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Abstract 
The waveguide which is at the center of our concerns in this work is a strongly 
flattened waveguide, that is to say characterized by a strong dispersion and in 
addition is strongly nonlinear. As this type of waveguide contains multiple dis-
persion coefficients according to the degrees of spatial variation within it, our 
work in this article is to see how these dispersions and nonlinearities each in-
fluence the wave or the signal that can propagate in the waveguide. Since the 
partial differential equation which governs the dynamics of propagation in such 
transmission medium presents several dispersion and nonlinear coefficients, we 
check how they contribute to the choices of the solutions that we want them to 
verify this nonlinear partial differential equation. This effectively requires an 
adequate choice of the form of solution to be constructed. Thus, this article is 
based on three main pillars, namely: first of all, making a good choice of the 
solution function to be constructed, secondly, determining the exact solutions 
and, if necessary, remodeling the main equation such that it is possible; then 
check the impact of the dispersion and nonlinear coefficients on the solutions. 
Finally, the reliability of the solutions obtained is tested by a study of the prop-
agation. Another very important aspect is the use of notions of probability to 
select the predominant solutions. 
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1. Introduction 

The phenomena of propagation are like modes of movement of energies. Origi-
nally, they are naturally deployed in space. We have clouds, earthquakes, hurri-
canes, tornadoes, sound and current, to mention only those. Life being strongly 
linked to the management of the energies at its disposal, man has over time, de-
veloped the mechanisms to tame these different forms of energies. The most 
common are the different waveguides like copper wires, iron wires, power lines, 
optical fibers, and many others. But the propagation of these energies (signals) 
in these different transmission media also comes up against many problems 
and thereby, raises several challenges, namely: being able, to generate these 
energies and make them propagate in the environment, being able to deter-
mine the form of the signal that we want to propagate and how long can the 
generated signal continue to propagate in the medium. If the signal ends up 
weakening, it is always important to fine the cause of the attenuation, hence 
one must look at the material the transmission medium is made of, and the 
characteristic properties of the said transmission medium. We can have many 
challenges but, they all lead to the development of techniques to stabilize the 
signal which propagates in the fiber, and to push the limits of the comfort of 
the wave or the signal in its propagation medium. It is in this dynamic that, 
researchers try every day to unravel the mysteries that nature hides. Among 
these mysteries, one of the most important was the discovery of the solitary 
wave. This concept has been accompanied by a proliferation of works [1]-[13]. 
This passion for the solitary wave remains just as strong today as evidenced by a 
recent work done on the ferromagnetic chains of Heisenberg [14]. Always in the 
logic of studies of wave propagation, this dynamic which originated on sea waves 
[15] [16] [17], has been exported to solid transmission media such as optical fi-
bers and others [18]-[21].  

Interest in studying the dynamics of solitary waves in solid media is growing, 
as evidenced by this excellent recent work published in the Journal Results in 
Physics [22]-[24]. 

The analytical study of these phenomena is closely linked to the modeling of 
the differential equations which govern their dynamics as well as the resolution 
methods, many authors are working to solve them while setting up and perma-
nently the resolution methods [25]-[37]. In short, researchers around the world 
are doing what they can, to extend the limits of science. It is in this perspective 
that we initiated a series of works very interested in the properties of the propa-
gation environment of a wave on the wave itself [38] [39]. 

To return to our subject, we consider a strongly flattened and nonlinear wa-
veguide, characterized by strong dispersions and strong nonlinearities. The par-
tial differential equation which governs the dynamics of propagation within it 
consists of several terms of dispersion coefficients ranging, from order 1 to order 
6, as well as the terms of cubic, quintic and septic nonlinearity. Subsequently, we 
impose on its forms of solutions, and see the readjustment to be made on the 
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dispersion coefficients, so that this is possible. Keeping this work philosophy in 
mind, we realized that it was difficult to carry out this work with several forms of 
solutions taken separately. 

This is why we have set our sights on a form of solution that embodies in it, 
several different forms of solution functions. We are talking more precisely 
about the forms of wave solutions whose envelopes have analytical sequences in 
the form of implicit Bogning-functions (iB-functions). This is in principle what 
guides the instinct of our analysis in this work. This method that we [40] [41] 
[42] want to use, is part of the inverse techniques for finding solutions of nonli-
near partial differential equations. Sheng Zhang et al. and Bo Xu et al. have pro-
duced exceptional articles in this sense and whose foundations are based on the 
exp-funtion method, the variation of coefficients and especially the fractional 
techniques for solving KdV and Schrödinger equations [43]-[46]. We follow this 
logic to use the ansatziB-function which is a kind of generalized analytic se-
quence that can take several forms to inventory the solutions, while having a 
look on the impact of the waveguide properties on the solutions. 

The objective of this study is to know the necessary dosage that must be done 
on the properties of waveguides during their manufacture in order to promote 
the propagation of any signal. To better carry out the analyses, we organize the 
work as follows: Section 2 presents the overall motivation of the work as well as 
the method that will be used. In Section 3, we establish the range of coefficients 
equation around which many solutions will be found; Section 4, sets out the 
possible fields of solutions; Section 5 establishes the constraint relations as well 
as the analytical solutions. In Section 6, a numerical study of the solutions is 
made. We end our study with a conclusion which returns to the physical aspect 
of the results obtained. 

2. Motivation and Method 

The problem that we solve in this article has three facets, namely, how to find 
the solutions of the strongly nonlinear and highly dispersive partial differential 
equation which governs the dynamics of wave propagation in the optical fiber 
and more generally in a waveguide of the same nature. The second facet of our 
problem is which method should we use and why? In the case where the solu-
tions to be constructed do not work: how to modify the equation so that the so-
lution to be constructed is an exact solution. Subsequently, check the impact of 
the properties of the waveguide, i.e. the different coefficients of the terms of 
main nonlinear partial differential equation on the solutions obtained. Given 
that, the equation considered in the case of our study is difficult to integrate by 
the direct method, we opted for an indirect method; that is to say, we impose a 
form of solution and see in which conditions it is actually solution. 

Another problem that arises, when we want to consider the solution to build, 
is to know which form of solution to choose. Knowing also that the majority of 
physical equations are equations of motion, it would be prudent or logical to 
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consider a solution function which can lead to any solution, wave solution or so-
litary wave. We have for this purpose, to choose the iB-function which is a func-
tion with the particularity of including within it, several forms of functions 
namely the exponential, trigonometric and hyperbolic functions according to the 
choice of its parameters and indices [40] [41]. The choice of this function is not 
hazardous because the functions cited above are often used as analytical se-
quences of traveling and solitary waves. The particularity of this work lies in the 
revolutionary technique of resolution which proposes the exact solutions of the 
so-called complicated nonlinear partial differential equations which we would 
also like to share with other researchers. As far as possible, the remodeling of the 
nonlinear partial differential equations from the start is done in such a way as to 
obtain the exact solutions from a purely mathematical angle. Once the solutions 
have been obtained, we analytically verify the influence of dispersive and nonli-
near effects on the intensity of the signal prototypes (solutions). This being so, it 
is appropriate to briefly present the iB-function as well as some properties which 
will be useful in this work. 

2.1. Presentation of the iB-Functions 
2.1.1. Main Form of the iB-Function 
The main form of the iB-function is generally defined by [40] [41] 

,
0 0 0

sinh cosh ,
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( )0,1,2, ,i i pα =   represent the parameters associated with the independent 
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i i
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The function, as defined in relation (1), is also called the several variables 
iB-function and any derivative operation undertaken in this case is partial. For 
the majority of our demonstrations in this article, we will use the implicit func-
tions with a single variable defined by 

( ) ( ) ( ), sinh cosh ,m n
n mJ x x xα α α=                  (2) 

where ( ),n mJ xα  represents the implicit form of the function, α  is the para-
meter associated with the independent variable x . The pair ( ) 2,n m R∈  indi-
cates the power of the function and it is also called indices of the implicit func-
tion. 
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2.1.2. Secondary Form of the iB-Function 
The iB-function in its secondary form is defined by 
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This function, as defined in the explicit form of relation (3) is a function of 
several variables and any derivative operation undertaken in this case is partial. 

For demonstration purposes in this article, we will only use the following 
one-variable function 

( ) ( ) ( ), sin cos ,m n
n mT x x xα α α=                  (4) 

where ( ),n mT xα  represents the implicit form of the function, α  represents 
the parameter associated with the independent variable x , the pair ( ) 2,n m R∈  
indicates the power of the function. 

The main form given by (1) and the secondary form in (3), for 2 1i = − ,
( ) 2,n m R∈ , with an independent variable x  are linked by relations: 

( ) ( ) ( ), , ,m
n m n mJ ix i T x=                       (5) 

and 

( ) ( ) ( ), , .m
n m n mT ix i J x=                       (6) 

These functions, beyond the fact that they are very flexible in the resolution of 
several physical problems, they make it possible to characterize the waves, and in 
particular the solitary waves. Thus, if the function obtained is the analytical se-
quence of a solitary wave, n  indicates the order of the solitary wave and m  
indicates the type or nature of the wave. In some cases, the parameters iα  can 
be associated with different spatial and temporal frequencies. 

2.2. Some Properties 

The properties related to these two forms of iB-functions are very numerous. We 
give some that will be used in the rest of the work to perform the calculations. 
So, for any real numbers , , , , ,n m n m pα′ ′  and the independent variable x , we 
have: 

, , ,p
n m np mpJ J=  
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These are some common properties used in this work to calculate or decom-
pose the function ,n mJ  into simple elements. 

2.3. Justification for the Choice of Ansatz Used 

The choice of ansatz (1) and (2) to build possible solutions is not a matter of 
chance. Even if we don’t claim that this ansatz offers every form of solutions, we 
do know that they do offer a fair number. If we focus our attention on the ex-
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pressions given by equations (1) and (3), we can see that the analytical sequences 
derived from these expressions change according to the real indices ,n m  and

iα , which can be complex or real. We can go from form (1) to form (3) and vice 
versa using transformations (5) and (6). This simply means that instead of 
choosing the ansatz solution as given in equation (10), we could instead start by 
considering the form of solution to be constructed as ( ) ( ), ,n maTψ ξ ξ=  such 
that ,n mT  can be defined by (3). To return to the interest of the choice of ansatz, 
we consider the iB-function defined in dimension 1, i.e. admitting a single inde-
pendent variable as 

( ) ( ) ( ) ( ), , sinh cosh ,m n
n m n mf x aJ x a x xα α α= =  

where a  is a real or complex constant, n  and m  are real constants and α  
can be complex or real. We try to assign some values to n , m  and α , and to 
indicate the infinity of solution forms that can be claimed using this ansatz. 
• If ( ) ( ), 0,0 ,n m =  we have ( )0,0 ,f x a cste= =  
• If ( ) ( ), 1, 2 ,n m = 2,α =  we have 

 ( ) ( ) ( ) ( )2
1,2 1,2 2 sec 2 sinh 2 ,f x aJ x a h x x= =  

If ( ) ( ), 1,1 ,n m = − 1,α =  we have ( ) ( ) ( ) ( )1,1 1,1 cosh sinh ,f x aJ x a x x− −= =  
• If ( ) ( ), 0,1 ,n m = 3,α =  we have ( ) ( ) ( )0,1 0,1 3 sinh 3 ,f x aJ x a x= =  
• If ( ) ( ), 1,0 ,n m = 1,α =  we have ( ) ( ) ( )1,0 1,0 sec .f x aJ x a h x= =  

and so on, we have an infinite number of choices. 
For 0 0,i Rα α α= ∈  is pure imaginary, we have, 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , 0 , 0 0 0sin cos ,m m m n
n m n m n mf x aJ i x a i T x a i x xα α α α= = =  

For ( ) ( ), 1,1 ,n m = − 0 1,α =  we get ( ) ( ) ( ) ( )1,1 1,1 cos sin ,f x aiT x ai x x− −= =  
• For ( ) ( ), 0,1 ,n m = 0 3,α =  we get ( ) ( ) ( )0,1 0,1 sin 3 ,f x aiT x ai x= =  
• For ( ) ( ), 1,0 ,n m = 0 2,α =  we get ( ) ( ) ( )1,0 1,0 2 sec 2 ,f x aiT x ai x= =  
• For ( ) ( ), 2, 2 ,n m = 0 1,α =  we get ( ) ( ) ( )2

2,2 2,2 tan .f x aT x a x= − = −  
In the same way, we can have an infinite number of solutions with the sec-

ondary form ,n mT . We note that each of the above analytical sequences corres-
ponds to a wave type. We can thus identify the analytical sequences corresponding 
to solitary waves of types kink, pulse etc., as well as the analytical sequences of 
progressive waves. 

3. Equation of Range of Coefficients and Probabilities of  
Solutions 

We have assumed in the context of this work that the waveguide (optical fiber) is 
immersed in a medium such that all the spatial variations are subject to variation 
coefficients ( )1, ,6in i = 

 in order to better appreciate which variation is more 
determining for the signals or waves that can propagate there. These coefficients 
also make it possible to modify equation (7) to adapt it to a form that accepts 
exact solutions. The generalized nonlinear partial differential equations that 
model the propagation in such dispersive medium, more precisely a highly non-
linear flattened optical waveguide is given by [47]: 
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( )2 4 6
1 2 3 4 5 6 1 2 3 0,t x xx xxx xxxx xxxxx xxxxxxi in n in n in nψ ψ ψ ψ ψ ψ ψ γ ψ γ ψ γ ψ ψ+ + + + + + + + + =   (7) 

where ( )1, 2,3, 4,5,6in i =  and ( )1,2,3i iγ =  are the characteristic coefficients 
of the wave guide, x  the spatial variable and t  the temporal variable. To dwell 
slightly on Equation (7), it models the propagation dynamics in highly nonlinear 
and flattened optical fibers. The flattened character of the fiber is marked by the 
presence in the equation of dispersion terms of order greater than two, and ob-
tained by increasing the order of the limited development, which initially leads 
to the basic Schrödinger equation. This equation, being the one which models 
the propagation dynamics in the majority of solid waveguides. Nonlinearity is 
also reinforced by the increase in nonlinear terms generated by different terms, 
associated with the intensity of the waveform considered during modeling. Here, 
in addition to cubic nonlinearity, we have added quintic and sceptic nonlineari-
ty. To generalize the equation to any type of waveguide, we assumed that the 
wave propagates in a medium such that each variation is subject to a coefficient 
of variation ( in ). The aim here being to broaden the field of reflection regarding 
the search for solutions and even verify the correctness of the solved Equation 
(7). If not, make the necessary corrections so that the equation admits the exact 
solutions from a purely mathematical angle. 

By setting the change of variable x vtξ = − , where x  is the spatial variable, 
v  the group velocity of the wave and ξ  the displacement in the proper space 
of the wave, the wave function sought becomes, 

( ) ( ), .x tψ ψ ξ=                          (8) 

The ξ -transform is most often considered in physics to pass into the eigen-
space of the wave. Under these conditions, Equation (7) becomes 

( ) ( )2 4 6
1 2 3 4 5 6 1 2 3 0.i n n in n in nξ ξξ ξξξ ξξξξ ξξξξξ ξξξξξξν ψ ψ ψ ψ ψ ψ γ ψ γ ψ γ ψ ψ− + + + + + + + + =  (9) 

We propose to construct the solutions of Equation (9) on the form  

( ) ( ), ,n ma Jψ ξ ξ=                          (10) 

where a  is a constant to be determined, ( ),n mJ ξ  the iB-function and n , m

the reals which characterize the implicit function to be determined. ( ),n mJ ξ  is 
defined explicitly as ( ) ( ) ( ), sinh coshm n

n mJ ξ ξ ξ=  [40] [41]. 
The insertion of relation (10) and its derivatives in Equation (9) leads to 

1 1, 1 1, 1 2 1 2, 2 2 , 3 2, 2

3 4 3, 3 5 1, 1 6 1, 1 7 3, 3

4 8 4, 4 9 2, 2 10 , 11 2, 2 12 4, 4

5 13 5, 5 14

( ) n m n m n m n m n m

n m n m n m n m

n m n m n m n m n m

n m

ia n mJ nJ n a C J C J C J

in a C J C J C J C J

n a C J C J C J C J C J

in a C J C

ν − − + + − − + +

− − − − + + + +

− − − − + + + +

− −

   − − + − +   
 + − + − 
 + − + − + 

+ − 3, 3 15 1, 1 16 1, 1 17 3, 3 18 5, 5

6 19 6, 6 20 4, 4 21 2, 2 22 , 23 2, 2 24 4, 4 25 6, 6

2 4 6
1 3 ,3 2 5 ,5 3 7 ,7 0.

n m n m n m n m n m

n m n m n m n m n m n m n m

n m n m n m

J C J C J C J C J

n a C J C J C J C J C J C J C J

a a J a a J a a Jγ γ γ

− − − − + + + + + +

− − − − − − + + + + + +

 + − + − 
 + − + − + − + 

+ + + =

(11) 

Equation (11) can also be written as follows 
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( ) ( )
[ ] [ ]

1 3 5 5 15 1, 1 1 3 6 5 16 1, 1

2 1 4 9 6 21 2, 2 2 2 4 10 6 22 ,

n m n m

n m n m

i ma n n aC n aC J i na n n aC n aC J

n aC n aC n aC J n aC n aC n aC J

ν ν− − + +

− −

− − + + − − + −      
+ − + + − + −

 

[ ] [ ] [ ]
[ ] [ ]

2 3 4 11 6 23 2, 2 3 4 5 14 3, 3 3 7 5 17 3, 3

4 8 6 20 4, 4 4 12 6 24 4, 4 5 13 5, 5 5 18 5, 5

2 4
6 19 6, 6 6 25 6, 6 1 3 ,3 2 5 ,

n m n m n m

n m n m n m n m

n m n m n m n

n aC n aC n aC J i n aC an C J i n aC n aC J

n aC n aC J n aC n aC J in aC J in aC J

n aC J n aC J a a J a a Jγ γ

+ + − − + +

− − + + − − + +

− − + +

+ − + + − + − +

+ − + − − −

+ + + + 6
5 3 7 ,7 0.m n ma a Jγ+ =

 (12) 

The quantities jC  of equations (11) and (12) are given at the appendix. 
Equation (12) is called the range of coefficients equation, that is to say a kind 

of central equation around which all the solutions are sought. 

4. Pairs (n, m) Favoring the Grouping of Terms and Fields of  
Possible Solutions 

Before going into the details that explain why the choices of n  and m  are 
made, we recall that equation (12) aims to determine a , n  and m . Equation 
(12) consists of 16 terms in ,n k m kJ − − , ,n k m kJ + +  with 0,1, ,6k =  , 3 ,3n mJ , 

5 ,5n mJ  and 7 ,7n mJ  and where n  and m  are real numbers. When the values 
of n  and m  are such that there is no possibility of grouping the terms of equ-
ation (12), then the equation admits solutions, if and only if the coefficients as-
sociated with the functions ,n k m kJ − − , ,n k m kJ + + , 3 ,3n mJ , 5 ,5n mJ  and 7 ,7n mJ  with 

0,1, ,6k =   are zero. This case leads to impose 0a = , i.e. ( ) 0J ξ = , which is 
a trivial solution.If there are values of the pairs ( ),n m  such that certain terms 
of Equation (12) are grouped together, then there are possibilities of finding 
values of 0a ≠ , synonymous with obtaining non-trivial solutions. Thus, finding 
the values of n  and m  for which certain terms of the coefficient range Equa-
tion (12) group together, allows to determine the following values: 

3, 5 / 2, 2, 3 / 2, 5 / 4, 1, 5 / 6, 3 / 4, 2 / 3, 1/ 2, 1/ 3, 1/ 4, 1/ 6,0,
, .

1 / 6,1/ 4,1/ 3,1/ 2,2 / 3,3 / 4,5 / 6,1,5 / 4,3 / 2,2,5 / 2,3
n m

− − − − − − − − − − − − − − 
∈ 
 

 (13) 

The values of n  and m  above, are obtained when for two terms ( ),i n mc J ξ  
and ( ),j n mc J ξ′ ′  of the range Equation (12), we have the equalities n n′=  and
m m′= . In other words, obtaining the pairs ( ),n m  for which certain terms of 
Equation (12) are grouped is equivalent to assuming that the indices of the 
iB-functions of Equation (12) are equal. In this way, we can see that, to obtain 
the pair ( )1/ 2, 1/ 2− − , we need only to solve the following systems of equations  

in n  and m : 1 3
1 3

n n
m m
− =

 − =
, 2 5

2 5
n n
m m
− =

 − =
, and 3 7

3 7
n n
m m
− =

 − =
. 

That’s a total of 3 systems of equations solved out of a possible 42. In other 
words, from all the 42 systems of equations solved in order to determine the 
( ),n m  pairs favoring groupings, the pair ( )1/ 2, 1/ 2− −  appears three times. 
That is a probability of 3/42. The same work can be done for the other pairs
( ),n m . On the basis of the 42 systems of equations solved to obtain the pairs 
which favor the grouping of the terms of the range Equation (12), the probabili-
ties of appearance of the pairs are given as follow: 
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( ), 1 / 42,P k k =  for 

1 4,1 4, 1 6,1 6, 1 3,
1 3, 3 4,3 4, 2 3,2 3,

,
5 4,5 4, 5 2,5 2, 5 6,

5 6, 2,2, 3,3

k

− − − 
 − − ∈ − − − 
 − − 

 

( ) ( )3 2, 3 2 3 2,3 2 2 42,P P− − = =  
( ) ( ) ( ) ( )1 2, 1 2 1 2,1 2 1, 1 1,1 3 42,P P P P− − = = − − = =  and ( )0,0 6 42P = . 
In reality, the values of n  and m  obtained above are values for which the 

solutions must be checked. All the values of n  and m  which are outside lead 
to trivial solutions [38] [39]. But among the values of n  and m  obtained, 
there are also values which lead to trivial solutions or to impossibilities. The wi-
dened field of research of the solutions is formed of the pairs resulting from the 
combination of the values of n  and m  given by Equation (13). Then, we have 
a field of possibilities of solutions formed by 729 pairs to analyze. But all pairs of 
the fielddo not lead to acceptable solutions. The greater the possibilities of group-
ing the terms of Equation (12) for a pair, the greater the probability of the pair 
leading to a non-trivial solution. Thus, in view of the above inventory of probabili-
ties, the pairs of high probabilities that we retain for the sequel are ( )1, 1− − ,  
( )1 2, 1 2− − , ( )0,0 , ( )1 2,1 2  and ( )1,1 . Thus, these pairs are called dominant 
pairs such that the dominant values of n  and m  are given by 

1 1, 1, ,0, ,1 .
2 2

n m  ∈ − − 
 

                      (14) 

But since the pairs ( ),n m  are made up of the same numbers, the question is: 
what about the pairs made up of different numbers? To answer this question, we 
extend the dominant pairs ( ),n m  to a slightly larger set, called the restricted 
field of possible solutions. 

 
Table 1. Restricted field of possible solutions. 

( ),n m  1−  
1
2

−  0  
1
2

 1  

1−  ( )1, 1− −  11,
2

 − − 
 

 ( )1,0−  11,
2

 − 
 

 ( )1,1−  

1
2

−  1 , 1
2

 − − 
 

 1 1,
2 2

 − − 
 

 1 ,0
2

 − 
 

 1 1,
2 2

 − 
 

 1 ,1
2

 − 
 

 

0  ( )0, 1−  10,
2

 − 
 

 ( )0,0  10,
2

 
 
 

 ( )0,1  

1
2

 1 , 1
2

 − 
 

 1 1,
2 2

 − 
 

 1 ,0
2

 
 
 

 1 1,
2 2

 
 
 

 1 ,1
2

 
 
 

 

1  ( )1, 1−  11,
2

 − 
 

 ( )1,0  11,
2

 
 
 

 ( )1,1  

 
This table contains 25 pairs ( ,n m ) which will pass through a sieve of equation 

(12) to extract those leading to physically acceptable solutions. 

5. Constraint Equations and Analytical Solutions 
This sub-title is devoted to the introduction of the pairs ( ,n m ) of the restricted 
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possibilities table into the range Equation (12) in order to select those which lead 
to solutions. But since it is not easy to verify all the 25 pairs that make up the re-
stricted table, we will limit ourselves to a few pairs. 

Case ( ) ( ), 1, 1n m = − −  
We obtain from Equation (12), the following equation 

( ) ( )
[ ] [ ] [ ]
[ ] [ ]

1 3 5 2, 2 1 3 5 0,0

2 4 6 3, 3 2 4 6 1, 1 3 5 4, 4

2
4 6 5, 5 5 6, 6 6 7, 7 1 3, 3

4 6
2 5, 5

8 136 2 16

2 40 1236 2 16 272 6 240

24 1680 120 720

i a n n a n a J i a n n a n a J

n a n a n a J n a n a n a J i n a an J

n a n a J i n a J n aJ a a J

a a J a a

ν ν

γ

γ

− −

− − − − − −

− − − − − − − −

− −

− − + − + − − +      
+ − + + − + − + − +

+ − − + +

+ + 3 7, 7 0Jγ − − =

(15) 

Equation (15) can be written as 

( ) ( )
( ) ( ) ( )

( ) ( )

1 3 5 2, 2 1 3 5 0,0 3 5 4, 4

2
2 4 6 1 3, 3 5 6, 6 2 4 6 1, 1

4 6
4 6 2 5, 5 6 3 7, 7

( 8 136 ) 2 16 6 240

2 40 1236 120 2 16 272

24 1680 720 0.

ia n n n J ia n n n J ia n n J

a n n n a J a n J a n n n J

a n n a J a n a J

ν ν

γ

γ γ

− − − −

− − − − − −

− − − −

− + + − + − − + + − +

+ − + + + − + − + −

+ − + + + =

(16) 

Equation (16) is verified if, for 0a ≠ . 
We have the set of equations 

1 3 58 136 0,n n nν− + + − =   (17) 

1 3 52 16 0,n n nν− − + =      (18) 

3 56 240 0,n n− + =   (19) 

5120 0,n− =     (20) 

2
2 4 6 12 40 1236 0,n n n aγ− + + =      (21) 

2 4 62 16 272 0,n n n− + − =      (22) 

4
4 6 224 1680 0,n n aγ− + =        (23) 

and 
6

6 3720 0.n aγ+ =      (24) 

From equations (17), (18), (19) and (20) we find 

5 3 10,  0 and .n n n ν= = =      (25) 

Hence, equation (21) leads to 

4 2
6

8 .
136

n nn −
=        (26) 

In the other side, the substitution of equation (26) in equations (21) and (23) 
permits to obtain 

2
2 4 1120 552 17 ,n n aγ− =    (27) 

and 
4

2 4 2201 1200 17 .n n aγ− + =     (28) 

From relations (27) and (28) the following constraint relation raises 
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( )
( )

2
1 4 2

2 2
2 4

17 1200 201
.

120 552

n n

n n

γ
γ

−
=

−
                     (29) 

Equation (27) gives 

( )2 4
1 2 4

1

120 552 ,  120 552 0.
17

n na n nγ
γ
−

= − 

               (30) 

We can therefore deduce from Equation (30) that, 

( )2 4

1

120 552 exp ,  .
17

n na i Rθ θ
γ
−

= ∈                 (31) 

Inserting Equation (30) in Equation (24) yields 

( )
( )

3
6

3 3
2 4

720 17
.

120 552

n

n n

γ
γ

−
=

−
                      (32) 

The solution here is therefore given by:  

( ) ( )2 4
1, 1

1

120 552, exp ,  .
17

n nx t J x t i Rψ ν θ θ
γ − −

−
= − ∈                (33) 

The trigonometric solution resulting from (33) can be obtained by using the 
transformation ( ) ( ) ( ), ,

m
n m n mJ i i Tξ ξ=  with ( ) ( ) ( ), sin cosm n

n mT ξ ξ ξ=  
where ξ  is any variable, ( ) 2,n m R∈  and 2 1i = − . That is to say, the trigono-
metric equivalent solution associated to (33) is given by making the correspon-
dence 2,  1,x ix i→ = − and ,iν ν→  as follows, 

( ) ( )2 4

1

120 552, cot exp ,  .
17

n nx t i an x t i Rψ ν θ θ
γ
−

= − − ∈              (34) 

Solutions (33) and (34) are solutions capable of propagating in the waveguide 
not exhibiting the dispersive effects of order three and order five. In these condi-
tions, we have a waveguide with very low dispersion of order three and five. The 
equations which effectively governs the propagation of such signals is given by: 

( )2 4 64 2
2 4 1 2 3

8 0.
136t x xx xxxx xxxxxx

n ni i n nψ νψ ψ ψ ψ γ ψ γ ψ γ ψ ψ
− + + + + + + + = 

 
(35) 

Case ( ) ( ), 1,0n m =  
For ( ) ( ), 1,0 ,n m =  the range equation of coefficients (12) becomes 

( ) [ ] [ ]
[ ] [ ] [ ]

1 3 5 2,1 2 4 6 1,0 5 6,5

2 4 6 3,2 3 5 4,3 4 6 5,4

2 4 6
6 7,6 1 3,0 2 5,0 3 7,0

5 61 61 120

2 28 662 6 180 24 1320

720 0.

i a n n a n a J n a n a n a J i n a J

n a n a n a J i n a n a J n a n a J

n aJ a a J a a J a a J

ν

γ γ γ

+ − − + − + − + − −  
+ − + + − + + +

+ + + + =

 (36) 

With use of the following transformations 

3,2 1,0 3,0J J J= − , 4,3 2,1 4,1J J J= − , 5,4 1,0 3,0 5,02J J J J= − + ,

6,5 2,1 4,1 6,12J J J J= − + , and 7,6 1,0 3,0 5,0 7,03 3J J J J J= − + − , Equation (36) can be 
written as 

( ) ( ) ( ) ( )
( ) ( )
( )

1 3 5 2,1 3 5 4,1 5 6,1 2 4 6 1,0

2 4
2 4 6 1 3,0 4 6 2 5,0

6
6 3 7,0

6 60 120

2 20 182 24 840

720 0.

ia n n n J ia n n J ia n J a n n n J

a n n n a J a n n a J

a n a J

ν

γ γ

γ

− + − − + + + + + +

+ − − − + + + +

+ − + =

 (37) 
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Equation (37) is verified if for 0a ≠ . 
We have the set of equations 

1 3 5 0,n n nν− + − − =  (38) 

3 56 60 0,n n+ =      (39) 

5120 0,n =        (40) 

2 4 6 0,n n n+ + =   (41) 

2
2 4 6 12 20 182 0,n n n aγ− − − + =    (42) 

4
4 6 224 840 0,n n aγ+ + =    (43) 

and 
6

6 3720 0.n aγ− + =      (44) 

From Equations (38), (39) and (40) we obtain 

5 3 10;  0,  and .n n n ν= = =    (45) 

From Equation (41), we obtain 

2 4 6 .n n n= − −    (46) 

In other hands, the substitution of Equation (46) in Equations (42) and (43) 
permits to have  

2
4 6 118 180 0,n n aγ− − + =   (47) 

and 
4

4 6 224 840 0.n n aγ+ + =     (48) 

The resolution of Equations (47) and (48) leads to 

( )
( )

2
4 6 1

2 2
4 6

24 840
,

18 180

n n

n n

γ
γ

+
= −

+
      (49) 

and 

( )4 6
1 4 6

1

18 180
,  18 180 0.

n n
a n nγ

γ
+

= + 

    (50) 

At this level of analysis, we have two possible solutions: the case where a  is 
real and the case where a  is complex. 
• When a is real, we have

4 6

1

18 180
.

n n
a

γ
+

= ±  (51) 

• When a  is complex, there exist a real θ  such that

( )4 6

1

18 180
exp ,  .

n n
a i Rθ θ

γ
+

= ∈  (52) 

The insertion of Equation (50) in Equation (44) also allows writing 

( )

3
6 1

3 3
4 6

720
.

18 180
n

n n
γ

γ =
+

   (53) 

The solutions in the cases where a  is real and a  is complex are respectively 
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given by 

( ) ( )4 6
1,0

1

18 180
, ,

n n
x t J x tψ ν

γ
+

= −               (54)  

and 

( ) ( )4 6
1,0

1

18 180
, exp ,  .

n n
x t J x t i Rψ ν θ θ

γ
+

= − ∈        (55) 

The following correspondences 2,  ,  1,x ix i iν ν→ → = −  allow to have re-
spectively the trigonometric forms of the solutions (54) and (55) using the 
transformations ( ) ( ) ( ), ,

m
n m n mJ i i Tξ ξ=  as defined in the case of relation (33).  

Hence we obtain, 

( ) ( )4 6

1

18 180
, s ,

n n
x t ec x tψ ν

γ
+

= −               (56)  

and 

( ) ( )4 6

1

18 180
, s exp , .

n n
x t ec x t i Rψ ν θ θ

γ
+

= − ∈        (57) 

The above solutions are the exact solutions of the partial differential equation 
deduced from equation (7) and given below, 

( ) ( )2 4 6
4 6 4 6 1 2 3 0.t x xx xxxx xxxxxxi i n n n nψ νψ ψ ψ ψ γ ψ γ ψ γ ψ+ − + + + + + + =  (58) 

Case ( ) ( ), 1,1n m =  
In this case, equation (12) is now written as 

( ) ( )
[ ] [ ] [ ]
[ ] [ ]

1 3 5 0,0 1 3 5 2,2 6 7,7

2 4 6 1,1 2 4 6 3,3 3 5 4,4

2 4 6
4 6 5,5 5 6,6 1 3,3 2 5,5 3 7,7

2 16 8 136 720

2 16 272 2 40 1232 6 240

24 1680 120 0.

i a n n a n a J i a n n a n a J n aJ

n a n a n a J n a n a n a J i n a n a J

n a n a J i n a J a a J a a J a a J

ν ν

γ γ γ

− − − + − − + − +      
+ − + − + − + + − +

+ + + + + + =

(59) 

By means of the following transformations 

3,3 1,1 3,1J J J= − , 4,4 0,0 2,0 4,02J J J J= − + , 5,5 1,1 3,1 5,12J J J J= − + , 

6,6 0,0 2,0 4,0 6,03 3J J J J J= − + − , and 7,7 1,1 3,1 5,1 7,13 3J J J J J= − + − , Equation (59) 
is reduced to 

( ) ( ) ( )

( ) ( )
( ) ( )

1 3 5 2,0 3 5 4,0 5 6,0

4 6 4 62 2
1 2 3 1,1 2 4 6 1 2 3 3,1

4 6 6
4 6 2 3 5,1 6 3 7,1

4 16 6 120 120

2 8 32 2 3

24 480 3 720 0.

ia n n n J ia n n J ia n J

a a a a J a n n n a a a J

a n n a a J a n a J

ν

γ γ γ γ γ γ

γ γ γ

− + + + + + +

+ + + + + + + + +

+ + + + + + =

(60) 

Equation (60) is checked if and only if, for 0a ≠ , we have the following equ-
ations 

1 3 54 16 0,n n nν− + + + =       (61) 

3 56 120 0,n n+ =      (62) 

5120 0,n =        (63) 
2 4 6

1 2 3 0,a a aγ γ γ+ + =        (64) 

4 62
2 4 6 1 2 32 8 32 2 3 0,n n n a a aγ γ γ+ + + + + =       (65) 
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4 6
4 6 2 324 480 3 0,n n a aγ γ+ + + =                  (66)  

and 
6

6 3720 0.n aγ+ =                        (67) 

From Equations (61), (62) and (63) we obtain 

5 3 10,  0,  and .n n n ν= = =                      (68)  

The resolution of Equations (64), (65), (66) and (67) gives 

2 4 68 136 ,n n n= −                          (69) 

( )4 6
1 4 6

1

24 960
,  24 960 0,

n n
a n nγ

γ
−

= − 

               (70) 

and 
( )
( )

2
6 4 1

2 2
4 6

1680 24
.

24 960

n n

n n

γ
γ

−
=

−
                     (71) 

Inserting Equation (70) in equation (67) gives 

( )

3
6 1

3 3
4 6

720
.

24 960
n

n n
γ

γ
−

=
−

                      (72) 

We can also have in the case where a  real and complex, the following solu-
tions is: 

( ) ( )4 6
1,1

1

24 960
, ,

n n
x t J x tψ ν

γ
−

= ± −                (73)  

and 

( ) ( )4 6
1,1

1

24 960
, exp , .

n n
x t J x t i Rψ ν θ θ

γ
−

= − ∈               (74)  

The trigonometric solutions can also be deduced from solutions (73) and (74) 
by making correspondence 

2,  ,  1x ix i iν ν→ → = − . 

So we get: 

( ) ( )4 6

1

24 960
, tan ,

n n
x t i x tψ ν

γ
−

= ± −               (75)  

and 

( ) ( )4 6

1

24 960
, tan exp ,  

n n
x t i x t i Rψ ν θ θ

γ
−

= − ∈          (76)  

The nonlinear and dispersive partial differential equation which governs the 
dynamics of propagation by means of the constraint equations held above is 
given by 

( ) ( )2 4 6
4 6 4 6 1 2 38 136 0.t x xx xxxx xxxxxxi i n n n nψ νψ ψ ψ ψ γ ψ γ ψ γ ψ ψ+ + − + + + + + =  (77) 

The effectiveness of the approach used in this work also lies in the fact that the 
use of constraint equations linked to the coefficients ( )1, ,6in i = 

 allow to 
reshape Equation (7) in the case ( ) ( ), 1, 1n m = − −  so that the solutions (33) 
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and (34) are the exact solutions of the equation (35). For the case ( ) ( ), 1,0n m = , 
solutions (55) and (57) are the exact solutions of equation (58). For  
( ) ( ), 1,1n m =  we obtain Equation (77) which also admits for solutions the rela-
tions (74) and (76). 

We note that the intensity of the solution (33) is a function of 2n  which is 
the dispersion coefficient of order 2, of 4n  which is the dispersion coefficient of 
order 4 and of the coefficient of cubic nonlinearity 1γ . The intensity of the solu-
tion (54) also depends on the coefficient of dispersion 4n , the coefficient of dis-
persion of order 6 ( 6n ), and of the coefficient of cubic nonlinearity 1γ . It is the 
same for the intensity of the solution (73) which depends on 4n , 6n  and 1γ . 
From the arrangement of the dispersion and nonlinearity coefficients in these 
solutions, we find that, as the dispersion coefficients increase, the intensity of the 
solution waves increases. The opposite effect occurs when the dispersion coeffi-
cients are small. As regards the nonlinearity coefficient, it contributes in in-
creasing the intensity of the wave when it is small and produces the opposite ef-
fect when it increases. We also note that, only the coefficient of cubic nonlinear-
ity, sufficiently impacts the solutions obtained and that the coefficients of quintic 
and septic nonlinearity have no effect on the solutions, at least for those ob-
tained within the framework of this work. 

To better explain the selective impact of dispersion and non-linearity coeffi-
cients on solutions, we first note that not all these coefficients are involved in solu-
tions. If we take equation (50) as an example, we can see from Figure 1 that a  
decreases as 1γ  increases. On the other hand, Figure 2 shows that a  increases  

 

 
Figure 1. Variation of a  as a function of nonlinear coefficient 1γ ; (a): a  given by 

(50) for 4 0.011n =  and 6 0.000179.n =  (b): a  given by (73) for 4 0.12n =  and 

6 0.000179.n =  
 

 
Figure 2. Variation of a  as a function of dispersion coefficients 6n  and 4n  (a): a

as a function of 6n  and given by (50) for 1 0.12γ =  and 4 0.012.n =  (b): a  as a 

function of 4n  and given by (50) for 1 0.12γ =  and 6 0.000179.n =  
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as 4n  or 6n  increases. But this conclusion is only valid for the cases chosen as 
examples. Under certain conditions, the dispersion coefficient can have a regres-
sive effect on wave intensity.  These findings, which are valid for these control 
cases above, are also valid for the other cases. The physical lesson that arises from 
these observations is that: the good or bad propagation of the signal in a transmis-
sion medium is closely linked to the properties of this medium. 

6. Numerical Study

In this section, we use the split-step Fourier method [18] [19] to discretize non-
linear partial differential Equations (35), (58) and (77), and to propagate their 
corresponding solutions. Thus, the constraint relations between the coefficients 
of the terms of the nonlinear partial differential equations allowed choosing the 
values of the parameters. We organized this numerical study in two cases. 

6.1. First Case 

Figure 3. Propagation of the solitary wave (54) in Equation (58): The left profile is ob-
tained for: 1 4 6 12.115,  0.011,  0.000179,  0.2,  2;n n n γ θ π= = = = =  the right profile is 
obtained for 1 4 6 10.005,  0.011,  0.000179,  0.2,  and 2.n n n γ θ π= = = = =  

6.2. Second Case 

Figure 4. Propagation of the solitary wave (73) in equation (77): the left profile is ob-
tained for: 1 4 6 13.122,  0.012,  0.000179,  0.01,  and ;n n n γ θ π= = = = =  the right profile 
is obtained for 1 4 6 12.5,  0.011,  0.000179,  1.4,  and 2.n n n γ θ π= = = = =  

The nonlinear partial differential Equation (77) is discretized so that the envelope 
( ),x tψ  is given by the Relation (73). The profiles obtained are as follows 
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We have tested the practical feasibility of some of our results by studying the 
propagation of solutions (54) and (58) on one hand, and (73) and (77) on the 
other. Figure 3 and Figure 4 show some images of the waves captured during 
propagation. 

7. Discussion and Conclusion 

The work undertaken in this manuscript aimed to verify the impact of disper-
sion and nonlinearity on waves or signals. For this, we have chosen to take as 
control propagation medium, a flattened waveguide subject to strong dispersions 
and nonlinearities. Precisely to ensure that the dispersion is large enough for its 
effect to be significant on the signals or solutions considered. 

On an analytical level, we have constructed a whole series of solutions of the 
nonlinear and dispersive partial differential equation which governs the dynam-
ics of signal propagation. The search for these solutions on a case-by-case basis 
is not at all easy, we chose to use an ansatz solution based on the iB-function and 
which has the characteristic of generating several forms of solutions. It suffices 
for this, to attribute the values to the characteristic parameters and indices of the 
general function considered from the start, to realize this. 

We obtained a field called field of possibility of solution gathering 729 pairs
( ),n m  which are pairs whose investigations on the equation of range of coeffi-
cients (12) should allow to detect mathematically non-trivial solutions and espe-
cially physically acceptable. But our previous studies have shown that all these 
729 pairs do not lead to acceptable solutions and that only the pairs that appear 
the most during the searches, that is to say the pairs which favor a large number 
of grouping of terms in the range Equation (12) gives more chances of solutions. 
Galvanized by this fact, we have identified the preponderant pairs with high 
probabilities of appearance which allowed reducing the extended field of 729 
pairs to a restricted field of 25 pairs. Thus, some pairs from the restricted field 
allowed obtaining solutions. 

We realized that almost all the solutions for the studied cases do not support 
dispersions of order 3 and of order 5. In other words, the waveguide where there 
is almost no dispersion of order 3 and of order 5 or the waveguide whose disper-
sions of order 3 and 5 are very weak or negligible. Numerical figures to assess the 
practical feasibility of these solutions have been proposed. 

We believe that our objective has been achieved because we can see analyti-
cally that the types of dispersion are favorable to specific types of waves or sig-
nals. 

Beyond the fact that the experimental aspect of this work could further con-
firm the analytical results, these results simply demonstrate that the dosage of 
the properties of a waveguide can make it possible to determine the type of wave 
that one would like to propagate there. In another sense, good propagation of a 
signal in a waveguide is closely linked to the properties of the material that con-
stitute it. 
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Within the framework of this work, we could not check all possibilities of so-
lutions for the remaining pairs of Table 1, just because our main target was to 
show the impact of the waveguide properties on the wave solutions. So, we have 
considered three cases for demonstration. But we will deal with other cases in 
the next investigations. 

The innovation of this work is multiple; firstly we highlight a revolutionary 
technique which makes it possible to find exact solutions to a complicated equa-
tion as the one which is at the center of our attention, namely equation (7). This 
technique, beyond correcting or modifying the equation in order to obtain the 
exact solutions, also makes it possible to check whether any solution to this equ-
ation is actually correct. Secondly, through our approach, we want to demon-
strate that the properties of the optical fiber and any waveguide greatly influence 
the signal or the wave which propagates there. In other words, we want to dem-
onstrate that the choice and control of the constituent properties of a waveguide 
can favor or disadvantage the propagation of a signal within it. The ultimate goal 
is to construct waveguides with specific properties and adapted to the propaga-
tion of specific waves, that is to say, to manufacture waveguides which bear the 
mention of the type of wave which propagates easily there. . This would enorm-
ously reduce instability phenomena. All this reflection because we are certain 
that secondary phenomena which accompany the waves during their propaga-
tion in the wave guides are mainly due to the constituents of these media and 
that taking them into account during manufacturing would bring a lot im-
provement on the quality of propagation. On a Mathematical level, we intro-
duced notions of probability to locate the domain of probable solutions. Once 
the solutions were obtained, we numerically studied the propagation of some of 
them but without associating the effects of noise and interference. The prospects 
are also open for this purpose. 
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Appendix 

With the fifth property of subsection 2.2 related to the iB-function, we ob-
tained the following derivatives of ( ) ( ), n ma Jψ ξ ξ= . 

( )1 2, 2 2 , 3 2, 2 ,n m n m n ma C J C J C Jξξψ − − + += − +  

( )4 3, 3 5 1, 1 6 1, 1 7 3, 3 ,n m n m n m n ma C J C J C J C Jξξξψ − − − − + + + += − + −  

( )8 4, 4 9 2, 2 10 , 11 2, 2 12 4, 4 ,n m n m n m n m n ma C J C J C J C J C Jξξξξψ − − − − + + + += − + − +  

13 5, 5 14 3, 3 15 1, 1

16 1, 1 17 3, 3 18 5, 5

,n m n m n m

n m n m n m

C J C J C J
a

C J C J C Jξξξξξψ − − − − − −

+ + + + + +

− + 
=   − + − 

 

19 6, 6 20 4, 4

21 2, 2 22 , 23 2, 2

24 4, 4 25 6, 6

,
 

n m n m

n m n m n m

n m n m

C J C J
a C J C J C J

C J C J
ξξξξξξψ

− − − −

− − + +

+ + + +

 −
 

= + − + 
 − + 

 

where ( )1, 2,3, 4, , 25iC i = 

 given below, are function of n  and m  de-
fined to make easier the computations. 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2

3 4 1

5 1 2 6 2 3

7 3 8 4

9 4 5

10 5 6

11 6 7

12 7 13 8

1 ;  1 1 ;

1 ;  2 ;

2 ; 2 ;  

2 ;  3 ;  

3 1 ;

1 1 ;

1 3 ;

3 ;  4

  

;

C m m C m n n m

C n n C m C

C n C mC C n C m C

C n C C m C

C n C m C

C n C m C

C n C m C

C n C C m C

= − = − + +

= + = −

= − + = + +

= + = −

= − + −

= − + +

= + + +

= + = −

 

( ) ( )
( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )

14 8 9

15 9 10

16 10 11

17 11 12 18 12

19 13 20 13 14

21 14 15

22 15 16

23 16 17

24 17 18 25 18

4 2 ;  

2 ;  

2 ;

2 4 ;  4 ;  

5 ;  5 3 ;

3 1 ;  

1 1 ;

1 3 ;

3 5 ;  5 .

C n C m C

C n C mC

C n C m C

C n C m C C n C

C m C C n C m C

C n C m C

C n C m C

C n C m C

C n C m C C n C

= − + −

= − +

= + +

= + + + = +

= − = − + −

= − + −

= − + +

= + + +

= + + + = +
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