre-existing maternal
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pathophysiological processes, such as insulin resistance, low-grade chronic inflammation,
and hyperandrogenism, to placental disorders [4,7]. This has resulted in renewed interest
in the role of lifestyle interventions for the prevention and treatment of pregnancy compli-
cations. Lifestyle-based interventions encompass a variety of domains including nutrition,
exercise, smoking cessation, weight management, sleep, stress, and community support.
Most of the research has been directed to interventions related to diet and exercise, both
of which have been recommended by international obstetric societies to promote healthy
pregnancy and reduce adverse outcomes [8,9].

First- and second-trimester screening strategies have been developed following rig-
orous pre-clinical, case-control, observational, intervention, and real-world evaluation
studies [10,11]. These screening models have been found to have good predictive value
for early diagnosis of some obstetric syndromes, such as pre-eclampsia (PE) and fetal
growth restriction (FGR), and result in increased surveillance of all women identified as
high-risk [11,12]. Multivariate screening can be performed at 11–14 weeks’ gestation using
a combination of maternal, biophysical, and serum biochemical markers [10]. Women
identified as high-risk for PE on first-trimester multivariate screening can be offered pro-
phylactic treatment with low-dose aspirin [13]. High-risk women can be monitored by
measurement of the serum angiogenic ratio, which can be used in conjunction with ul-
trasound scans, blood tests, fetal monitoring, and clinical assessment, commencing at
22 weeks’ gestation [11]. Following delivery, women identified as high-risk can be assessed
for ongoing cardiometabolic risk factors and offered lifestyle support [14,15].

This review outlines a multimodal approach that aims to reduce the risk of pregnancy
complications, decrease social disruption, hospitalization, and time away from work and
family, and reduce healthcare costs. The recommended strategy involves coordinated
preconception, antenatal, and postpartum interventions (Figure 1).
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2. Obstetric Syndromes
2.1. Pre-Eclampsia

Hypertensive disorders of pregnancy, including gestational hypertension and PE,
result in significant maternal and fetal morbidity and mortality worldwide. Pre-eclampsia
affects 2–7% of pregnancies globally and is responsible for 70,000 maternal deaths and
500,000 fetal/neonatal deaths every year [10]. Severe PE occurs in 1–2% of pregnancies and
complications associated with this condition account for 15% of direct maternal deaths and
10% of perinatal deaths. Pre-eclampsia is the indication for 20% of labor inductions and
15% of Caesarean sections and accounts for 5–10% of preterm deliveries. Early-onset PE
(<34 weeks) is less common than late-onset but accounts for significantly greater PE-related
morbidity, mortality, and healthcare costs [16]. Women with a history of PE have a signifi-
cantly increased risk of cardiovascular disease, metabolic disorders, chronic hypertension,
renal disease, and dementia, later in life [14,17–20]. In addition, the experience of PE can be
traumatic to women, their partners, and their support networks [21].

Many of the features of PE are non-specific (headache, visual disturbance, abdominal
pain), and diagnoses based on clinical signs (hypertension and proteinuria) and symptoms
are subjective and poor predictors of adverse outcomes [22]. Approximately 30% of all
pregnancies will be evaluated for PE and require repeat hospital admissions and increased
antenatal surveillance, which significantly add to healthcare costs [11]. Early identifica-
tion of PE using predictive screening models and prophylactic treatment with lifestyle
interventions and aspirin represents a significant advance in perinatal care [11,23].

2.1.1. Screening for Pre-Eclampsia

Screening models for the detection of obstetric syndromes have primarily focused
on identifying women at high risk of developing PE [24] and FGR [25]. First-trimester
multivariate screening (maternal factors, mean arterial pressure [MAP], uterine artery
pulsatility index [UtAPI], and pregnancy-associated plasma protein A or placental growth
factor [PlGF]) are effective predictors of PE, having detection rates of 90% for early-onset
PE (<34 weeks’ gestation), 75% for preterm PE (<37 weeks), and 42% for term PE, with a
false-positive rate of 10% [10,25–27]. The effectiveness of the multivariate algorithm for
detecting FGR is 50% [25,28].

Circulating angiogenic proteins, soluble fms-like tyrosine kinase-1 (sFlt-1), and PlGF
have an important biological role in the pathophysiology of PE, are expressed prior to
the onset of clinical signs and symptoms, and can be used in the prediction of early-
onset PE [11,29]. The serum angiogenic factors can be assessed from 22 weeks’ gestation
and have a high negative predictive value (NPV) to rule out PE in asymptomatic high-
risk women and in women suspected of having PE [11]. The positive predictive value
(PPV) to predict PE and/or adverse outcomes within 4 weeks is 65% when the cut-off
of 38 is exceeded [11,29]. The angiogenic ratio test (sFlt-1/PlGF) can be used to exclude
other conditions that mimic PE (e.g., non-HELLP thrombocytopenia, chronic hyperten-
sion, chronic kidney disease) [11,30,31], and can help discriminate between constitutional
small-for-gestational-age (SGA) and growth-restricted fetuses [32]. Prediction of adverse
outcomes is improved when angiogenic markers are combined with clinical, laboratory,
and ultrasonographic data, to guide management [33].

2.1.2. Screening for Preeclampsia Using Machine Learning (ML) Models

It is recognized that multivariate PE prediction models do not optimally predict all
subtypes of PE, generally have a lower PPV than NPV, and will be more readily imple-
mented in middle- and high-resource settings [34]. Greater than 99% of maternal deaths
related to PE occur in low- and middle-income countries and the burden of adverse out-
comes is spread across gestation [35]. In contrast, perinatal outcomes are largely related to
gestational age at delivery. Machine learning (ML) models have the potential to be used
globally for the prevention of complications related to obstetric syndromes.
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Machine learning models are suitable for managing many variables and can be used
for screening or diagnosis of PE. ML models can use combinations of maternal character-
istics, medical history, antenatal serum biomarkers, laboratory data, ultrasound results,
medications prescribed during pregnancy, and electronic health records, and can be used in
real-world settings where available data are often incomplete [36,37]. A recent systematic
review of 4 ML screening models found high predictive performance using routine early
pregnancy information [37]. To date, there are no clinical trials that compare ML models to
the currently recommended multivariate models.

A recent study by Li et al. used ML models to predict PE from clinical data obtained
at the first antenatal visit [38]. The best predictive feature of the 38 clinical parameters
assessed was fasting blood glucose, followed by mean blood pressure, and body mass
index (BMI). These findings are consistent with the large body of research supporting the
role of lifestyle and nutritional factors in the development of pregnancy complications
(discussed in Section 2.1.5).

Machine learning models can also be used in women presenting with PE to rule out or
rule in women at risk of adverse maternal outcomes in the following 48 h. Montgomery-
Csoban et al. recently developed a novel ML-based time-of-disease model using routinely
available data (health records, demographic and clinical data) [36]. The development
dataset was derived from published data from low-, middle-, and high-income countries.
The Pre-eclampsia Integrated Estimate of Risk-ML (PIERS-ML) model was externally val-
idated in women hospitalized with PE and accurately identified women from low- to
high-risk categories. The PIERS-ML model also identified women at very low risk of
developing eclampsia and stillbirth. Some diagnostic ML models have included angiogenic
markers in their algorithm [39]. Whether these models can improve the predictive perfor-
mance of angiogenic markers used in conjunction with current management approaches,
as recommended in our algorithm, has yet to be determined.

In the future, the further development of ML algorithms using large population-
based datasets may improve the predictive performance of artificial intelligence-assisted
models and thereby the prediction of specific subtypes of PE (such as late-onset) and other
pregnancy syndromes associated with placental pathology.

2.1.3. Placental Pathology in Pre-Eclampsia

The characteristic features of defective placentation in PE, such as incomplete re-
modeling of the junctional zone segment, atherosis of the decidual basal arterioles, and
spiral artery thrombosis, are also found in other obstetric syndromes such as FGR, preterm
labor with intact membranes, preterm pre-labor rupture of the membranes, placental
abruption, preterm labor, and stillbirth [2,3,40–44]. These changes were initially identi-
fied in morphological studies, then more recently by functional investigations (doppler
flow, uteroplacental perfusion, and biochemical and immunological studies), and electron
microscopy [2]. Spiral artery remodeling commences in the first trimester of pregnancy
when decidual natural killer cells and macrophages initiate disorganization and fragmenta-
tion of the vascular smooth muscle resulting in vessel dilatation [45,46]. This is followed
by endovascular trophoblast invasion and more proximal vessel dilatation, in the second
trimester, which extends into the myometrial segment of the spiral arteries and terminal
radial arteries [46]. Failure of deep placentation during the second trimester is a common
pathological feature in obstetric syndromes [2,3,47].

2.1.4. Impact of Maternal Pathophysiology on Placentation in Pre-Eclampsia

Underlying maternal pathophysiological states such as chronic inflammation [48–51],
insulin resistance [52–54], and hyperandrogenemia [55–59], alter placental metabolism and
physiology and have a significant impact on placental development and function [4,7,60].
Laboratory cell culture, animal, molecular, human epidemiological, and interventional stud-
ies demonstrate clear associations and mechanistic links between maternal pathophysiology
and placental dysfunction in PE and other obstetric syndromes [4,7,60].
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Normal placental development is dependent on bidirectional feto-maternal communi-
cation signals such as cytokines, exosomes, extracellular vesicles, transcription factors, and
hormones [7,61]. These signals are influenced by sperm and oocyte genetics, epigenetics,
and metabolic factors [62–64], the physiological state of the maternal decidua, and the
underlying maternal systemic metabolic and hormonal environment [7,65]. Disturbance
of any of these components of normal physiology can lead to abnormal feto-maternal
dialogue, deficient trophoblast invasion, altered spiral artery remodeling, and metabolic
dysregulation that may all contribute to the common pathophysiological changes seen in
obstetric syndromes [66–69].

2.1.5. Lifestyle Factors in Pre-Eclampsia

Lifestyle factors have been extensively investigated for their role in modifying the risk
of pregnancy complications [4,70]. An evidenced-based review by an international group
of experts identified 78 maternal risk factors that were associated with the development of
PE [71]. This comprehensive review of 2 umbrella reviews and 22 meta-analyses identified
a number of lifestyle-related risk factors associated with PE. The study found that obesity
(BMI > 30 kg/m2) was the strongest risk factor and had a “definite” association with PE
based on high-quality evidence [71]. An evidence review of nutritional determinants of PE
found that healthy maternal diet patterns (containing fruits, vegetables, whole-grain foods,
fish, and chicken) were associated with a 22% reduction in the development of PE (Odds
Ratio [OR]: 0.78, 95% confidence interval [CI] 0.70–0.86) [8,72]. Consumption of maternal
dietary patterns high in ultra-processed foods and added sugars conferred a 28% increased
risk of developing PE (OR: 1.28, 95% CI 1.15–1.42) [8,73].

There is significant overlap in the risk factors for PE and other obstetric syndromes [74].
Obesity is recognized as the most significant risk for PE and is associated with chronic
inflammation, insulin resistance, and hyperandrogenemia, all of which can contribute to
placental dysfunction [4,8]. International and national guidelines recommend lifestyle
interventions, such as diet [8] and exercise [9] for the management of women with PE. The
previous emphasis on smoking, alcohol, diet, and exercise has expanded to include stress,
sleep, community engagement, social support, environmental chemicals, and the effects
of climate [75–80]. Following a healthy lifestyle has been found to reduce the incidence of
PE [72,81], preterm birth [72], gestational diabetes [72,81,82], gestational weight gain [83],
SGA [84], and other pregnancy complications [85]. Nevertheless, lifestyle interventions are
difficult to perform in pregnancy and not all studies have shown positive results [83,86].
The expanded list of lifestyle factors needs to be evaluated in large population-based
intervention studies.

2.1.6. Population-Attributable Risk of Pre-Eclampsia from Modifiable Risk Factors

Although some of the risk factors associated with PE are clinically important and
identify women at significantly increased individual risk, they may only make a small
contribution to the total burden of PE in the population [87]. One way to assess the
broader impact of risk factors is to assess the population-attributable risk or proportional
contribution of a risk factor to the entire population [88]. For example, it is important to
identify women with a history of antiphospholipid syndrome for individual assessment
and surveillance, but antiphospholipid syndrome was found to have one of the lowest
population-attributable risk fractions of 0.18% with a 95% CI of 0.08 to 0.33%, for PE. The
determination of the population-attributable risk can also provide important information
that informs public health policy and prevention programs [71,88].

It is therefore important to identify women at increased individual risk, determine the
population-attributable risk, and assess whether the relationship between the risk factor
and PE is modifiable [71]. A large systematic review of cohort studies with more than
1000 participants evaluated the risk of PE in relation to common clinical risk factors in
pooled data from 25 million women [87]. The investigators emphasized the importance of
population-attributable risk and found that many common risk factors have a modifiable
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component. The pooled relative risk was used to calculate the population-attributable
fraction for PE in relation to 16 common clinical risk factors. Nulliparity had the greatest
population-attributable fraction (32.3%, 95% CI: 27.4–37%). When considered as a group,
modifiable risk factors including pre-pregnancy BMI > 25 (23.8%, CI: 22 to 25.6%) and
pregestational diabetes (3.7%, 95% CI: 3.1 to 4.3%) made up 27.5% of the population-
attributable risk. It was noted that other risk factors that are linked to obesity, such as
chronic hypertension, could also be reduced by a reduction in pre-pregnancy BMI, which
would increase the proportion of modifiable risk for the development of PE [87]. In
addition, other common lifestyle and metabolic-associated risk factors not assessed in this
review, such as insulin resistance, polycystic ovary syndrome, and metabolic dysfunction-
associated fatty liver disease, suggest that the modifiable population-attributable risk for
PE would be significant.

A subsequent hierarchical review of the relationship between 78 risk factors and PE
by an expert advisory group also emphasized the importance of population-attributable
fraction related to modifiable risk factors [71]. It is recognized that modifiable risk factors
also contribute to fetal growth restriction [89,90], preterm labor [91,92], premature rupture
of the membranes [93,94], and stillbirth [95,96]. The implementation of a multimodal
intervention model that includes lifestyle advice, multivariate screening, aspirin prophy-
laxis, and assessment of the serum angiogenic ratio, therefore has the potential to detect
and reduce morbidity and mortality related to many obstetric syndromes, as has been
demonstrated with PE and FGR (Figure 2).
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Figure 2. Risk assessment and management of women before and during pregnancy. First-trimester
multivariable screening is based on references [10,24,26] (see https://fetalmedicine.org/research/
assess/preeclampsia/first-trimester, accessed on 3 May 2024). The use of the aFlt-1:PIGF ratio is
based on references [10,11,97–99]. Mean arterial pressure (MAP); uterine artery pulsatility index
(UtAPI); placental growth factor (PlGF); soluble fms-like tyrosine kinase-1 (sFlt-1). Modified with
permission from Parker et al. [4].
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2.2. Fetal Growth Restriction (FGR)

Fetal growth restriction is influenced by maternal, fetal, and placental factors, and
is a significant cause of perinatal morbidity and mortality [100,101]. Between 5 and 10%
of pregnancies are complicated by FGR making it the second leading cause of perinatal
mortality in babies without congenital anomalies. In addition, FGR is responsible for 30% of
stillbirths [100]. Placental insufficiency is considered the main cause of FGR, and a variety
of screening models related to placental function have been investigated [102–104]. Both
first-trimester multivariate and second-trimester angiogenic assessments are predictive of
early-onset FGR (<34 weeks), albeit at lower detection rates than those found in PE [25].
Early-onset FGR is a significant cause of iatrogenic preterm delivery and early detection of
FGR is also important for reducing the incidence of stillbirth.

Many lifestyle interventions have been investigated for their effect on fetal growth
and well-being. A systematic review found that unhealthy dietary patterns (high intakes of
refined grains, processed meat, high saturated fat, or sugar) were associated with lower
birth weight (mean difference: −40 g; 95% CI: −61 to −20 g) [105]. Physical activity during
pregnancy has been shown to reduce the risk of gestational diabetes (by reducing blood
sugar levels), decrease the risk of PE, lower the risk of Caesarean section, and reduce
the severity of prenatal depression [81,82,106,107]. However, it is recognized that some
modification of exercise routines may be necessary to accommodate maternal anatomical
and physiological changes in pregnancy [108]. Low to moderate-intensity endurance and
resistance training are associated with beneficial maternal and fetal effects [108]. The
evidence suggests that high-intensity and volume weight-bearing and aerobic activity
should be avoided, particularly during the third trimester, as it may contribute to lower
birth weight [108–110]. Many national guidelines now contain specific advice regarding
the frequency, duration, and intensity of exercise that is recommended in pregnancy [9,111].
These recommendations form part of a comprehensive multimodal intervention model.

2.3. Preterm Labor and Premature Rupture of the Membranes

Preterm birth, defined as delivery before 37 weeks’ gestation, occurs in 10.6% of
pregnancies globally and is the leading cause of perinatal morbidity and mortality in the
absence of congenital anomalies [112]. Preterm labor, with intact membranes or following
premature rupture of the membranes, results in two-thirds of preterm births, and PE and
FGR account for one-third [113]. Acute chorioamnionitis, as a cause or consequence, is the
most common placental lesion in women with spontaneous preterm labor and vascular
lesions are the second most common [3]. Preterm labor and premature rupture of the
membranes are associated with defective placentation in common with other obstetric
syndromes [2,3]. Since there is a significant overlap in the incidence of these conditions
with other obstetric syndromes, interventions that reduce the impact of PE and FGR may
also lower the incidence of preterm birth.

Maternal nutrition is a major determinant of birth outcomes and offspring health
later in life [114]. A systematic review of observational studies that investigated the effect
of dietary patterns in pregnancy found that healthy dietary patterns (high intakes of
vegetables, fruits, whole grains, low-fat dairy, and lean protein foods) were significantly
associated with a lower risk of preterm birth with an odds ratio (OR) of 0.79 (95% CI: 0.68
to 0.91) [105]. The investigators noted that the healthy diet patterns identified in the review
were similar to current dietary recommendations in many countries (United Kingdom,
United States, Canada, and China). These data support the recommendations of the current
multimodal model that lifestyle and dietary advice should be aligned with national food
and nutrition guidelines.

2.4. Stillbirth

It has been estimated that there are two million stillbirths in the world each year [115].
The majority of stillbirths (84%) occur in low-/middle-income countries, and the causes
differ due to socioeconomic factors, both between and within countries [95,116–118]. These
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include genetic and environmental factors, maternal and fetal co-morbidities, and pla-
cental dysfunction. Of these, placental dysfunction, be it acute (abruptio placentae) or
chronic (placental insufficiency), is the largest and most clearly defined risk factor. Forty
percent of stillbirths occur intrapartum and are probably preventable [95]. Nineteen percent
of stillbirths are associated with maternal risk factors (nulliparity, pre-existing hyperten-
sion, increased BMI) that are known to be associated with maternal and placental vascular
dysfunction [96]. Over 50% of stillbirths are therefore preventable and multivariable predic-
tion models and angiogenic factor assessments have the potential to improve early detection
of fetal problems and facilitate preventative intervention in this group of women [5].

An umbrella review of 69 systematic reviews examining factors associated with still-
birth found that maternal age, BMI, and prior adverse pregnancy outcomes (stillbirth,
preterm birth, small-for-gestational-age) were better predictors than ultrasound or bio-
chemical markers [5]. Nevertheless, components of the multivariate model were found
to be associated with an increased risk of stillbirth. Placental growth factor had a strong
association with stillbirth with an OR of 49.2 (95% CI: 12.7 to 191) and second-trimester
UtAPI had an OR of 8.3 (95% CI: 3.0–22.4) [5]. A prospective real-world study of 979
high-risk pregnant women found low PlGF levels (<100 pg/mL) were associated with an
increased risk of preterm birth, early-onset PE, and stillbirth (OR 15.9, CI: 7.6–33.3). In
addition, low PlGF levels were found to distinguish between placental and fetal causes of
stillbirth [119].

Angiogenic factors have also been found to be of value in risk assessment for pre-
dicting stillbirth [119,120]. Chaiworapongsa et al. performed a prospective cohort study
of 12 pregnant women and found that a reduced PlGF to soluble vascular endothelial
growth factor receptor-1 (sVEGFR-1: also known as soluble fms-like tyrosine kinase-1) ratio
at 34 weeks had a likelihood ratio of 14 for the prediction of subsequent stillbirth [120].
A cross-sectional study that included 44 women with unexplained fetal death, found a
significantly higher concentration of plasma sVEGFR-1 (p = 0.04) than in normal pregnant
women [121]. Future prospective studies will be required to investigate the predictive
ability of combined multivariate first-trimester screening with second-trimester monitoring
using angiogenic ratios to predict and reduce rates of both unexplained and syndrome-
related stillbirth.

Population-level interventions, such as control of malaria and syphilis and optimizing
nutrition, may play a significant role in stillbirth prevention at a global level [122]. A
systematic review of behavioral and nutritional interventions before and during pregnancy
concluded that many antepartum stillbirths are preventable through dietary and environ-
mental interventions, and improved antenatal management of high-risk women [122]. A
large cohort study from the United Kingdom found that potentially modifiable risk factors
(maternal obesity, smoking in pregnancy, and FGR) were associated with over half of all
stillbirths [123]. Therefore, the available evidence suggests that a combined multimodal
approach that includes lifestyle and dietary advice also has the potential to reduce the
incidence of stillbirth.

Additionally, there have been suggestions that aspirin may have a role in the preven-
tion of stillbirth. Until recently, reported clinical trials have been underpowered to detect a
reduction in this risk [13,95]. Now, a large multicenter stepped wedge cluster randomized
controlled trial investigating the efficacy of the first-trimester screen-and-prevent strategy,
has found that aspirin prophylaxis in high-risk women resulted in a 66% reduction of
perinatal death (OR 0.34, 95% CI: 0.12 to 0.91) [124]. The identification of women at in-
creased risk of pregnancy complications on first- and second-trimester screening facilitates
increased surveillance and would be expected to help identify fetal compromise prior to
stillbirth in some women. Taken together, the available evidence suggests that implementa-
tion of the multimodal model may reduce the incidence of stillbirth. This important area of
perinatal research should be a priority in future large prospective trials.
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3. Medical Management with Acetylsalicylic Acid (Aspirin)

Prophylactic low-dose aspirin therapy has been shown to be both efficacious and
cost-effective for preventing pregnancy complications [16]. When aspirin is initiated in
early pregnancy (<16 weeks’ gestation), it is associated with a significant reduction in
early-onset PE [13], early-onset FGR [125], and preterm birth [16]. Women identified as
high-risk on first-trimester multivariable screening can be offered prophylactic low-dose
aspirin, which can be taken at night and continued until 37 weeks’ gestation. High-risk
women can be followed with angiogenic factor assessment from 22 weeks’ gestation in
conjunction with the current standard of care. Studies have shown that the reduction in the
risk of complications is dependent on high rates of compliance with aspirin treatment [126].
Women with less than 90% adherence have a greater rate of PE (OR 2.3, 95% CI: 1.2–11.6,
p = 0.03), FGR (OR 5.8, 95% CI: 1.2–8.3, p = 0.001), and preterm birth (OR 5.2, 95% CI:
1.5–8.7, p = 0.008) [127]. Effective education and compliance-aiding strategies are therefore
of utmost importance in clinical practice.

Recent preliminary studies have investigated the possibility of ceasing aspirin therapy
at 24 to 28 weeks’ gestation in high-risk women, if the angiogenic ratio and/or UtAPI
are normal, to reduce side effects, and increase compliance and convenience [128,129].
A multicenter randomized trial (StopPRE) investigated whether aspirin (150 mg) could
be discontinued at 24–28 weeks’ gestation if the angiogenic ratio was normal (<38) [128].
There was no significant difference in the incidence of pre-term PE in women who ceased
aspirin at 24–28 weeks’ (1.48%, 7/473) compared with women who continued aspirin until
37 weeks’ gestation (1.73%, 8/463) (absolute difference −0.25%; 95% CI: −1.86% to 1.36%).
The investigators found a higher incidence of minor antepartum hemorrhage in the group
that continued aspirin until 37 weeks compared with those who discontinued treatment
at 24–28 weeks’ gestation (12.31% vs 7.61%; absolute difference, −4.70; 95% CI: −8.53 to
−0.87) [128]. A secondary analysis of the StopPRE trial showed that discontinuation of
aspirin at 24–28 weeks in women with a UtAPI less than the 90th percentile was not inferior
to continuing aspirin until 37 weeks’ gestation [129]. These data also suggest that there
is a significant therapeutic effect of aspirin during the second trimester of pregnancy that
corresponds to the period of deep placentation that is known to be a common pathological
feature in obstetric syndromes [2]. Further intervention studies are required to investigate
the reproducibility and generalizability of these results in diverse population groups [130].

4. Integrated Clinical Management to Reduce Pregnancy Complications

The proposed model is only one component of a comprehensive clinical management
strategy to ensure high-quality pregnancy care and prevent complications. Lifestyle recom-
mendations need to be easy to understand, succinct, and follow national and international
guidelines [8,9]. Antenatal caregivers will need to be informed about the performance
and interpretation of the new screening tests, and protocols for the measurement of MAP
need to be implemented [131], ultrasonographers will be required to learn techniques for
assessing UtAPI [132], serum biochemical tests need standardization and monitoring for
compliance [133], and clinicians will be required to learn how to integrate components of
the model into routine clinical practice. The angiogenic ratio test should be used in con-
junction with ultrasound scans, usual blood tests, fetal monitoring, and clinical assessment
(Table 1) [9].

Table 1. Characteristics of the Multimodal Model.

Intervention Recommendation Intervention References

Nutrition advice As per national
dietary guidelines

PRECISE, Australia, USA,
Canada, UK, China [8,9,134–137]

Exercise advice According to expert
advisory groups Endurance, strength, stretching [9,138]
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Table 1. Cont.

Intervention Recommendation Intervention References

Multivariate
screening

First-trimester assessment
as per Fetal Medicine
Foundation algorithm

Maternal factors,
MAP, UtAPI, PlGF

at 11–14 weeks’ gestation
[24,26]

Aspirin As per national guidelines 81–150 mg at night [13,139]

Angiogenic ratio screening Serum sFlt-1/PlGF ratio
as per protocol

Measurement from
22 weeks’ gestation [11,97,99]

Clinical
management Multidisciplinary team

Lifestyle advice, clinical assessment,
blood tests, blood pressure, CTG,

ultrasound, assess postpartum
[9,14]

Abbreviations: PRECISE = Pregnancy care integrating translational science everywhere; USA = United States
of America; UK = United Kingdom; MAP = mean arterial pressure; UtAPI = Uterine artery pulsatility index;
PlGF = Placental growth factor; sFlt-1 = soluble fms-like tyrosine kinase-1; CTG = cardiotocography.

4.1. Practical Aspects of Implementing First-Trimester Multivariate Screening

The Fetal Medicine Foundation (FMF) first-trimester multivariate risk assessment
model is generally used worldwide for the prediction of PE and FGR [10,25,104,140].
This model has been extensively studied, has undergone successful internal and external
validation, and is continually re-evaluated using real-world data [133,141]. Multivariate
testing is superior to risk factor-based models for identifying high-risk women and allows
individualized antenatal care [142,143]. Maternal risk factors and biomarkers can be entered
into an online risk calculator free of charge at https://fetalmedicine.org/research/assess/
preeclampsia, accessed on 3 May 2024.

The FMF screening test has been endorsed by the International Federation of Gy-
necology and Obstetrics [27], the International Society for the Study of Hypertension in
Pregnancy [10], and many National Obstetric Societies [9]. In order to maintain optimal
screening performance, it is important to follow standardized methods for performing the
required biophysical (MAP, UtAPI) and biochemical (PlGF) measurements.

4.1.1. Measurement of Mean Arterial Blood Pressure (MAP)

Determining MAP antenatally is inexpensive, non-invasive, quick, and can be per-
formed with minimal training. However, its effectiveness depends on various factors
such as the population studied, user training, measurement accuracy, and the protocols
for intervention based on the results [133]. Inaccurate measurements of MAP affect the
performance of the screening test and impact the risk estimate given to the patient [131].
Standardized measurement protocols have therefore been developed to limit data errors
entered into the FMF risk calculator.

Mean arterial blood pressure is measured with women sitting with their backs against
the seat, legs uncrossed, and arms supported at the level of the heart. The correct cuff
size is selected, and blood pressure is measured in both arms simultaneously using a
validated automated device. Two readings are taken from each arm, 1 min apart, and
MAP is calculated from the average of the 4 measurements [131]. Automated blood
pressure devices require calibration at regular intervals to ensure reliable measurements
over time [144].

4.1.2. Measurement of Uterine Artery Pulsatility Index (UtAPI)

The reproducibility and reliability of UtAPI assessment are dependent on the use
of standardized protocols that take measurements at defined anatomical locations using
specific ultrasound machine settings [132]. A transabdominal ultrasound transducer is
used to obtain a sagittal section of the uterus at the level of the internal cervical os. The
uterine arteries are identified using Color Doppler flow mapping followed by pulsed
wave Doppler measurement of UtAPI and peak systolic velocity when 3 consecutive

https://fetalmedicine.org/research/assess/preeclampsia
https://fetalmedicine.org/research/assess/preeclampsia
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waveforms are obtained. Standardized transducer positions and Doppler settings are
employed [133,145].

Ultrasonographers require specific training in the UtAPI measurement technique
followed by regular assessment of their results for continued accreditation [132]. This
procedure has been shown to reduce operator- and technique-dependent measurement
variability, and improve detection rates for PE [146,147]. Measurement of UtAPI can be
taken between 11 and 14 weeks’ gestation at the same time as the first-trimester scan.

4.1.3. Measurement of Placental Growth Factor (PlGF) and Compliance Monitoring

Standardized protocols are required to minimize variations in the measurement of
PlGF that can arise due to changes in reagent batches, fluctuations in temperature, de-
viations from manufacturer protocols, and the absence of a continuous quality control
process [133,148,149]. Automated assays allow standardized measurements with rapid
availability of results [148]. Measurement of PlGF can be conducted on the same blood
sample as routine blood tests for first-trimester aneuploidy screening.

A comparison of 3 commercially available automated immunoassays found that there
was a considerable difference between raw data values between different platforms, which
was likely to be clinically significant [148]. The authors recommended that reference
ranges specific to each platform should be reported with raw data values when PlGF
measurement is used in clinical practice. Conversion of raw data to multiples of median
values allows direct comparison of results between different platforms. Analyzers need
frequent calibration and results are regularly monitored to ensure consistency.

4.1.4. Integrating Angiogenic Ratio Testing into Clinical Practice

There is now international consensus that all pregnant women should be offered first-
trimester multivariate screening [10,27]. Approximately 10% of women will be classified as
high-risk based on maternal factors, placental biomarkers, MAP, and UtAPI. The data are
entered into the FMF risk calculator and high-risk women can be offered prophylactic treat-
ment with low-dose aspirin [13]. Asymptomatic high-risk women may then be followed
with monthly sFlt-1/PlGF ratio tests from 22 weeks (Figure 2) [11].

An angiogenic ratio <38 can rule out the onset of PE for 1 week with an NPV of 99.3%
and up to 4 weeks with an NPV of 94.3% [11]. This can provide reassurance to clinicians
and women for continued outpatient management [150]. Women with an intermediate
ratio result of 38–85 require increased outpatient monitoring. This may include clinical
assessment, ultrasound, cardiotocography, blood tests, repeat blood pressure measurement,
and a repeat angiogenic ratio test in 1–2 weeks, or sooner, if the clinical situation changes.
Women with a sFlt-1/PlGF ratio >85 require intensive monitoring, usually as inpatients.

Most of the research on angiogenic factors has so far been related to predicting,
diagnosing, and/or managing PE and its complications, as well as assessing the severity and
the associated rate of clinical deterioration in patients with PE. However, emerging evidence
suggests that altered levels of the sFlt-1/PlGF ratio or PlGF itself are also associated with
FGR, preterm birth, and stillbirth [151–153]. This reflects the common pathogenesis of such
outcomes as often being related to placental dysfunction, of which angiogenic biomarker
imbalance is a feature.

Additionally, angiogenic factor measurement may be of clinical value in the differen-
tial diagnosis of PE-like conditions that may occur during pregnancy [11,30,31,97]. These
include presentations involving exacerbations of chronic hypertension, systemic lupus
erythematosus, diabetic nephropathy, renal transplant rejection, and other chronic kid-
ney diseases, as well as new presentations of conditions manifesting as hypertension
(e.g., phaeochromocytoma), liver dysfunction (e.g., hepatitis), proteinuria (e.g., nephrotic
syndrome) or thrombocytopenia (e.g., idiopathic thrombocytopenic purpura).

At a research level, these angiogenic biomarkers will also be valuable in helping the
selection of suitable trial entrants for studies examining the treatment and/or management
of PE and related disorders. For example, an sFlt-1/PlGF ratio above a certain cut-off level
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could be an inclusion criterion for recruitment to a study, thereby optimizing the number
of suitable at-risk patients enrolled and facilitating sufficient sample size achievement in a
more cost-effective manner than might otherwise be the case.

Also, it is worthy of note that support for the use of angiogenic biomarkers by national
authorities has been gathering momentum [154,155], and health economic evaluations of
their use in practice have been consistently positive [156]. A review of nine studies that
investigated the cost-effectiveness of the use of diagnostic angiogenic biomarkers in women
suspected of having PE found that all studies demonstrated cost savings [156].

Overall, the expanded use of angiogenic factor measurement as a standard part of
antenatal care has the potential to improve maternal and perinatal outcomes in pregnan-
cies complicated by placental dysfunction. An elevated angiogenic ratio facilitates early
diagnosis of placental dysfunction and effective intervention can mean a cost-beneficial
use of limited health funds. Equally important, having a normal angiogenic ratio excludes
a diagnosis of placental dysfunction and can mean avoiding ineffective overuse of scarce
health resources.

5. Strengths and Limitations of the Current Review
5.1. Strengths

Individual components of the proposed model have been extensively evaluated in
case-control, prospective, randomized, and real-world implementation studies. There is a
large body of research investigating the role of nutrition in promoting healthy pregnancy
and preventing complications. In summary, systematic reviews of observational studies,
expert reviews, and national and international guidelines, support dietary and exercise
recommendations for lifestyle-based interventions before, during, and after pregnancy.
Multivariate and angiogenic factor screening strategies have been extensively evaluated
over two decades in a variety of ethnic populations and clinical environments. Over 75 ran-
domized trials have consistently shown a significant reduction in pregnancy complications,
such as PE and fetal growth restriction, using prophylactic low-dose aspirin. The proposed
multimodal model is the first time all of the individual components have been combined
into a sequential algorithm that can be integrated into existing clinical practice structures.

5.2. Limitations

The implementation of this model has some limitations. Education and training
of healthcare practitioners in various aspects of the proposed model will be required.
Protocols for the measurement of mean arterial blood pressure need to be implemented.
Ultrasonographers will need to be upskilled and accredited in techniques for assessing
uterine artery pulsatility index, which is a measurement taken at the time of the first-
trimester ultrasound. Protocols to ensure that laboratories comply with quality control
of serum biomarker assays will also be needed. Doctors managing pregnant women will
require information about how to integrate angiogenic ratio results into existing clinical
management practices. The multivariable model has a 10% false positive rate, so some low-
risk women will be assessed as high-risk, and adequate counseling will be required. Equity
of access to qualified professionals will take time during the training and implementation
phase and real-world evaluation of the combined multimodal model will be essential.

6. Conclusions

Pregnancy conditions resulting from placental dysfunction may complicate up to
30 million pregnancies worldwide annually. Implementation of a multimodal integrated
management strategy using lifestyle, screening, and medical treatment has the potential to
significantly reduce pregnancy complications, decrease maternal and perinatal morbidity
and mortality, limit transgenerational transmission of chronic disease, reduce future ma-
ternal cardiometabolic risk, decrease healthcare-related costs, and improve quality of life.
Translation of validated components of this model into clinical practice should be a global
healthcare priority.
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BMI body mass index
CI confidence interval
CTG cardiotocography
FGR fetal growth restriction
FMF Fetal Medicine Foundation
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KG kilogram
MAP mean arterial pressure
M2 meter squared
ML machine learning
NPV negative predictive value
OR odds ratio
PE preeclampsia
PIERS pre-eclampsia integrated estimate of risk
PlGF placental growth factor
PPV positive predictive value
sFlt-1 soluble fms-like tyrosine kinase
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sVEGFR-1 soluble vascular endothelial growth factor receptor-1
UtAPI uterine artery pulsatility index
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