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Abstract: The manuscript presents a novel non-gradient and non-iterative method for mapping two
3D objects by matching extrema. This innovative approach utilizes the amplification of extrema
through the summation of dependent random values, accompanied by a comprehensive explanation
of the statistical background. The method further incorporates structural patterns based on spherical
harmonic functions to calculate the rotation matrix, enabling the juxtaposition of the objects. Without
utilizing gradients and iterations to improve the solution step by step, the proposed method generates
a limited number of candidates, and the mapping (if it exists) is necessarily among the candidates. For
instance, this method holds potential for object analysis and identification in additive manufacturing
for 3D printing and protein matching.

Keywords: 3D object matching; 3D object identification; surface analysis; feature extraction; amplifi-
cation of extrema

1. Introduction

Modern methods of modeling, digitization, and visualization of 3D objects brought
explosive growth to the number of models accessible in different databases and on the
Internet. This increase has allowed the development of new methods, fast progress in
3D object classification and identification, and new approaches in 3D object search and
retrieval systems. The quick, accurate, and efficient identification of 3D objects is a practical
problem in robotics, self-driving cars, medical image analysis, computer vision, 3D printing,
protein matching, etc.

Two standard methods are usually used to represent and visualize 3D shapes: either a
3D model is represented as a surface (for example, as polygonal/triangular meshes) or a
voxel representation. Each approach has its advantages and drawbacks.

In reviews [1,2], a plethora of methods for 3D search for both surface and voxel
representations are considered. The approaches are assessed with respect to several
content-based 3D shape retrieval criteria, such as properties of dissimilarity measures,
discrimination abilities, ability to perform partial matching, robustness and efficiency,
shape representation requirements, and the necessity of pose normalization.

This work is directed towards solving the optimization problem of identifying two 3D
objects, namely, deciding if they are the same or distinctive. In case objects O1 and O2 are
identified as the same, it is necessary to find a rigid transformation to map them together.
The problem of object identification is different from the problem of classification when it
is necessary to find if the objects have the same properties intrinsic to the same class.

The rigid transformation should minimize some distance metrics between the trans-
formed original object O1 and the sample O2. If this distance is less than some predefined
threshold, consider the objects similar and indistinct.
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Let us assume that a 3D object is defined by its triangular mesh. Different ways can be
found to map objects to each other rigidly. One state-of-the-art method is the ICP (iterative
closest point for point cloud registration) algorithm [3,4]. It is based on iterative gradient
calculation and improvement of the solution.

In [5], the problem of shape matching is reduced to comparing probability distribu-
tions, and a method for calculating shape signatures for arbitrary (possibly degenerate) 3D
polygonal models is proposed. The key idea is to represent the signature of an object as a
distribution of some geometric properties (features) of the object (for example, the distance
between two random points on the surface). This signature should allow distinguishing
between classes of objects (for example, cars and airplanes) in a medium-sized database.
Of course, the method based on such an idea can be used as a preliminary classifier, but it
does not solve the problem of identifying objects. In [6], the mapping transformation is
calculated by maximizing the overlap of objects’ features.

In [7], query methods were developed that are simple enough for novice users, and
relatively reliable matching algorithms were used to work with arbitrary polygonal models
based on 3D sketches, 2D sketches, 3D models, and text keywords.

The neural network approach is usually used to solve the problem of object classifica-
tion and check if the object under analysis owns the common properties of the objects of
some class. Ref. [8] attempts to improve both volumetric convolutional neural networks
(CNNs) based on volumetric representations of the surface and multi-view CNNs, which
are based on representations with multiple representations. The authors introduce two
different network architectures of volumetric CNNs and investigate multi-view CNNs with
filtering having multiple resolutions in 3D. In [9], a patch convolutional neural network
(PCNN) is proposed to search for 3D models based on representations.

Another direction to solve the mapping problem by applying neural networks is deep
learning-based point cloud registration. A review of the recent progress and overview of
methods can be found in [10].

2. Relevant Methods: State of the Art

Earlier works on shape representation analysis for object identification can be divided
into two broad categories. The first category uses methods such as PCA to align the model
in a canonical coordinate system. Then, it defines the representation of the shape by relating
it to this orientation. Such methods include, among others, moments for object surfaces [11]
and Extended Gaussian Images [12]. Kazhdan [13] (Appendix B) mentions that PCA-based
methods are unstable due to the multiplicity of eigenvalues and sensitivity to outliers. The
second category of methods defines representation invariants with respect to rotation and
includes methods such as Shape Histograms [14] and Shape Distributions [5].

In this work, we adhere to ideas based on decomposing some function given on a
sphere into the sum of spherical harmonics. The works of [7,13,15,16] gave the impetus for
developing such an approach to the problems of classifying 3D objects and retrieving their
information from databases.

In [17,18], tools for searching for 3D objects were presented. The model is represented
as a polygonal grid and serves as a query, and similar objects are extracted from a collection
of 3D objects. The first stage of the algorithm is normalization (estimation of the pose) when
the models are transformed into a canonical coordinate system. Then, feature vectors are
extracted and compared with vectors obtained from normalized models in the search space.
Using metrics in the feature vector space, the nearest neighbors are calculated and ranked.
The objects extracted in this way are displayed for inspection, selection, and processing.
Feature vectors are based on rays cast from the object’s center of mass. The distance from
the center of mass to the surface in the ray’s direction sets the function value on the sphere.
To evaluate the pose, a modified Karhunen–Loeve transformation is introduced, taking
into account not only vertices or polygonal centroids from 3D models but also all points in
polygons of objects.
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In [19], the 3D model’s symmetry descriptors are presented as a set of spherical
functions that describe the measure of the model’s rotational and reflective symmetry with
respect to each axis passing through the center of mass.

Papadakis et al. [20] present a methodology for reconstructing a 3D shape based on
spherical harmonics, which ensures invariance to scaling and rotation. Rotation normal-
ization is performed using continuous principal component analysis and its application
to the model surface normals. The 3D model is represented as a set of spherical functions.
This representation comprises the intersections of the surface with rays originating from
the origin as well as points in the direction of each ray that are closer to the origin than the
farthest intersection point.

Ref. [21] presents a 3D shape descriptor that uses a set of panoramic views of a 3D
object. The views describe the position and orientation of the object’s surface in 3D space.
A panoramic view of the 3D object is obtained by projecting it onto the surface of the
cylinder parallel to one of its three main coordinate axes and is centered on the object’s
centroid. The object is projected onto three perpendicular cylinders aligned axes to capture
the global shape of the object. The corresponding 2D discrete Fourier transformation and a
2D discrete wavelet transformation are found for each projection.

Ref. [22] presents the decomposition of spherical harmonics for spherical functions to
represent 3D triangulated star-shaped objects. After splitting the surface into star-shaped
sections, this result can be extended to any triangular object. The evaluation of the spherical
harmonic coefficients is performed by edge integration using the Monte Carlo method,
which distinguishes this work from voxel methods.

In [23], after translating and scaling the 3D model, the concentric spheres are used to
analyze the object, and a new set of functionals is defined and applied for each sphere. This
results in a vector of feature descriptors. This vector is invariant to rotation and, hence,
suitable for matching 3D models. Weight coefficients are assigned to each descriptor to
improve the mapping.

In [24], descriptors of 3D shapes are generated using functions on a sphere. A set of
vector descriptors invariant to rotation is extracted using spherical harmonics. First, the
models’ size is normalized, and then a sample of data is taken from the surface of the 3D
model and converted into point cloud data. Next, spherical harmonics are applied to this
point cloud to obtain invariant rotation descriptor vectors. The method proved resistant to
noise on the model’s surface and allowed us to compare similarities of 3D models.

The essential part of identifying the similarity of two objects is to find a rotation that
best combines two sets of vectors (or two clouds of points). Algebraic approaches to solving
the problem of optimal rotation were proposed in [25–28]. These results are exact but
require knowing the correspondence among the points in these two sets.

In [29], the spherical harmonics of a pair of images are related to each other by a shift
theorem, which uses an irreducible representation of the rotation group. Using this theorem,
Euler angles are extracted. Regarding the required number of spherical coefficients, it is
assumed that they are global image encoders and that rotations can be estimated using a
simple reference table of combinations of coefficients and angles.

Esteves et al. [30] solve the equivariance problem of 3D rotation using convolutional
neural networks. The authors model 3D data with spherical functions and propose a
spherical convolutional network that implements point convolutions on a sphere. The
paper demonstrates that networks with low bandwidth without increasing the dataset size
can demonstrate performance comparable to state-of-the-art networks.

In [31], the fundamental problem of finding the shape and registering a point cloud
for the point clouds with zero point-to-point correspondences is considered. Using the
trained optimization process, the authors propose a method to represent 3D point clouds
by spherical Gaussians and a rotation-invariant convolution.

In [32], spherical harmonic functions are directly used to simulate irregular 3D particles.
Discrete surface points of irregularly shaped 3D particles are represented by spherical
harmonic functions with a limited number of harmonic coefficients to restore the particle’s
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morphology. These spherical harmonic functions are used to detect overlap between
particles and calculate the interparticle contact forces, moments, and particle motions in
various engineering and industrial processes.

The analysis of spherical harmonics was initially used to solve problems in geophysics,
potential theory, and mathematical physics [33]. Later, it was found to apply to the classifi-
cation and identification of 3D objects.

An increasing number of 3D models of buildings are hosted on web platforms for
model sharing. Therefore, based on data reuse, in [34,35], an approach to coding and
searching 3D models of buildings using point clouds obtained by airborne light detection
and ranging (LiDAR) systems is proposed. To encode LiDAR point clouds with sparse,
noisy, and incomplete sampling, the authors introduce an encoding scheme based on a set
of low-frequency spherical harmonic basis functions. Descriptors are extracted from spatial
histograms and used to search for 3D models.

The state-of-the-art approach to solving the optimization problem of mapping objects
to each other is the ICP algorithm. The solution is found by step-by-step optimizing the
loss function defined at the sets of points of both objects. Based on gradient search, the ICP
iteratively finds the best correspondence among the subset of points of the objects. The latest
modification of the ICP is Go-ICP [36], where Local ICP is based on a branch-and-bound
(BnB) scheme.

In [37,38], global optimization methods based on implicit enumeration were men-
tioned. As per their taxonomy, these methods belong to the space-covering group, which
aims at implicitly exploring the whole feasible region. Such approaches could be iterative
and, at the same time, non-gradient methods. These methods started with the simplex
method [39] and the algorithms in [40,41] and do not require calculating the gradient; they
are still iterative methods. There are several modifications of the Powell method, such as
COBYLA [42], which employs linear polynomial approximations to the loss and constraint
functions by interpolation at the vertices of simplices.

Another one-pass approach to calculating the mapping of two 3D objects is based
on training a deep learning network. The trained network calculates the mapping in a
non-gradient and non-iterative way. Such approaches could be found in [43–47], where
the neural network is initially trained to extract local spatial features from each of the 3D
objects under comparison. Then, the mapping is calculated based on these features.

If the number of possible extrema at the object’s surface is relatively small, it is not
prohibitively expensive to find the matching of the extrema for both objects and check how
good these mappings of the objects are. As the possible number of extrema combinations
is assumed not high, as an option, the mapping can be found even by exhaustive search
without the calculation of gradients in a non-iterative way.

This is the idea of the proposed method for solving the identification problem and
finding the mapping of the objects. Let us use a spherical transformation to map the 3D ob-
ject in the feature space (encoding), and for partial reconstruction (decoding), let us define
a 3D shortest distance function. The values of this function are treated as random values.
The summation of random values gives us several extrema (see Sections 3.9 and 3.10). Cal-
culating the mappings for the corresponding extrema for two 3D objects under comparison
allows us to find the required transformation or tells us that the objects are different.

In the “Results and Discussion” section, a comparison of the proposed method with a
deep learning approach (using [43] as an example) is given.

3. Method

Let us assume that there are two 3D objects: O1 and O2. Each of these objects is
represented by its triangular mesh. It is necessary to define whether these two objects
are identical (up to some calculation error). If they are similar (this analysis considers
the surface and the internal architecture), find the transformation matrix (rotation and
translation) to map them.
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Let us reiterate that the problem to be solved is not to identify if the class of the
objects is the same (for example, for two gears with different numbers of teeth) but to check
whether either two objects could be transformed to each other by a rigid transformation.

Initially, let us describe an overview of an identification algorithm, and every step will
be explained in detail in the following sections.

It is necessary to compare two 3D objects, O1 and O2, for identity. Each object’s
model mesh is watertight and has consistent winding and outward-facing normal vectors
(hereafter, let us define this set of features as “correct geometry”). A corresponding 3D
shortest distance function (SDF) is calculated for each object. The SDF value at the 3D
point is the shortest distance from this point to the object’s surface. Spherical harmonic
coefficients represent the calculated SDF function. Using expansions of degree L, we
partially reconstruct the SDF functions related to objects O1 and O2.

First, the energies of the corresponding degrees of spherical harmonic coefficients are
compared to analyze the objects’ similarity. Then, extrema amplification is utilized, and
next, an attempt to align the most distinguishable extrema of both partial reconstructions
is conducted. If the objects match with the acceptable quality, the matrix of the object
mapping is calculated.

Preprocessing. For object O1, let us denote its surface as S. The surface (the object’s
mesh) is assumed to have the correct geometry.

P1. Shift the origin of the system of coordinates to the centroid (the center of mass of the
object’s surface).

P2. Scale O1 so that none of its vertices are outside the sphere of radius sixteen, and at
least one vertex is on the sphere surface. Let the coefficient of scaling be fscale.

P3. Place n concentric spheres (shells) centered at the origin with radii R1, . . . , Rn (we
use n = 9 and i = 1, 3, . . . , 17). These spheres cut O1.

P4. On the i-th sphere, i = 1, . . . , n, a continuous function f (i)(θ, φ) is defined, and θ, φ

are spherical coordinates. SDF f (i)(θ, φ) is the shortest distance from the point (θ, φ)
to the surface S (see the Section 3.1 and [48]).

P5. At each sphere, a grid of points
(
θj, φj

)
, j = 1, . . . , k, is defined. For this grid, we can

use, for example, a t-design [49], Fliege–Maier [50], or an icosphere [51] set of points
(see Section 3.2). These points are employed for low-error integration of spherical
functions.

P6. At each sphere, using f (i)
(
θj, φj

)
, let us calculate the spherical harmonic coefficients

(or Fourier–Legendre coefficients) f (i)lm , l = 0, 1, 2, . . ., −l ≤ m ≤ l (see the definition
(3) below). Let us calculate spherical coefficients up to degree l ≤ 10.

P7. At each i-th sphere, let us partially reconstruct the function
∼
f
(i)(

θj, φj
)

using these

coefficients f (i)lm for l = 1, . . . , 10 degrees and the icosphere grid
(
θj, φj

)
(see the

Section 3.6).
∼
f
(i)(

θj, φj
)
=

10

∑
l=0

l

∑
m=−l

f (i)lm Ylm
(
θj, φj

)
. (1)

P8. Next, on the unit sphere, let us add all the functions
∼
f
(i)(

θj, φj
)

over the entire set of
concentric spheres as follows:

∼
f
(
θj, φj

)
=

n

∑
i=1

∼
f
(i)(

θj, φj
)

(2)

and define a surface
(

θj, φj,
∼
f
(
θj, φj

))
. The surface points are connected the same

way as the corresponding points of the icosphere.

P9. Find the extrema points and saddle points of the surface
∼
f of the previous item.

P10. Build the convex hull of the points found in the previous item.
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P11. Order these points by not increasing their radius vector lengths. Denote this sequence
as F.

We repeat the same preprocessing for object O2 and denote the corresponding calcu-
lated function with replacement f to g, obtaining, for example,

∼
g
(
θj, φj

)
, etc.

Steps of the algorithm. Let us find a transformation matrix that maps O1 to O2, if
it exists.

A1. Let us compare the scaling coefficient fscale and gscale. If the objects are not equal (up
to some tolerance), they are different. If we want to check the similarity of two objects
while ignoring the scale, go to the next step.

A2. For each sphere i = 1, . . . , n, calculate and compare energy for each degree l for both
objects. If ∣∣∣∣∣ l

∑
m=−l

∣∣∣ f (i)lm

∣∣∣2 − l

∑
m=−l

∣∣∣g(i)lm

∣∣∣2∣∣∣∣∣ > Tolerance

for at least one degree l, then the objects are different; otherwise, go to the next step.
A3. Let us choose vector f1. This is the longest vector from sequence F that has not yet

been used by the algorithm. If there is no such vector, go to step A8.
A4. Look for subsequent vectors f2 from F, which forms an angle of at least 10 degrees

with f1. For each such vector, pair f1 and f2 and go to the next step; otherwise, go to
step A3.

A5. Find the furthest point f3 of the convex hull from the plane α, which contains the
origin and vectors f1 and f2. Find, if any, the corresponding points, g1, g2, and g3, in
sequence G. These points in G should have the same length of vectors and angles
among vectors (up to some tolerance) as the vectors in F. The scalar triple product of
( f1, f2, f3) and (g1, g2, g3) should have the same sign.
If there are no such vectors, go to step A3 and look for the next vector f1.

A6. Calculate the rotation matrix using the Kabsch algorithm [25,26] to map the triplet of
non-coplanar vectors ( f1, f2, f3) to (g1, g2, g3). If this (or similar, up to some tolerance)
rotation matrix was calculated and analyzed before, go to step A3, and look for the
next vector f1.

A7. Using the rotation matrix found, rotate O2 to O2, and calculate the vector of spherical

harmonic coefficients g(i)lm for O2. In the ideal case, objects O1 and O2 should coincide.
For each sphere i, we calculate the cosine similarity CS(i) (i.e., find the angle between
two vectors), g(i)lm , and f (i)lm . To evaluate the quality of the mapping, we introduce two
metrics (see Section 3.3) as follows:

M1 = min
i=1,...,n

CS(i) , M2 = ∑n
i=1

(
1 − CS(i)

)
.

The rotation matrix found is considered an acceptable solution if M1 is more than
some tolerance (we set it as cos(100) = 0.9848, with the perfect match being 1.0). This
means that the cosine similarity of each sphere is greater than this value.
If there are several acceptable solutions, the best of them is defined as the one having
the minimal M2 (the minimal sum of deviations from the perfect match of coefficients
for all the spheres). If M2 is small (we chose M2 < 0.02), we assume that the best
acceptable solution has been found; stop the search. If step A7 was executed more
than 30 times, go to step A8; otherwise, go to step A3.

A8. Suppose none of the acceptable solutions has been found. In that case, the objects are
different; otherwise, the objects are considered the same, and the best rotation matrix
found at step A7 is the solution. Return the best acceptable solution found and stop
the algorithm.

Thirty repetitions are, in some sense, overkill. The rationale for choosing this number
and its sufficiency will be discussed in Sections 3.8–3.10.

Let us describe the steps of the algorithm in detail.
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3.1. Spherical Harmonics

Spherical harmonics are the basis functions for irreducible representations of a group
of rotations SO(3) in R3. These orthonormal functions form a basis of the Hilbert space of
square-integrable function L2

R
(
S2).

Let us denote S2 a unit sphere. Any square-integrable function f : S2 → R can be
represented as a sum [33] as follows:

f (θ, φ) =
∞

∑
l=0

l

∑
m=−l

flmYlm(θ, φ)

where spherical harmonics coefficients (or Fourier–Legendre’s coefficients) are

flm =

2π∫
0

 π∫
0

sinθ f (θ, φ)Ylm(θ, φ) dθ

dφ (3)

and spherical harmonics Ylm are defined by

Ylm(θ, φ) =


(−1)m√2

√
2l+1
4π

(l−|m|)!
(l+|m|)! P|m|

l (cos θ) sin(|m|φ), m < 0,√
2l+1
4π Pm

l (cos θ), m = 0,

(−1)m√2
√

2l+1
4π

(l−|m|)!
(l+|m|)! Pm

l (cos θ) cos(mφ), m > 0.

Here, Pm
l are associated Legendre’s polynomials as follows:

Pm
l (t) = (−1)m

(
1 − t2

)m
2 dm

dtm Pl(t), l ≥ 0, |m| ≤ l,

and Pl(t) are Legendre’s polynomials, which can be represented by the Rodrigues differen-
tial form as follows:

Pl(t) =
1

2l l!
dl

dtl

(
1 − t2

)l
.

Under rotation operation, a spherical harmonic of degree l and order m transforms
into a linear combination of spherical harmonics of the same degree. For each degree l, the
basic functions Ylm, −l ≤ m ≤ l form a set of irreducible representations of the group SO(3)
of dimensions (2l + 1). This means that any rotation R will be a self-homeomorphism in
this subspace.

Let us denote the result of a rotation R around the center of the sphere (around the
origin of the system of coordinates) applied to sphere S2 as S2

R and the function f = f (θ, φ)
calculated on a rotated sphere S2

R as g : S2
R → R . The rotation of sphere S2

R corresponds to
the rotation R of the object.

First, let us translate object Oi the way that the centroid of Oi is in the center of the
coordinates. For now, we assume that objects O1 and O2 are the same, and O2 is the rotated
version of O1. We would like to find the matrix of rotation R. Next, we calculate flm and
glm, the coefficients of spherical harmonics for degrees l up to some Lmax for objects O1 and
O2. The useful property of energies for any degree L is that the energy is not changed by
rotation. As basic functions Ylm for each l form a subspace of dimension (2l + 1), the total
power of function f in the subspace corresponding to the degree l does not depend on the
rotation R.

l

∑
m=−l

| flm|2 =
l

∑
m=−l

|glm|2

This directly follows from Parseval’s theorem [33] and the properties of the group
SO(3). The coefficients for every degree l for the rotated object could be found using, e.g.,
the Wigner D-matrix [52].
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Functions f and g could be expanded on a unit sphere S2 as

f (θ, φ) = ∑∞
l=0 ∑l

m=−l flmYlm(θ, φ), g(θ, φ) = ∑∞
l=0 ∑l

m=−l glmYlm(θ, φ) (4)

where
flm =

∫ 2π
0 dφ

∫ π
0 dθ sinθ g(θ, φ)Ylm(θ, φ),

glm =
∫ 2π

0 dφ
∫ π

0 dθ sinθ g(θ, φ)Ylm(θ, φ).

If we only consider a specific degree l in Formula (4), we will obtain a partial reconstruction
of the functions f and g for this degree. This reconstruction will use 2l + 1 coefficients glm
and flm, m = −l, . . . , l for the whole expansion.

Expansions f and g are given by arrays of their spherical harmonic coefficients, { flm}
and {glm}. Let us denote the partial expansion of the degree L of the function f as fL and gL
for g as follows:

fL(θ, φ) = ∑L
l=0 ∑l

m=−l flmYlm(θ, φ), gL(θ, φ) = ∑L
l=0 ∑l

m=−l glmYlm(θ, φ). (5)

Function fL is defined by coefficients { flm} with l ≤ L. The norm of deviation of
functions fL and gL could be defined as a cosine similarity of arrays { flm} and {glm} for
l ≤ L.

As we postulated, function g is a result of rotation R of function f , and the results of
the partial reconstruction will have the same relationship—they are the rotated versions of
each other. For every degree l (as well as for any combinations of such degrees), the partial
reconstructions of f and g in R3 could be mapped by the same rotations R.

3.2. Numerical Calculation of Spherical Coefficients

Let us introduce several different grids for numerical calculations for the method
proposed.

The numerical integration (step P5) of the square-integrable function defined on
the two-dimensional sphere is performed using quadrature formulae. This function is
evaluated at some nodes in the sphere. For example, this set of points could be Fliege–
Maier’s set of points on the sphere for low-error integration of spherical functions [50]. The
mentioned grid can be used for integration by directly summating the function evaluated
at grid points and weighted with the respective weights. Another option could be to use
t-designs [49], which constitute uniform arrangements on the sphere for which spherical
polynomials up to degree t can be integrated precisely by summating their values at the
points defined by the t-design. One more way could be to use a grid defined by the
icosphere [51].

The Gauss’ quadrature formulae with the mentioned designs provide fast and accurate
calculations of spherical harmonic coefficients. In [50], it was shown that for pre-computed
nodes and weights, the integration error drops to 10−12 for many functions.

Another approach could be performing the spherical harmonic transform (SHT) in
the least-squares sense. Using values f

(
θj, φj

)
(see Formula (4)) at nodes

(
θj, φj

)
on the

grid, the spherical harmonic coefficients flm could be computed using the Moore–Penrose
pseudo-inverse of a matrix [53]. The following least-squares problem is solved with respect
to variables flm as follows:

f (θj, φj) = ∑Lmax
l=0 ∑l

m=−l flmYlm(θj, φj), j = 0, . . . , p.

In step P7, it is necessary to reconstruct a function at the sphere by its spherical
harmonic coefficients. This reconstruction requires calculating the function at the preferably
uniform grid. We used a tessellation [51] built from an icosahedron. To obtain a tessellation,
the following steps are performed: (i) divide each triangular face of the icosahedron into
four smaller triangles by connecting the midpoints of the three sides; (ii) normalize the new
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triangle vertices on the unit sphere; and (iii) repeat these steps until the desired solution
is reached.

After applying five such iterations to the original icosahedron, we obtained an ico-
sphere containing 10,242 vertices. Each vertex of this triangular tessellation has six adjacent
triangles, except for the original twelve icosahedral vertices with five adjacent triangles.

3.3. Comparison of Two Objects: Optimization Function

We have two 3D objects, O1 and O2, to be compared for identity. Let us mathematically
define the meaning of the word “identity” used in this work.

We assume that a 3D object O has the surface S with a correct geometry. The object is
scaled the way that the centroid of its surface is at the origin of the system of coordinates,
and the object itself fits into a sphere of radius 16 and touches this sphere. The number 16
was arbitrarily chosen as a parameter of the method.

Let us place n concentric spheres (shells) centered at this origin. We use a set of nine
spheres with radii of 1, 3, 5, . . ., 17. On each i-th sphere, i = 1, . . . , n, and a continuous
function f (i)(θ, φ) is defined. This function is called the shortest distance function (SDF),
and its value is the shortest distance from the point (θ, φ) of this i-th sphere to the surface S.
This distance could have a positive or negative sign. The distance is considered positive if
the point (θ, φ), for which the distance to the surface S is measured, is outside this surface,
and negative otherwise. The SDF is a continuous function on S2.

Let us assume that we found the function f = { f (i)}, where f (i) = { f (i)lm } corresponds

to object O1 spherical coefficients of i-th sphere, and the function g = {g(i)}, g(i) =
{

g(i)lm

}
corresponds to O2.

Let us denote

M(i)
0 (l) =

∣∣∣∣∣ l

∑
m=−l

| f (i)lm |
2
−

l

∑
m=−l

|g(i)lm |
2
∣∣∣∣∣.

Due to the Parseval equation [33], if the objects are the rotated version of each other,
the absolute value of the difference of energies for expansions f and g for degree l should
be equal to zero as follows:

M(i)
0 (l) = 0.

Due to inevitable errors of numerical calculations, we assume that for the rotated versions
of objects, the difference should be less than or equal to some threshold Tenergy

M(i)
0 (l) ≤ Tenergy (6)

for all the degrees l used for partial reconstruction. In the calculations, the difference M(i)
0 (l)

is considered negligible if it is either below 5% of the first object’s energy or below 0.01 (the
approach is the same as the Python function isclose with relative and absolute tolerances).
Condition (6) is used to check the energy similarity of both objects in step A2.

It is also possible to use a more general form as follows:

M1 = min
i=1,...,n

CS(i), (7)

where
CS(i) = cosine_distance

({
f (i)

}
,
{

g(i)
})

As a condition of similarity, we request that M1 should be less than the cosine of 10
degrees. This condition is necessary but not sufficient, as shown in [13] (Figure 5 with an
airplane).

One more additional loss function used is

M2 = ∑n
i=1

(
1 − CS(i)

)
, (8)
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This is the sum of overall deviations of the spherical coefficients at each sphere. We
consider the smaller M2 the better the solution.

The loss functions, M1 and M2, are used in step A7.
If we assume that function g is the result of the application of function f to sphere

S2
R (sphere S2 rotated by transformation R), then g = f R. We would like to find the

transformation R to map object O1 (corresponding to function f ) to O2 (corresponding to
function g). This transformation R can be defined as

R = argmin
R

∥g − f R∥

In case the best R found gives the cosine similarity measure M1 above some predefined
threshold TCS, we consider objects O1 and O2 as nonidentical. We chose TCS corresponding
to 10 degrees.

One more measure of mapping accuracy could be the Root-Mean-Square Deviation
between two reconstructions (5).

3.4. Behind the Comparison: Usage of Spherical Harmonics as Structural Patterns

Let us denote the partial reconstruction of function g for degree l as gl . The same
denotation will be used for f .

Let us start with a toy example and assume that at degree l for function f has only one
coefficient with order m, say, l = 3 and m = 2; see Figure 1.
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The partial reconstruction fl for degree l will be the spherical harmonic Ylm multiplied
by the corresponding coefficient flm. Let us assume that this coefficient is equal to 1. Let us
take a look at the visualization of a spherical harmonic Ylm. We can see that the number
of extrema points on the harmonic’s surface is not large. The reconstruction gl will look
geometrically (spatially) the same; hence, there is the same number of maxima for the
original and rotated spherical harmonic. If the number of maxima is relatively small, we
can find the mapping of the maxima of fl to the maxima of gl using an exhaustive search.
We can preliminarily order these maxima by their values (length of vectors) and angles
between different surface extrema points to speed up the process. This ordering would
allow us to find the correct mapping faster with fewer combinations to be checked.

If, in the toy example, the harmonic under consideration has a continuous rotation
symmetry, like the spherical harmonic in order (3,0) (Figure 2, see a shape in the center
of the last row), then the extrema and the saddle points of the harmonic surface could be
sampled at the grid with the chosen grid step. The middle part (the “equatorial” line) will
obtain limited points. Matching of respective extrema points at both objects could still be



Algorithms 2024, 17, 248 11 of 25

performed using an exhaustive search. The accuracy of matching depends on the size of
the grid step.
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Suppose several non-zero coefficients exist in the expansion for some degree l
(Formula (4)). In that case, the number of surface extrema for each harmonic is limited.
For the partial reconstruction (4), the number of extrema in the sum of weighted spherical
harmonics participating will also be bounded. The same consideration is valid for the sum
of all the degrees participating in the partial reconstruction (5).

We will show that under some assumptions, the sum of all the partial reconstructions
at all the shells mapped to the unit sphere will have the expected number of top-value
extrema to be relatively small (on average, below thirty). We define top-value extrema as
those that are among the largest by absolute value. A more formal definition will be given
in Section 3.8.

3.5. Non-Gradient Methods

The non-gradient method could be applied if either the direction of function descent
is calculated without taking a gradient, like in [41] the simplex or Powell methods [40,42],
or if the number of points to be checked for being the extremum is relatively small and
we can examine them one by one. We will follow the second approach for the problem of
mapping two 3D objects.

If we look at spherical harmonics inside correspondent degrees (see Figure 2), we can
notice that when the band has a low number, the spherical harmonics have a relatively
limited number of local extrema (the local peaks on the 3D surface of the harmonic). When
we find a weighted sum of these harmonics, the number of local extrema at the resulting
surface will also be limited and relatively small.

Considering that function f is a weighted sum of spherical harmonics, and the spheri-
cal harmonics of different degrees are independent, we can say that function f itself is the
sum of partial reconstructions corresponding to every degree. These partial reconstructions
for degree l for 3D objects O1 and O2 will also be rotated at the same angle as the original
objects, O1 and O2. This observation is accurate for any specific degree or combination
of degrees. Also, it is accurate for whatever square-integrable function on the surface of
a sphere is analyzed. This means that exactly the same angle of rotation will be calcu-
lated (up to the error of calculation) for every partial reconstruction of degree l on every
concentric sphere.
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Having a moderate number of local extrema at the partial reconstruction for level l for
O1 and O2 and considering that all the rotations are around the center of coordinates, the
angle of rotation to rotationally match the peaks of reconstructed surfaces to each other
could be performed, for example, by an exhaustive search of all possible configurations in
a low-dimensional space. This calculation provides a rotation matrix to match O1 and O2.
Instead of the exhaustive search (due to a limited number of top-valued extrema generated),
the solution could be found by analyses of only several possible combinations. The measure
of the accuracy of mapping could be, in addition to M1 (Formula (7)) and M2 (Formula (8)),
the Root-Mean-Square Deviation between two reconstructions.

3.6. Efficient Calculation of the Shortest Distance Function (SDF)

The SDF function calculation we used is based on library [48], where instead of the
SDF, which computes the distance to all the faces of the surface, this value is approximated
by the distance to the faces adjacent to the nearest neighbors of the grid point

(
θj, φj, Ri

)
on

the i-th sphere with radius Ri.

3.7. Building the Surface at Icosphere Nodes

As mentioned in Section 3.3, we cut the object by concentric spheres. Let us consider an
SDF function f (i)(θ, φ)—the shortest distance from the point (θ, φ) of the i-th sphere to the
surface S. Function f (i)(θ, φ) is continuous by parameters θ and φ, as well as by the radius
of the sphere and the vector

(
θ, φ, f (i)(θ, φ)

)
, which is defined in the spherical coordinate

system. If the value of f (i)(θ, φ) < 0, the corresponding vector of length
∣∣∣ f (i)(θ, φ)

∣∣∣ is
directed opposite vector (θ, φ, 1).

At each sphere, a grid of points,
(
θj, φj

)
, j = 1, . . . , k, is defined. We use an ico-

sphere [51] set of points out of 10,242 vertices after five subdivisions. This icosphere has
a dense and rather uniformly distributed set of vertices. Using values f (i)

(
θj, φj

)
, we

compute (3) the spherical harmonic coefficients f (i)lm ; then, we partially reconstruct func-

tion
∼
f
(i)(

θj, φj
)

on the unit sphere at the icosphere grid
(
θj, φj

)
for degrees l = 0, . . . , 10

using (1).

As was mentioned in steps P8–P11, on the unit sphere, we add functions
∼
f
(i)(

θj, φj
)

over the entire set of concentric spheres, see Formula (2), and connect the points(
θj, φj,

∼
f
(
θj, φj

))
to make a surface C with the adjacency matrix for the icosphere. We find

this surface’s extrema and saddle points and build the convex hull using the points found.
The number of vertices in the convex hull built on these points is usually much smaller
than the number of points in the original surface C. These vertices are ordered in sequence
F by the length of the radius vector. We obtain a similar sequence G for function g.

Let us form the sequence
∼
F of lengths of vectors corresponding to the vertices of the

convex hull F. The global maxima of
∼
F will have the same values as the global maxima for

∼
f
(
θj, φj

)
and will be reached at the same icosphere grid nodes. The values corresponding to

the global maxima will be concentrated in the right tail of the distribution Sn. The number
of extrema on a convex hull cannot be more than the number of extrema for the original
surface Sn on which it is built.

If objects O1 and O2 are similar, then to match them, we can only use the top extrema
from F and G and later check the quality of the mapping.

The process described here will be referred to as extrema amplification hereafter.

3.8. Values of Function as Dependent Random Variables

Let us find a set of values of the function
∼
f
(i)(

θj, φj
)

(1) at the icosphere grid
(
θj, φj

)
,

and consider these values as a random variable Xi distributed on the segment
[

f (i)min, f (i)max

]
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from global minima to global maxima. The variable Xi at each sphere i = 1, . . . , n has finite
mathematical expectations and variances as follows:

E[Xi] = µi, D[Xi] = E
[
(Xi − µi)

2
]
= σ2

i .

Let us discuss the rationale for the summation of functions
∼
f
(i)(

θj, φj
)

in Formula (2)
and how it ensures that the number of variants to be checked to find the solution is below
two on average. In the proposed method, to obtain either a satisfactory result for object
rotation (if it exists) or a negative answer otherwise (objects are not identified as similar),
it is sufficient to apply the matching algorithm no more than 30 times. This number is
confirmed experimentally using the algorithm.

To explain how the idea appeared and what is the logic behind it, we will first carry
out the justification under the unrealistic assumption that the random variables Xi corre-

sponding to the distributions of the values of the distance functions
∼
f
(i)(

θj, φj
)

on each
sphere are independent. Then, the possibility of using the results found for the classes of
dependent random variables will be discussed.

We know nothing about the 3D object and its SDF, as no assumptions are made
about the object’s shape and topology. So, first, let us consider a toy example, then how
the addition of constraints affects the result, and finally, how the experimental result is
compared with the expected theoretical result.

3.9. Method 1: Central Limit Theorem

Consider the sum of random variables Sn ≡ ∑n
i=1 Xi. Then, in particular

E[Sn] = mn =
n

∑
i=1

µi, D[Sn] = σ2 = σ2(n) ≡
n

∑
i=1

σ2
i . (9)

One of the classical formulations of the central limit theorem is contained, for example,
in [54] (p. 383, Theorem 27.2).

Lindenberg’s Central Limit Theorem. Suppose that sequenceXi, i = 1, . . . , n is independent
and satisfies (9). If Lindenberg’s condition

lim
n→∞∑n

i=1
1
σ2

∫
|Xi−µi |≥εσ

(Xi − µi)
2 dP = 0, (10)

holds for all positiveε, then Sn−mn
σ → N0,1 at n → ∞ .

Here
Sn − mn

σ
=

(X1 − µ1) + . . . + (Xn − µn)√
∑n

i=1 σ2
i

,

and N0,1 ≡ N(0; 1) denotes the standard Gaussian random variable, i.e., having zero
mathematical expectation and variance equal to one. The density of the standard normal
distribution is

f (x) =
1√
2π

e−x2/2.

This theorem follows from the more general Lyapunov theorem [54] (p. 385, Theo-
rem 27.3). While the classical central limit theorem requires finite moments of order 2,
Lyapunov’s central limit theorem requires finite moments of order 2 + δ for some δ > 0.
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Lyapunov’s Central Limit Theorem. Suppose that sequence Xi, i = 1, . . . , n is independent
and satisfies (9). If Lyapunov’ condition

lim
n→∞

1
σ2+δ ∑n

i=1 E
[
|Xi − µi|2+δ

]
= 0, (11)

holds for some δ > 0, then (Sn − mn)/σ → N0,1 at n → ∞ .

As shown in [54] (p. 385), the Lindenberg condition (10) follows from the Lyapunov
condition (11), but not vice versa.

Note that fulfilling the conditions of the Lindenberg and Lyapunov theorems is only
sufficient to satisfy the requirement of independence and not the identical distribution of
random variables.

A special case of Lyapunov’s theorem is the Bates theorems [55] on the continuous
probability distribution of the mean of independent uniformly distributed random variables
on the unit interval and the Irwin–Hall theorems [56,57] on the continuous probability
distribution for the sum of independent and identically distributed random variables.
These theorems also tend to have a normal distribution.

Applying Lyapunov’s theorem to the sum Sn ≡ ∑n
i=1 Xi, we find that Sn will approach

the normal distribution. The summation is performed per each element of Xi, and Sn will
also have 10,242 elements. Due to the trend to the normal distribution, the maximum
values at the right tail of the distribution (as well as the minimum values in the left tail)
will have a relatively low probability. For example, if the extremum is greater than 3σ,
where σ is the variance of this normal distribution, then the probability of encountering
these values will be 0.27%. In other words, if we have a large sample from the population
of all sums Sn, then the number of extremes in the sample above 3σ will be approximately
0.27%. There are 10,242 points in our set. This means that 99.73% of values will be expected
to be less than 3σ in both directions, and approximately no more than 30 values are greater
than 3σ. The matching algorithm will use these 30 longest vectors (and the corresponding
pyramids—triplets of non-coplanar vectors in steps A5 and A6).

Note that the longest vectors among the extrema can be located not only on the right
tail of the Sn distribution but also on the left tail since the terms f (i)(θ, φ) can also take
negative values and the local minima of the sum f (θ, φ) can turn out to be negative in
value but rather large by the absolute value and, therefore, enter the constructed convex
hull based on the known functional property

max f = −min(− f ).

In the case of a continuous function on a sphere, the extrema of function f built for
object O1 will correspond to the extrema of function g built for object O2 as rotation of
O1. The first vector from the list of the extrema of f must have the same length as the
first vector from g. However, when the function is sampled on a grid, the extrema of
continuous functions are not necessarily located precisely at the grid nodes. Therefore, all
grid calculations are performed with a certain error, and extrema for f and g may differ
from each other due to the choice of sampling nodes. This is the reason behind checking
several vectors’ triplets for the solution and choosing the one with the best correspondence.

If a grid on the sphere surfaces is not dense (for example, containing only 100 nodes),
the possible error of calculation of the extrema is significant. In such a case, even an
exhaustive search on all possible triplets of vectors does not ensure obtaining the correct
answer with an acceptable error. For this reason, we use a relatively dense grid.

We realize that in the discussion above, our assumption of the independence of Xi
is hardly realistic, but at this stage of the presentation, it is only performed to explain the
basis of actions, such as why the idea to sum partial reconstruction functions on all the
shells has appeared and where the limited number of steps to finalize the analysis could
potentially come from.
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The mentioned results about the trend to normal distribution will not only be valid
under the assumption of independence of the random variables Xi (Xi corresponds to
the spherical functions fi), as in Lyapunov’s theorem formulation. In recent decades,
Lyapunov’s theorem has also been proven for some classes of dependent random variables,
so the trend to normal distribution will also be held for more general cases. Examples of
such classes might be the following:

1. Martingale differences [58–60];
2. m-dependent and α-mixing sequences, such as [54], pp. 387–388, and [61], pp. 773–774,

[62–64];
3. Mixing conditions [65–69].

The common feature for all these results is the following. The random variables
“far away” from each other are almost independent in a certain sense [70]. This happens
for the parts of the object under the assumption that these parts weakly depend on each
other. There are also classical results by Bruns, Markoff, S. Bernstein, P. Lévy, and Loéve
(see [71–74] (chapter VIII)) for dependent random variables. The formulated conditions of
these theorems are either very strict or include conditional distributions, which makes their
application difficult.

These results are also aligned with the statistical extreme value theory (EVT) [75]
(chapter 3) [76]. Both the central limit theorem and the theory of extreme values allow us to
estimate the probability of a rare event. This event can be the result of the accumulation of
many events or be only one event exceeding some critical threshold [76]. Unfortunately,
for these theories, the essential requirement is the identical and independent distribution
(i.i.d.) of random variables.

The SDF functions corresponding to the spheres cutting the surface are the distance
functions. The SDF is continuous by polar angles and the radius. This means that the
neighboring spheres at the points with the same angular coordinates cannot differ by an
arbitrarily large value. Therefore, the respective values of SDF functions on spheres are
dependent.

In [77], the case of extreme value theory for dependent random variables was consid-
ered. It was shown that if the variables are not identically distributed or are dependent,
the result is similar to the case of independent identically distributed random variables.
However, as usual, the result relies on very restrictive conditions. Checking the feasibility
of these conditions is also a non-obvious and sometimes non-formalized process.

3.10. Method 2: Multiplication Rule of Probability and Chebyshev’s Inequality

Let us assume that we have a random value distributed at the segment [a, b] and
also a random sample of this distribution. Let us call the significant extrema those that
correspond to the leftmost (rightmost) bin in the histogram, and the length of each bin is
½ * 0.27% of the length of the segment [a, b]. This arrangement arises from the following
considerations. For the normal distribution, the part of the distribution outside the 3σ
interval should contain approximately 0.27% of the whole distribution. If we take the
uniform distribution at segment [a, b], these last bins are expected to receive the same
0.27% of the overall samples. Later, to map the 3D objects, we will only consider the
extrema from these last bins.

Let us explore another way to show that the number of significant extrema of sum-
mation of two spherical functions will not increase compared to the number of significant
extrema of each function. This consideration is based on the probability multiplication
theorem and does not even require a Gaussian assumption.

Since the same number of nodes (namely, 10,242) is used on each of n spheres, we
divide all intervals,

[
f (i)min, f (i)max

]
and i = 1, . . . , n, by the same constant number Nbin of bins.

Let P(Xi) be the probability of the random variable Xi to be a significant maximum, i.e., to
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get into the rightmost bin
[

f (i)max −
(

f (i)max − f (i)min

)
/Nbin, f (i)max

]
or to the leftmost one. Let us

reiterate that the length of both bins is 0.27% of the length of segment
[

f (i)min, f (i)max

]
.

According to the multiplication rule of probability, we have P(X1X2) = P(X1)PX1(X2),
where P(X1X2) is the probability of occurrence of both events, i.e., the probability that the
sum ( f 1 + f2) is the significant maximum, and it includes the significant maxima for f1
and f2. PX1(X2) is the conditional probability of X1 occurring given that X2 occurs, i.e.,
the probability of a point on the sphere to be a significant maximum of f1, when f2 is a
also significant maximum. In the case of independent random variables X1 and X2, the
conditional probability is PX1(X2) = P(X2). As we see, in any case, it turns out to be
P(X1X2) ≤ P(X1) since PX1(X2) ≤ 1. On the other hand, P(X1X2) = P(X2)PX2(X1) and
P(X1X2) ≤ P(X2), thus

P(X1X2) ≤ min{P(X1), P(X2)}.

By induction, a similar conclusion can be drawn for n random variables as follows:

P(X1X2 · · · Xn) ≤ min{P(X1), . . . , P(Xn)}. (12)

Due to the multiplication rule of probabilities

P(X1X2 · · · Xn) = P(X1)PX1(X2)PX1X2(X3) · · · PX1···Xn−1(Xn).

Formula (12) only shows a non-increase of the number of significant extrema in the
sum and does not provide a quantitative assessment.

For significant minima, the same considerations are valid.
Chebyshev’s inequality allows us to quantify the probabilities P(X1), . . ., P(Xn) as

being significant extrema in (12).

Chebyshev’s Inequality. If a random variable X has expectation E[X] and variance D[X], then
the inequality holds for any ε > 0

P(|X − E[X]| > ε) ≤ D[X]

ε2 .

If we consider the sum Sn from Method 1 as a random variable X (without any
assumptions about the dependence or independence of its terms), then, we estimate the
probability that the deviation of this quantity Sn from its expectation E[Sn] will be more
than three standard deviations in absolute value.

We have D[Sn] = σ2 and ε = 3σ; then, according to Chebyshev’s inequality

P(|Sn − E[Sn]| > 3σ) ≤ D[X]

ε2 ≤ σ2

(3σ)2 =
1
9

.

This estimate is not really helpful in practice as it corresponds to the worst-case
scenario.

From the two approaches described above, we see that the weaker the restrictions
imposed on the class of random variables, the rougher (less accurate) the theoretical
estimates are.

For this reason, we decided to analyze the actual data statistics and compare how close
they are to the theoretical results (see Section 4).

4. Results and Discussion

We use a dataset out of 1309 STL files collected from ShapeNet (The Princeton Shape
Benchmark (PSB), Version 1) [78,79], Princeton ModelNet 40-Class Subset [80], Purdue
Engineering Shape Benchmark (ESB) [81], and internet websites. Every model used has a
correct geometry.
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The extrema amplification process described in Section 3.10 (Method 2) generates the
most prominent extrema. The amplification includes summation, which is performed per
node for all the shells, looking for the extrema and saddle points, and building the convex
hull using those points. We expect that the sum assumes a certain amount of independence
of the multiple components (as discussed in Section 3.9 (Method 1)).

We ran the method described on the database of 3D objects for 1309 objects. It was
found that in 94% of cases, the first attempt (performed by steps A5–A7 of the algorithm)
to align the objects using the amplified extrema was immediately successful. Five attempts
were enough to achieve 99% success. The maximum number of attempts was set to 30, and
it allowed us to find the solution in all the cases.

Let us find the rationale for this small number of attempts to find the solution.
For each object of the dataset mentioned, we calculate the values

fspread = ∑n
i=1

∣∣∣∣∣∼f (i)max −
∼
f
(i)

min

∣∣∣∣∣, ∼
f spread =

∣∣∣∣∼f max −
∼
f min

∣∣∣∣
The first one is the sum of the spreads of functions

∼
f
(i)

defined by (1), and the second

one is the spread of the final sum
∼
f ; see Formula (2).

Let us consider the ratio
∼
f spread/ fspread for the objects of the dataset. It turned out

that the expectation and variance of this ratio are 0.90 and 0.08, respectively. It can be
interpreted that in 90 percent of cases, there is at least one extremum on each sphere with
the same angular coordinates.

The total number of extrema points in the last bins near
∼
f max and

∼
f min appeared

following two trends. If the object does not have symmetrical (repeatable) parts, the
number of points in the last bins is less than 30 on average. It corresponds to approximately
0.27% of all the points (recall that we use an icosphere with 10,242 vertices).

The second trend manifests itself when the number of points in the last bins is relatively
high, and this number can come to above two hundred. This situation appears when some
parts of the object are similar or the object has some symmetry (for example, rotational
symmetry). These symmetrical/similar parts may contribute a large number of extrema
points of the convex hull to the last bins. This trend appears when all right-part probabilities
are high in inequality (12). If there is some rotational self-similarity of the object, this number
of extrema could be rather large, but all these extrema will define the same transformation
of the 3D objects.

From this reasoning, in both cases, we have to try matching only a limited number of
the extrema to check the object mapping. The results of running the method on a dataset
demonstrate that a few attempts to match the objects (steps A5–A7) are enough to conclude
whether the object is the same or different.

Due to grid sampling of the square-integrable functions f and g from (4), the matching
could have some errors, and the best matching using metrics M1 and M2 (step A7) will
define the best acceptable solution (if found).

We propose an algorithm to identify similar objects. It is a non-iterative and non-
gradient method of optimization. The current state-of-the-art mapping algorithms are the
ICP and Go-ICP.

For complex shapes with many local extrema and tens or hundreds of thousands of
vertices, the ICP might be much more time consuming (say, 3 min vs. 30 s of our algorithm)
and sometimes stuck in the local quasi-optimal solution (yellow and blue shapes do not
match each other’s after rotation found by the ICP, Figure 3).
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Two algorithms (the ICP and ours) use different approaches to search for optimal
mapping. Our approach is based on structural correspondences of spherical harmonics. It
will not catch and, hence, not align the elements that are described by spherical harmonics
of high degrees (greater than Lmax). The idea to stop at Lmax is based on the following
rationale. We work with a grid, and the errors in calculating coefficients for higher degrees
are affected by the errors made for coefficients of lower degrees.

The accuracy of our algorithm and the ICP is analyzed in the following way.
Initially, we mapped both objects into the sphere of radius 16. The center of the sphere

is the centroid of the object’s surface, and the farthest from the centroid point of the object
mesh lies on the sphere’s surface.

When we look for the mapping of two objects as input data for the ICP algorithm,
we use the point cloud, which contains all the mesh vertices. The number of vertices in
the point cloud may reach millions. The mapping error is the average of all the distances
from the mesh vertices of the first object to the surface of the second object after mapping.
Suppose the ICP is converged to the global extremum. In that case, the average mapping
error is usually small, around 10−9 and less, and running time, on average, is around
0.18 s (we used Open3D implementation of the ICP). If the ICP converged to the incorrect
optimum, the error could be arbitrarily huge, and the time to complete the run could reach
up to 30 min for huge STL files (Figure 3, top and middle row examples).

For our algorithm implementation, the computation time varies from 8 s for relatively
not very complex meshes (<50,000 vertices) to below a minute for a huge mesh with more
than 1M vertices. This time includes reading the STL file of the model, which could reach a
hundred megabytes and even gigabytes in size.

To compare the ICP and our method, we chose the Princeton dataset [78] and a
threshold of 0.14 for the maximum mapping error ME (Table 1). This threshold is an
average value for ME for the dataset [78] when using our approach. It divides the dataset
approximately by half. For 53% of the objects in the dataset, the ICP has the maximum ME
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below this threshold, and other cases demonstrate relatively high errors. Suppose we do
not consider these two datasets separately. In that case, the error received in the second
case can make the average error of the ICP method extremely high despite great accuracy
for the other half of the data samples.

Table 1. ICP vs. our algorithm. The threshold for maximum ME is 0.14. It divides the dataset [78]
into two parts. For ME, the mean value (avg), standard deviation (std), and maximum (max) are
calculated for all the considered datasets. Also, the average and the maximum time to process 3D
objects by the algorithm (in seconds) are provided. The ICP statistics are given for the whole dataset
and parts of the dataset with maximum mapping error max(ME) ≤ 0.14 and max(ME) > 0.14. The
part of the considered dataset is provided in the column named “% of data”.

Description Mapping Error Time to Run % Of Data

Avg Std Max Avg Max

Our algorithm 0.14 0.07 2.98 8 51.7 100

ICP (whole dataset) 1.30 0.82 16.52 0.18 5.47 100

ICP for max(ME) ≤ 0.14 6 × 10−4 4.6 × 10−3 0.13 0.18 5.47 53

ICP for max(ME) > 0.14 2.73 2.06 16.52 0.18 2.79 47

Table 1 shows that our algorithm gave an average error (average distance to the
surface) below 0.2 with a standard deviation of this value of less than 0.1. The maximum
point-wise deviation for the whole dataset used was below 3. We can see that if we
compare our approach with the ICP for the entire dataset, our method looks more accurate.
Unfortunately, this commonly accepted type of analysis does not consider that the ICP has
two clusters with different behaviors, as Table 1 shows.

Methods with the same setting should be considered to compare the accuracy and
efficiency of different approaches correctly. That is why we checked the validity of our
algorithm by comparing it with the ICP (which performs a mapping of point clouds and not
subsampled data, as neural networks do; see Section 4.1). The ICP appeared to be the best
method for comparison, but unfortunately, the settings of both methods are not perfectly
the same. The ICP does the mapping of the point clouds to find the best mapping. Our
method task is either to find a rigid transformation of two objects or to reject the identity
of these objects. Let us see how different the solutions are received. Assume we have two
objects, as shown in Figure 4a,b. The ICP method provides the mapping shown in Figure 4c.
It maps the animal bodies and ignores the failure to map the absent fangs of cat (b) to cat
(a). Our algorithm finds that both objects are not identical and stops processing.
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both models.

4.1. Deep Learning Approach vs. Statistical Analytical Approach

The review of the current deep learning approaches shows they have definite con-
straints. As an example of a deep learning approach, let us consider the ICCV 2019 paper
by Wang and Solomon [43]. It describes a non-iterative and non-gradient method based
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on applying deep learning. The deep learning model should be trained on a dataset of 3D
objects, and later, the transformation to map the objects will be produced.

In the mentioned manuscript, the following are pointed out:

• Current deep learning networks can only handle object-level point clouds (each usually
has around 500 to 5000 points); this is a common limitation of recent point cloud
learning methods.

• The deep learning model can be improved by iteration or “polishing” via the classical
ICP (iterative closest point algorithm).

• The deep learning model is trained on some input data. The application of the method
to unseen categories of objects shows a sharp drop in accuracy.

• The extraction of the rigid motion is performed by solving 3 × 3 SVD eigenproblems.
This solution might be unstable due to the multiplicity of eigenvalues and sensitivity
to outliers, as was shown by Kazhdan [13] (Appendix B).

Usually, the proposed method is compared with the state-of-the-art ICP method and
its modification, the Go-ICP method [36]. The ICP method may converge to the global or
local extremum. The convergence to the local extremum could show a huge discrepancy
with the ground truth solution. Calculation of the average accuracy of converged and
non-converged (local extremum convergence) cases could show the inferiority of the ICP,
even if it has higher or comparable accuracy in an overwhelming majority of all the cases
in comparison with the deep learning method. We think the accuracy should be calculated
separately for the category of globally converged data, with the percentage of locally
converged cases in the dataset mentioned.

We would like to mention the following:

• Our algorithm does not depend on the end-to-end trained model, and we propose a
solution based on a statistical analytical approach.

• It does not matter to our algorithm which class of objects it uses; its accuracy does not
depend on whether it has seen this class before.

• Our algorithm was able to process 3D models with tens of millions of vertices and
find global extrema, even when the ICP cannot, and the memory requirements for a
deep learning approach are excessive.

• It considers the internal architecture of the object, not only the tiny amount of sur-
face points.

• Our algorithm does not use a voxel representation of the object; this representation may
result in the removal of the fine details of the object and would make the surface rough.
The proposed approach to finding extrema statistically by summating random values
is not among classical techniques or modification of the known approaches; to the best
of our knowledge, it has not been used before by anyone.

Summarizing the abovementioned, we can conclude the following.
The data preparation for neural network processing requires either voxelization of the

object inside the box with a limited number of overall voxels or choosing a limited subset
of points to represent the object (usually around 1 K points only). We work directly with
the mesh of thousands, and even millions of vertices, and subsampling of this mesh would
affect the accuracy of mapping objects with fine details and complex internal structures.
Additionally, the comparison result would significantly depend on the choice of these
1 K points. That is why our approach cannot be directly compared to the neural network
approaches.

4.2. Cases When Our Approach Does Not Work

It would be naïve to assume that this method would work in all the cases. We found
that when the object’s surface has many superficial details, which mainly look like a texture,
our method may generate the transformation corresponding to substandard results; see
Figure 5, top and bottom rows. The issue, likely, is in a large number of components at the
surface of the object. The number of degrees Lmax = 10 used for reconstruction is probably
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not enough to catch the correct alignment of a large number of similar components. In
support of this claim, we can refer to Figure 5, a bottom left cell with a stress ball, where
the alignment is acceptable, likely due to the not-so-big number of repeated components.
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Figure 5. Examples when the mapping calculated by the method proposed is substandard. In each
row, the (right) figure is the target, and the (left) is the result of the mapping of rotated green and
original red objects. (top) Dragon egg—the surface components (spirally arranged scales) are not
aligned. (bottom) Tablecloth—the holes of the objects are rotationally misaligned.

4.3. Advantages of Our Method

In our work, we followed up and further developed the ideas described in [7,13,15,16].
In these works, the voxelization of the surface is considered, and the approach is based
on the expansion of the indicator function defined on each concentric sphere crossing the
surface into a sum of spherical harmonics. The value of the indicator function on the
corresponding sphere is 1 if there is an intersection with the surface and 0 otherwise. For
the partial reconstruction of discontinuous function by its spherical coefficients, in addition
to computational errors associated with surface voxelization and sampling the function
on a grid, the Gibbs effect takes place in [82] (chapter 4). This effect manifested near the
discontinuity point of a function [83] as a jump in the sum of its Fourier series, which
exceeds the jump of discontinuity of the function itself by 17.9%. In contrast, in our work,
we consider the triangular surface of the object, not voxels, and only continuous functions
f (i)(θ, φ) defined on the concentric spheres are used. Their sum f (θ, φ) = ∑n

i=1 f (i)(θ, φ)
will also be a continuous function as the sum of a finite number of continuous functions.

Modifications made in our approach allow us to improve the accuracy of the identi-
fication. The summation of partial reconstructions at the grid nodes over the concentric
spheres allows us to obtain the final grid. After summation over all spheres, the extrema
on each sphere become even more prominent among the other sum values on the grid.
We find the extrema and saddle points on this grid and build a convex hull on the found
points. When we look for the mapping to match both 3D objects, we try to map the essential
extrema of the respective objects. The amplification of the extrema causes a reduction in
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the number of mappings to check, so the final result is obtained in a limited (fixed) number
of steps without calculation of the gradient.

5. Conclusions

We propose a non-gradient and non-iterative method to map two 3D objects. The
statistical analytical method is based on amplifying extrema by summating dependent
random values. As a result, a limited number of extrema matchings is obtained. This allows
us to identify whether objects are different or the same and to find the transformation
matrix in the last case just by checking a very limited number of candidates to be the
solution. The method works for objects having millions of vertices and does not require
subsampling to the range of several thousand vertices or voxelization as deep learning
methods require. It works for all types of objects without the necessity to train the algorithm
for some specific class. We hope that the method presented could be extended to other
optimization problems.

Author Contributions: Conceptualization, I.V. and H.B.; investigation, methodology, writing original
draft, review & editing, I.V., S.K., A.M. and H.B.; project administration, I.V. and H.B.; data curation,
formal analysis, software, validation, I.V., S.K. and A.M.; supervision, funding acquisition, H.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This study is supported under the RIE2020 Industry Alignment Fund—Industry Collabora-
tion Projects (IAF-ICP) Funding Initiative, as well as by cash and in-kind contributions from industry
partner HP Inc. through the HP-NTU Digital Manufacturing Corporate Lab.

Data Availability Statement: The original data presented in the study are openly available
in [34,42,43,78–81].

Conflicts of Interest: The authors declare that this study received funding from HP Inc. The funder
was not involved in the study design, collection, analysis, interpretation of data, the writing of this
article, or the decision to submit it for publication. In addition, Helen Balinsky is employed by HP
Inc. The remaining authors declare that the research was conducted in the absence of any commercial
or financial relationships that could be construed as potential conflicts of interest.

References
1. Bustos, B.; Keim, D.; Saupe, D.; Schreck, T.; Vranic, D. An experimental comparison of feature-based 3D retrieval methods. In

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004, Thessaloniki,
Greece, 9 September 2004; pp. 215–222. [CrossRef]

2. Tangelder, J.W.; Veltkamp, R.C. A survey of content based 3D shape retrieval methods. Multimed. Tools Appl. 2004, 9, 441–471.
[CrossRef]

3. Besl, P.J.; McKay, N.D. A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256.
[CrossRef]

4. Zhang, J.; Yao, Y.; Deng, B. Fast and robust iterative closest point. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3450–3466.
[CrossRef] [PubMed]

5. Osada, R.; Funkhouser, T.; Chazelle, B.; Dobkin, D. Matching 3D models with shape distributions. In Proceedings of the
Proceedings International Conference on Shape Modeling and Applications, Genova, Italy, 7–11 May 2001; pp. 54–166. [CrossRef]

6. Zhang, F.; Zhang, L.; He, T.; Sun, Y.; Zhao, S.; Zhang, Y.; Zhao, X.; Zhao, W. An overlap estimation guided feature metric approach
for real point cloud registration. Comput. Graph. 2024, 119, 103883. [CrossRef]

7. Funkhouser, T.A.; Min, P.; Kazhdan, M.M.; Chen, J.; Halderman, J.A.; Dobkin, D.P.; Jacobs, D.P. A search engine for 3D models.
ACM Trans. Graph. 2003, 22, 83–105. [CrossRef]

8. Qi, C.R.; Su, H.; Nießner, M.; Dai, A.; Yan, M.; Guibas, L.J. Volumetric and multi-view CNNs for object classification on 3D data.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30
June 2016; pp. 5648–5656. [CrossRef]

9. Gao, Z.; Shao, Y.; Guan, W.; Liu, M.; Cheng, Z.; Chen, S. A novel patch convolutional neural network for view-based 3D model
retrieval. In Proceedings of the 29th ACM International Conference on Multimedia, Need York, NY, USA, 20 October 2021;
pp. 2699–2707.

10. Cheng, X.; Liu, X.; Li, J.; Zhou, W. Deep learning-based point cloud registration: A comprehensive investigation. Int. J. Remote
Sens. 2024, 45, 3412–3442. [CrossRef]

11. Elad, M.; Tal, A.; Ar, S. Content based retrieval of VRML objects: An iterative and interactive approach. In EG Multimedia;
Springer: Vienna, Austria, 2001; pp. 97–108. [CrossRef]

https://doi.org/10.1109/TDPVT.2004.1335197
https://doi.org/10.1007/s11042-007-0181-0
https://doi.org/10.1109/34.121791
https://doi.org/10.1109/TPAMI.2021.3054619
https://www.ncbi.nlm.nih.gov/pubmed/33497327
https://doi.org/10.1109/SMA.2001.923386
https://doi.org/10.1016/j.cag.2024.01.010
https://doi.org/10.1145/588272.588279
https://doi.org/10.1109/CVPR.2016.609
https://doi.org/10.1080/01431161.2024.2343434
https://doi.org/10.2312/EGMM/egmm01/107-118


Algorithms 2024, 17, 248 23 of 25

12. Horn, B.K.P. Extended Gaussian images. Proc. IEEE 1984, 72, 1671–1686. [CrossRef]
13. Kazhdan, M.M.; Funkhouser, T.A.; Rusinkiewicz, S.M. Rotation invariant spherical harmonic representation of 3D shape

descriptors. Eurographics Symp. Geom. Process. 2003, 6, 156–165. [CrossRef]
14. Ankerst, M.; Kastenmüller, G.; Kriegel, H.-P.; Seidl, T. 3D shape histograms for similarity search and classification in spatial

databases. In Advances in Spatial Databases, SSD 1999; Güting, R.H., Papadias, D., Lochovsky, F., Eds.; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1651, pp. 207–226.

15. Kazhdan, M.M.; Funkhouser, T.A. Harmonic 3D shape matching, International Conference on Computer Graphics and Interactive
Techniques. In Proceedings of the SIGGRAPH 2002, San Antonio, TX, USA, 21–26 July 2002; p. 191. [CrossRef]

16. Kazhdan, M.; Chazelle, B.; Dobkin, D.; Finkelstein, A.; Funkhouser, T. A reflective symmetry descriptor. In Computer Vision—ECCV
2002; Lecture Notes in Computer Science; Heyden, A., Sparr, G., Nielsen, M., Johansen, P., Eds.; Springer: Berlin/Heidelberg,
Germany, 2002; Volume 2351. [CrossRef]

17. Vranic, D.V.; Saupe, D.; Richter, J. Tools for 3D-object retrieval: Karhunen–Loeve transform and spherical harmonics. In
Proceedings of the 2001 IEEE Fourth Workshop on Multimedia Signal Processing (Cat. No.01TH8564), Cannes, France, 3–5
October 2001; pp. 293–298. [CrossRef]

18. Saupe, D.; Vranic, D.V. 3D Model retrieval with spherical harmonics and moments. In Proceedings of the Pattern Recognition,
23rd DAGM-Symposium, Munich, Germany, 12–14 September 2001; pp. 392–397. [CrossRef]

19. Kazhdan, M.M.; Funkhouser, T.A.; Rusinkiewicz, S.M. Symmetry descriptors and 3D shape matching. In Proceedings of the
Eurographics Symposium on Geometry Processing, Berlin, Germany, 15–17 July 2004. [CrossRef]

20. Papadakis, P.; Pratikakis, I.; Perantonis, S.J.; Theoharis, T. Efficient 3D shape matching and retrieval using a concrete radialized
spherical projection representation. Pattern Recognit. 2007, 40, 2437–2452. [CrossRef]

21. Papadakis, P.; Pratikakis, I.; Theoharis, T.; Perantonis, S.J. PANORAMA: A 3D shape descriptor based on panoramic views for
unsupervised 3D object retrieval. Int. J. Comput. Vis. 2010, 89, 177–192. [CrossRef]

22. Mousa, M.-H.; Chaine, R.; Akkouche, S.; Galin, E. Efficient spherical harmonics representation of 3D objects. In Proceedings
of the 15th Pacific Conference on Computer Graphics and Applications (PG’07), Maui, HI, USA, 29 October–2 November 2007;
pp. 248–255. [CrossRef]

23. Zarpalas, D.; Daras, P.; Axenopoulos, A.; Tzovaras, D.; Strintzis, M.G. 3D Model search and retrieval using the spherical trace
transform. EURASIP J. Adv. Signal Process 2007, 2006, 023912. [CrossRef]

24. Ziyang, C. Retrieval of 3D Models Based on Spherical Harmonics. In Proceedings of the 2010 International Conference on
Electrical and Control Engineering, Wuhan, China, 25–27 June 2010; pp. 2991–2994. [CrossRef]

25. Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. Sect. A 1976, 32, 922–923. [CrossRef]
26. Kabsch, W. A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallogr. Sect. A 1978, 34, 827–828.

[CrossRef]
27. Horn, B.K.; Hilden, H.M.; Negahdaripour, S. Closed-form solution of absolute orientation using orthonormal matrices. J. Opt. Soc.

Am. A 1988, 5, 1127–1135. [CrossRef]
28. Umeyama, S. Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach.

Intell. 1991, 13, 376–380. [CrossRef]
29. Makadia, A.; Daniilidis, K. Direct 3D-rotation estimation from spherical images via a generalized shift theorem. In Proceedings of

the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003.
[CrossRef]

30. Esteves, C.; Allen-Blanchette, C.; Makadia, A.; Daniilidis, K. Learning SO3 equivariant representations with spherical CNNs.
Intern. J. Comput. Vision. 2017, 128, 588–600. [CrossRef]

31. Salihu, D.; Steinbach, E.G. SGPCR: Spherical Gaussian point cloud representation and its application to object registration and
retrieval. In Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI,
USA, 2–7 January 2023; pp. 572–581. [CrossRef]

32. Wang, X.; Yin, Z.; Xiong, H.; Su, D.; Feng, Y. A spherical-harmonic-based approach to discrete element modeling of 3D irregular
particles. Intern. J. Numer. Methods Eng. 2021, 122, 5626–5655. [CrossRef]

33. Hobson, E.W. The Theory of Spherical and Ellipsoidal Harmonics; Chelsea: New York, NY, USA, 1965.
34. Chen, Y.-C.; Lin, C.-H.; Hsu, P.-C.; Chen, C.-H. Point cloud encoding for 3D building model retrieval. IEEE Trans. Multimed. 2014,

16, 337–345. [CrossRef]
35. Chen, Y.-C.; Lin, C.-H. Image-based airborne LiDAR point cloud encoding for 3D building model retrieval. ISPRS—Inter. Arch.

Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 1237–1242. [CrossRef]
36. Yang, J.; Li, H.; Campbell, D.; Jia, Y. Go-ICP: A globally optimal solution to 3D ICP point-set registration. IEEE Trans. Pattern Anal.

Mach. Intell. 2016, 38, 2241–2254. [CrossRef]
37. Locatelli, M.; Schoen, F. Global Optimization: Theory, Algorithms, and Applications; Saunders: Philadelphia, PA, USA, 2013. [CrossRef]
38. Locatelli, M.; Schoen, F. (Global) Optimization: Historical notes and recent developments. EURO J. Comput. Optim. 2021, 9,

100012. [CrossRef]
39. Spendley, W.; Hext, G.R.; Himsworth, F.R. Sequential application of simplex designs in optimisation and evolutionary operation.

Technometrics 1962, 4, 441–461. [CrossRef]

https://doi.org/10.1109/PROC.1984.13073
https://doi.org/10.2312/SGP/SGP03/156-165
https://doi.org/10.1145/1242073.1242204
https://doi.org/10.1007/3-540-47967-8_43
https://doi.org/10.1109/MMSP.2001.962749
https://doi.org/10.1007/3-540-45404-7_52
https://doi.org/10.1145/1057432.1057448
https://doi.org/10.1016/j.patcog.2006.12.026
https://doi.org/10.1007/s11263-009-0281-6
https://doi.org/10.1109/PG.2007.39
https://doi.org/10.1155/2007/23912
https://doi.org/10.1109/iCECE.2010.729
https://doi.org/10.1107/S0567739476001873
https://doi.org/10.1107/S0567739478001680
https://doi.org/10.1364/JOSAA.5.001127
https://doi.org/10.1109/34.88573
https://doi.org/10.1109/CVPR.2003.1211473
https://doi.org/10.1007/s11263-019-01220-1
https://doi.org/10.1109/WACV56688.2023.00064
https://doi.org/10.1002/nme.6766
https://doi.org/10.1109/TMM.2013.2286580
https://doi.org/10.5194/isprs-archives-XLI-B8-1237-2016
https://doi.org/10.1109/TPAMI.2015.2513405
https://doi.org/10.1137/1.9781611972672
https://doi.org/10.1016/j.ejco.2021.100012
https://doi.org/10.2307/1266283


Algorithms 2024, 17, 248 24 of 25

40. Powell, M.J.D. An efficient method for finding the minimum of a function of several variables without calculating derivatives.
Comput. J. 1964, 7, 155–162. [CrossRef]

41. Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
42. Powell, M.J.D. A direct search optimization method that models the objective and constraint functions by linear interpolation. In

Advances in Optimization and Numerical Analysis; Gomez, S., Hennart, J.-P., Eds.; Kluwer Academic: Dordrecht, The Netherlands,
1994; pp. 51–67.

43. Wang, Y.; Solomon, J. Deep Closest Point: Learning Representations for Point Cloud Registration. In Proceedings of the 2019
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 3522–3531. [CrossRef]

44. Wu, Y.; Liu, J.; Yuan, Y.; Hu, X.; Fan, X.; Tu, K.; Gong, M.; Miao, Q.; Ma, W. Correspondence-Free Point Cloud Registration Via
Feature Interaction and Dual Branch. IEEE Comput. Intell. Mag. 2023, 18, 66–79. [CrossRef]

45. Wu, Y.; Hu, X.; Zhang, Y.; Gong, M.; Ma, W.; Miao, Q. SACF-Net: Skip-attention based correspondence filtering network for point
cloud registration. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 3585–3595. [CrossRef]

46. Wu, Y.; Liu, J.; Gong, M.; Liu, Z.; Miao, Q.; Ma, W. MPCT: Multiscale Point Cloud Transformer with a Residual Network. IEEE
Trans. Multimed. 2024, 26, 3505–3516. [CrossRef]

47. Huang, X.; Qu, W.; Zuo, Y.; Fang, Y.; Zhao, X. IMFNet: Interpretable multimodal fusion for point cloud registration. IEEE Robot.
Autom. Lett. 2022, 7, 12323–12330. [CrossRef]

48. Pysdf 0.1.9. SDF: Convert Triangle Mesh to Continuous Signed Distance Function + Some Other Mesh Utilities. Available online:
https://pypi.org/project/pysdf/ (accessed on 9 October 2023).

49. Hardin, R.H.; Sloane, N.J.A. McLaren’s improved snub cube and other new spherical designs in three dimensions. Discret.
Comput. 1996, 15, 429–441. [CrossRef]

50. Fliege, J.; Maier, U. A Two-Stage Approach for Computing Cubature Formulae for the Sphere; Universitat Dortmund: Dortmund,
Germany, 1996.

51. Sun, C.; Sherrah, J. 3D symmetry detection using the extended Gaussian image. Pac. Asian Manag. Inst. 1997, 19, 164–168.
[CrossRef]

52. Wigner, E.P. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra; Academic Press: New York, NY, USA,
1959.

53. Penrose, R. A generalized inverse for matrices. Math. Proc. Camb. Philos. Soc. 1955, 51, 406–413. [CrossRef]
54. Billingsley, P. Probability and Measure. Wiley Series in Probability and Statistics, 3rd ed.; Wiley: New York, NY, USA, 2012; ISBN 0-

471-00710-2/978-1-118-12237-2.
55. Bates, G.E. Joint distributions of time intervals for the occurrence of successive accidents in a generalized Polya urn scheme. Ann.

Math. Stat. 1955, 26, 705–720. [CrossRef]
56. Irwin, J.O. On the frequency distribution of the means of samples from a population having any law of frequency with finite

moments, with special reference to Pearson’s type II. Biometrika 1927, 19, 225–239. [CrossRef]
57. Hall, P. The distribution of means for samples of size N drawn from a population in which the variate takes values between 0 and

1, all such values being equally probable. Biometrika 1927, 19, 240–245. [CrossRef]
58. Billingsley, P. The Lindeberg–Levy theorem for matringales. Proc. Am. Math. Soc. 1961, 12, 788–792. [CrossRef]
59. Ibragimov, I.A. A central limit theorem for a class of dependent random variables. Theor. Probab. Appl. 1963, 8, 83–89. [CrossRef]
60. Rosén, B. On the central limit theorem for sums of dependent random variables. Z. Für Wahrscheinlichkeitstheorie Und Verwandte

Geb. 1967, 7, 48–82. [CrossRef]
61. Hoeffding, W.; Robbins, H. The central limit theorem for dependent random variables. In The Collected Works of Wassily Hoeffding;

Fisher, N.I., Sen, P.K., Eds.; Springer Series in Statistics; Springer: New York, NY, USA, 1994. [CrossRef]
62. Berk, K.N. A central limit theorem for m-dependent random variables with unbounded m. Ann. Probab. 1973, 1, 352–354.

[CrossRef]
63. Diananda, P.H. The central limit theorem for m-dependent variables. Math. Proc. Camb. Philos. Soc. 1955, 51, 92–95. [CrossRef]
64. Shang, Y. A central limit theorem for randomly indexed m-dependent random variables. Filomat 2012, 26, 713–717. [CrossRef]
65. Rosenblatt, M. A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 1956, 42, 43–47. [CrossRef]
66. Bradley, R.C. Basic properties of strong mixing conditions: A survey and some open questions. Probab. Surv. 2005, 2, 107–144.

Available online: http://eudml.org/doc/223765 (accessed on 9 October 2023). [CrossRef]
67. Kaminski, M. Central limit theorem for certain classes of dependent random variables. Theory Prob. Its Appl. 2007, 51, 335–342.

[CrossRef]
68. Balan, R.; Zamfirescu, I.-M. Strong approximation for mixing sequences with infinite variance. Electron. Commun. Probab. 2006, 11,

11–23. [CrossRef]
69. Ould-Saïd, E.; Tatachak, A. Strong consistency rate for the kernel mode estimator under strong mixing hypothesis and left

truncation. Commun. Stat. 2009, 38, 1154–1169. [CrossRef]
70. Berkes, I.; Philipp, W. Limit theorems for mixing sequences without rate assumptions. Ann. Probab. 1998, 26, 805–831. [CrossRef]
71. Bernshtein, S.N. New applications of almost independent quantities. Izv. Akad. Nauk SSSR Ser. Mat. 1940, 4, 137–150.
72. Bernshtein, S.N. Sums of dependent variables, having mutually almost zero regression. Dokl. AN SSSR 1941, 32, 303–307.
73. Lévy, P. Théorie De l‘Addition Des Variables Aléatoires; Gauthier-Villars: Paris, France, 1937.

https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1093/COMJNL/7.4.308
https://doi.org/10.1109/ICCV.2019.00362
https://doi.org/10.1109/MCI.2023.3304144
https://doi.org/10.1109/TCSVT.2023.3237328
https://doi.org/10.1109/TMM.2023.3312855
https://doi.org/10.1109/LRA.2022.3214789
https://pypi.org/project/pysdf/
https://doi.org/10.1007/BF02711518
https://doi.org/10.1109/34.574800
https://doi.org/10.1017/S0305004100030401
https://doi.org/10.1214/aoms/1177728429
https://doi.org/10.1093/biomet/19.3-4.225
https://doi.org/10.1093/biomet/19.3-4.240
https://doi.org/10.2307/2034876
https://doi.org/10.1137/1108007
https://doi.org/10.1007/BF00532097
https://doi.org/10.1007/978-1-4612-0865-5_9
https://doi.org/10.1214/aop/1176996992
https://doi.org/10.1017/S0305004100029959
https://doi.org/10.2298/FIL1204713S
https://doi.org/10.1073/pnas.42.1.43
http://eudml.org/doc/223765
https://doi.org/10.1214/154957805100000104
https://doi.org/10.1137/S0040585X97982396
https://doi.org/10.1214/ECP.v11-1175
https://doi.org/10.1080/03610920802379169
https://doi.org/10.1214/aop/1022855651


Algorithms 2024, 17, 248 25 of 25

74. Loéve, M. Probability Theory, 3rd ed.; D. Van Nostrand Company, Inc.: Princeton, NJ, USA, 1963.
75. Jacob, M.; Neves, C.; Greetham, D.V. Forecasting and Assessing Risk of Individual Electricity Peaks, Mathematics of Planet Earth;

Springer: Cham, Switzerland, 2020; pp. 39–60. [CrossRef]
76. Gumbel, E. Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958. [CrossRef]
77. Zhang, R.-R.; Zhukovskii, M.E.; Isaev, M.; Rodionov, I.V. Extreme value theory for triangular arrays of dependent random

variables. Russ. Math. Surv. 2020, 75, 968–970. [CrossRef]
78. The Princeton Shape Benchmark. Available online: https://shape.cs.princeton.edu/benchmark/benchmark.pdf (accessed on 15

May 2023).
79. Shilane, P.; Min, P.; Kazhdan, M.M.; Funkhouser, T.A. The Princeton shape benchmark. In Proceedings of the Proceedings Shape

Modeling Applications 2004, Genova, Italy, 7–9 June 2004; Giannini, F., Pasko, A., Eds.; IEEE: Toulouse, France, 2004; pp. 167–178.
[CrossRef]

80. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3D ShapeNets: A deep representation for volumetric shapes. In
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June
2015; pp. 1912–1920. [CrossRef]

81. Jayanti, S.; Kalyanaraman, Y.; Iyer, N.; Ramani, K. Developing an engineering shape benchmark for CAD models. Comput. Aided
Design. 2006, 38, 939–953. [CrossRef]

82. Vretblad, A. Fourier Transforms. In Fourier Analysis and Its Applications; Axler, S., Gehring, F.W., Ribet, K.A., Eds.; Graduate Texts
in Mathematics; Springer: New York, NY, USA, 2003; Volume 223, Chapter 7; pp. 165–195. [CrossRef]

83. Mathews, J.; Walker, R.L.; Davidon, W.C. Mathematical methods of physics. Am. J. Phys. 1965, 33, 246. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-3-030-28669-9_3
https://doi.org/10.7312/gumb92958
https://doi.org/10.1070/RM9964
https://shape.cs.princeton.edu/benchmark/benchmark.pdf
https://doi.org/10.1109/SMI.2004.1314504
https://doi.org/10.1109/CVPR.2015.7298801
https://doi.org/10.1016/j.cad.2006.06.007
https://doi.org/10.1007/0-387-21723-1_7
https://doi.org/10.1119/1.1971408

	Introduction 
	Relevant Methods: State of the Art 
	Method 
	Spherical Harmonics 
	Numerical Calculation of Spherical Coefficients 
	Comparison of Two Objects: Optimization Function 
	Behind the Comparison: Usage of Spherical Harmonics as Structural Patterns 
	Non-Gradient Methods 
	Efficient Calculation of the Shortest Distance Function (SDF) 
	Building the Surface at Icosphere Nodes 
	Values of Function as Dependent Random Variables 
	Method 1: Central Limit Theorem 
	Method 2: Multiplication Rule of Probability and Chebyshev’s Inequality 

	Results and Discussion 
	Deep Learning Approach vs. Statistical Analytical Approach 
	Cases When Our Approach Does Not Work 
	Advantages of Our Method 

	Conclusions 
	References

