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Abstract: As social media platforms continue their exponential growth, so do the threats targeting
their security. Detecting disguised spam messages poses an immense challenge owing to the con-
stant evolution of tactics. This research investigates advanced artificial intelligence techniques to
significantly enhance multiplatform spam classification on Twitter and YouTube. The deep neural
networks we use are state-of-the-art. They are recurrent neural network architectures with long-
and short-term memory cells that are powered by both static and contextualized word embeddings.
Extensive comparative experiments precede rigorous hyperparameter tuning on the datasets. Results
reveal a profound impact of tailored, platform-specific AI techniques in combating sophisticated and
perpetually evolving threats. The key innovation lies in tailoring deep learning (DL) architectures
to leverage both intrinsic platform contexts and extrinsic contextual embeddings for strengthened
generalization. The results include consistent accuracy improvements of more than 10–15% in mul-
tisource datasets, unlocking actionable guidelines on optimal components of neural models, and
embedding strategies for cross-platform defense systems. Contextualized embeddings like BERT
and ELMo consistently outperform their noncontextualized counterparts. The standalone ELMo
model with logistic regression emerges as the top performer, attaining exceptional accuracy scores of
90% on Twitter and 94% on YouTube data. This signifies the immense potential of contextualized
language representations in capturing subtle semantic signals vital for identifying disguised spam.
As emerging adversarial attacks exploit human vulnerabilities, advancing defense strategies through
enhanced neural language understanding is imperative. We recommend that social media companies
and academic researchers build on contextualized language models to strengthen social media secu-
rity. This research approach demonstrates the immense potential of personalized, platform-specific
DL techniques to combat the continuously evolving threats that threaten social media security.

Keywords: online social network (OSNs); social network analysis; cybersecurity; spam detection;
neural word embeddings; RNN; contextual word embeddings; LSTM; BERT; EMLO

1. Introduction

The proliferation of spam has evolved from basic email campaigns to widespread
promotion of content across online social networks (OSNs). Fake accounts are created en
masse to disseminate spam posts and manipulate self-promotion [1]. Unlike email, OSN
posts contain multimedia—images, videos, URLs—alongside text. Generating impactful
posts demands significant effort; hence, spammers aggressively reuse content to target
more users.

However, most detection methods focus narrowly on post text, account activity pat-
terns, and simplistic metadata like followers. Keyword frequency analysis techniques are

Appl. Sci. 2024, 14, 2254. https://doi.org/10.3390/app14062254 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14062254
https://doi.org/10.3390/app14062254
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6322-3795
https://orcid.org/0000-0002-5096-9405
https://orcid.org/0000-0002-1506-7924
https://doi.org/10.3390/app14062254
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14062254?type=check_update&version=2


Appl. Sci. 2024, 14, 2254 2 of 25

easily fooled by word stuffing without considering semantic coherence, posting times, or
languages used [2]. After closely examining the limitations of existing methods against
evolving bot tactics, we identified the lack of robust feature engineering as a core research gap.

Empirical studies show over 30% of social media content is estimated as spam—far
higher engagement than email [3]. Spam click-through rates exceeding 0.13% demonstrate
the scale and sophistication of organized campaigns tailored to exploit OSN vulnerabili-
ties [4]. This ever-adapting threat landscape poses significant challenges for identification
methods to keep pace.

Our work looks to bridge these gaps through state-of-the-art natural language pro-
cessing techniques for enriched semantic modeling—a crucial capability for uncovering
disguised and context-aware spam. We focus on robust representation learning rather than
superficial features to tackle the root cause. This issue has a significant impact on the user
experience and can be challenging to deal with due to the ever-changing nature of new
tactics and the increasing complexity of evolving spam. Therefore, the current DL methods
are facing challenges in identifying social spam and keeping up with the ever-growing
complexity of evolving spam [5]. The most proficient spam campaigns have a notable
economic aspect that engages in questionable tactics to boost website traffic and generate
false promotional results, leading to significant financial repercussions that present a multi-
faceted threat that impacts internet users globally, and search engine optimization (SEO)
can be seen clearly, posing challenges for providers of these services and affecting search
results too.

Dealing with spam on social media is a challenging task due to the constantly evolving
tactics used by spammers. In this dynamic landscape, the fight against spam detection
becomes an ongoing challenge that requires a continuous adaptation of defensive strate-
gies to keep up with the sophisticated and inventive tactics employed by spammers [6].
Traditional word vectors often struggle to capture the complexities and different meanings
words can have in different situations, which is crucial for identifying subtle and cleverly
disguised spam. Accurately modeling the semantic context can be quite challenging when
using these vectors [7,8]. DL models that can seamlessly adapt to different social media
platforms present their own set of complexities, unique characteristics, and user behaviors,
requiring models that can easily adapt and be flexible.

This study provides a novel comparative analysis of state-of-the-art contextualized
word embeddings (BERT, ELMo) against traditional noncontextualized word vectors
(Word2Vec, GloVe) for spam detection on social media platforms. Unlike previous works,
we evaluate these advanced NLP models on two distinct datasets: Twitter and YouTube
comments. We looked into an area that has not been studied much: How well contextu-
alized embeddings work on informal, noisy textual data from social networks. We also
compared standalone BERT and ELMo models against RNN-based (LSTM) architectures
for spam classification.

There is a lack of comprehensive labeled datasets available for training adaptable
spam detection models on various platforms, which are essential to training and improving
spam detection algorithms [9]. However, the limited availability of these resources presents
a significant obstacle when it comes to creating models that are highly efficient and widely
applicable [10]. Addressing these challenges is vital for improving spam detection methods
and maintaining the integrity and user experience of social media platforms [6]. We
performed a lot of tests to find the best model–embedding combinations. This answers
important questions about how contextualized representations work with various recurrent
networks. Therefore, the uniqueness of this research lies in its comprehensive analysis of
modern NLP techniques on evolving social media landscapes to advance spam detection
systems. We compare these methods with traditional ones to find out how much better
they are and how semantically rich embeddings can pick up on subtle spam behaviors on
platforms that are getting more complicated. The goal is to make progress in this important
area of cybersecurity. Several cybersecurity concerns can be addressed using DL methods
and algorithms, including phishing detection, malware identification and classification,



Appl. Sci. 2024, 14, 2254 3 of 25

intrusion detection, and spam identification. Spam websites are used to spread malware,
adult content, and phishing scams, and people spend time sorting through unwanted mail;
necessary e-mails may get deleted by mistake. As a result, spam wastes bandwidth, storage
space, and computing power, and it promotes a wide range of products and services,
resulting in illegal activity. Spam filters have been developed to identify and remove
undesirable messages utilizing techniques like keyword analysis and statistical algorithms.
Those who participate in spamming often discover methods to outsmart these filters that
depend on analyzing content [11]. The constant challenge of dealing with spam has driven
the development of increasingly sophisticated techniques for detection and prevention.
Spam filters have been developed to identify and remove undesirable messages utilizing
techniques such as keyword analysis and statistical algorithms [12,13]. Spammers often
discover methods to outsmart these filters that depend on analyzing content, making it a
constant challenge to deal with spam. Increasingly sophisticated techniques for detection
and prevention have been developed, such as content-based techniques and DL approaches
that examine the terms, frequency, and distribution of words and phrases in message
content [14].

Advanced techniques exist to analyze neighbor graphs, taking into account links
and metadata to identify and mitigate suspicious nodes and links. Hybrid techniques
combine content and metadata to achieve enhanced results, leveraging the strengths of
both approaches. These techniques involve analyzing spam text, which brings us into the
realm of natural language processing (NLP) [15]. Text classification is a popular application
of NLP, as discussed in research studies [16,17]. The main objective of this research paper
is to identify spam by categorizing text as either spam or nonspam (quality). NLP is
rapidly evolving; the description of the word in the text to be studied, regardless of the
type of problem to be solved, is one of the most essential pillars of NLP. Several ways have
emerged to give weight to the word within the text and thus the ability to deal with it as
a number that can be processed, compared, and elicit information; this transformation is
called word embedding. Static word embedding means that once the words are learned,
they do not change with the context. Handling the polysemy problem is challenging with
static embeddings due to their unchanging nature. The meaning of a polysemous word
can differ depending on the context. Dynamic embeddings, on the other hand, address
this issue by assigning varying weights to the same word in different contexts. These
dynamic embeddings, which come from language models that have already been trained,
have performed better on several natural language processing (NLP) tasks than their static
counterparts [18].

Many word embeddings have started to appear in the field, such as Word2vec [19]
and Glove [20], which deal with the meaning of the word. They are context-independent,
producing only one vector (embedding) for each word, combining all of the word’s different
senses into a single vector. BERT and ELMo are context-dependent and can generate differ-
ent word embeddings for the same word depending on its position in the context. These
models, trained on massive amounts of data, can significantly improve the performance of
a wide range of NLP problems. As vocabulary size determines vector size, this can lead
to lengthy, complex vectors that take up space and slow down algorithms. Moreover, em-
beddings are domain-specific and task-dependent, hindering transfer learning to a model
with a different vocabulary on the same scale. However, modifying the vocabulary requires
retraining the entire model from scratch. Therefore, contextual word embeddings become
crucial in addressing these challenges and capturing the contextual nuances of words.

BERT and ELMo are two cutting-edge models that use pretrained representations to
pick up on the semantic and syntactic information of words in different situations. This
lets them learn from each other and improve their performance [5]. We apply these models
to Twitter and YouTube data and compare them with older methods to find the best RNN
architectures for classifying spam. We also provide a detailed comparative analysis, offering
insights that could guide future efforts in spam detection and contribute to strengthening
cybersecurity measures on rapidly growing OSNs. Our main goal is to not only improve
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current methodologies but also to direct future research trajectories in spam detection
technologies. The key research questions explored are as follows:

• RQ1: Do contextualized embeddings (BERT, ELMo) outperform noncontextualized
word vectors (Word2Vec, GloVe) for detecting spam?

• RQ2: How do RNN models (LSTM) compare with standalone BERT and ELMo models
in terms of accuracy?

• RQ3: Which embedding technique and model combination achieves the highest
performance across metrics?

2. Background and Literature Review

In spam detection in social media, machine learning algorithms use the context of
words to identify spam messages. A known-word algorithm has words that are categorized
in their negative, positive, or neutral states. It works by classifying the contexts of words in
a message as of a certain category and assigning a score based on how many words fall into
these categories. Although these algorithms produce good predictions, especially in NLP
research, they are fraught with many false positives and negatives [21]. The "known-word”
algorithms in spam detection assess messages regarding some static known-word context
lists, which makes the method less context-relevant to social media. Limitations that the
known-word algorithms in spam detection face today include the inability to capture
known dynamic background user features, as well as the inability to update context when
a message receives feedback [22,23].

One of the most exciting trends in the current era is deep learning, which is of great
interest among scientists in scientific research. It has entered all fields and has offered
excellent contributions at all levels: economic, cultural, educational, etc. The evolution of
OSNs, specifically Twitter and Facebook, and their impact emphasize the significance of
current, context-dependent spam detection context. For example, more than 95% of Twitter
posts and comments are effectively spam-related. Moreover, a beginner will leverage
machine learning techniques to develop different learning-based engineering projects in
context-dependent spam detection [24].

Jain et al. [25] and Sedik et al. [26] proposed an innovative approach by enhancing
CNNs with a semantic layer (SCNN). Leveraging resources like Word2Vec, WordNet, and
ConceptNet, they achieved an impressive 98.65% accuracy on SMS and Twitter datasets.
However, despite this success, their model still faces limitations related to the scalability of
semantic resources and potential biases inherent in these knowledge bases. Building upon
their previous work, Jain et al. [27] conducted a subsequent study. This time, they combined
CNNs with LSTM architectures, incorporating knowledge bases such as WordNet and
ConceptNet. While their hybrid model demonstrated superior performance, it remains
sensitive to noisy or incomplete knowledge graphs. Additionally, the computational cost
of training such models can be prohibitive.

The need for effective textual encoding in spam detection is evident, with basic word
count vectors often falling short in semantic interpretation. Advances in neural word em-
beddings like BERT and ELMo have set new benchmarks in text encoding. Alom et al. [28]
showed a deep learning strategy that uses Twitter content and user metadata to perform bet-
ter than current methods, achieving 99.68% and 93.12% accuracy on two separate datasets.
The prevalence of social media platforms and the large number of content and users they
host present new challenges in detecting and stopping spam. In their study, Elakkiya
et al. (2021) introduced a fresh method for identifying spam by utilizing a blend of CNN
and BiLSTM models [29], bolstered by a conjoint attention mechanism [30]. The model
showcased impressive accuracy across a range of datasets, including those from Twitter
and YouTube. In the realm of burgeoning OSNs, the development of sophisticated spam
filters is imperative. Barushka et al. [3] used ensemble learning with deep neural networks,
outperforming traditional spam filtering algorithms. Sun et al. [31] proposed a real-time
Twitter spam detection system, integrating account- and content-based features, trained on
a large dataset of public tweets.
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2.1. NLP Models: RNN and LSTM

Utilizing LSTM for text classification in social media involves addressing the diverse
language styles and background noise found in data from various platforms. Various
methods such as Bidirectional LSTM, distributed LSTM, and the fusion of CNN with
LSTM have demonstrated potential in improving the comprehension of text semantics
and syntax for tasks such as sentiment analysis [32], spam detection, and mental health
evaluation. These models take advantage of the sequential nature of textual data to
effectively capture long-range dependencies; nevertheless, there are challenges related to
handling computational complexity and adjusting to the ever-changing language used on
social media platforms [33]. By combining contextual embeddings from advanced models
such as BERT with LSTM layers, a balance is achieved between model performance and
generalization, which emphasizes the current research focus on developing more robust
and adaptable text classification systems [34]. Figure 1 illustrates the concept of unrolling
a loop in the context of RNNs [35], showcasing their efficiency in modeling sequential
data, including textual content, with promising results; however, RNNs face challenges
when long-term memory is crucial for problem-solving, such as in scenarios requiring
the prediction of words in lengthy sentences where key information begins to fade as the
sequence progresses. This situation can lead to a significant increase in the gap between
necessary information and its point of use. As this gap widens, RNNs struggle to maintain
the connection between relevant data points, a problem attributed to their sensitivity to
vanishing and exploding gradients. To address these limitations, LSTM architectures
introduce memory blocks for sustained connections, where each block contains a cell that
holds a temporary state of the network within its memory, alongside dedicated structures
that regulate the flow of information, ensuring that LSTMs can remember important
information over longer sequences. Our work advances the field by addressing LSTM’s
inherent limitations through the integration of contextual embeddings and platform-specific
customizations, thus offering a more robust and adaptable solution for spam detection in
social media environments.

Figure 1. Unrolled RNN.

Khan et al. [36] presented standard feedforward neural networks, which have unidi-
rectional connections. LSTMs feature feedback connections that enable them to process
entire sequences of data, not just single data points. This design is specifically aimed at
tackling the vanishing gradient problem, a common challenge in traditional RNNs that
hampers their ability to recall information over extended periods, so LSTMs achieve this
through the integration of memory cells and three distinct gates: input, output, and forget
gates. These parts work together to control the flow of information, which lets the network
store data for any amount of time and makes LSTMs perfect for tasks that require sequences
of different lengths and long gaps between important events [37]. Consequently, LSTMs
have become a cornerstone in deep learning (DL) for effectively categorizing and processing
sequential and time-series data, overcoming the limitations associated with discharging
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and disappearing gradients that plagued earlier RNN models [29]. Tashtouth et al. [38]
and Al-Eidi et al. [39] discussed implementing cybersecurity systems and highlighted the
dual nature of technological advancements in cybersecurity, offering insights into both the
challenges and opportunities presented by novel attack vectors and defensive mechanisms.

When constructing our LSTM model, the initial phase entails deciding which compo-
nents of the cell state should be preserved or eliminated; therefore, our decision is facilitated
by the “forget gate layer”, which functions as a sigmoid layer. This evaluates the previous
hidden state, denoted by ht−1, and the current input, xt, to allocate a value ranging from 0
to 1 for each part of the cell state Ct−1. A value close to 1 suggests that the element should
be entirely retained (“keep it entirely”), whereas a value near 0 indicates that the element
should be fully discarded (“eliminate it”). Figure 2 depicts this selective retention and
elimination process.

Figure 2. LSTM: The first step and the second step.

The second stage involves determining the new information to be stored in the cell
state, which consists of two components. The “input gate layer”, which is a sigmoid
layer, initially identifies the values intended for updating. Subsequently, a Tanh layer
produces a vector of new candidate values Ct, which may be incorporated into the state.
The subsequent step involves merging these two components to formulate a state update.
The step is shown in Figure 2 on the right [40].

The third step is to update the previous cell state, Ct−1, to the new cell state, Ct, as
illustrated in Figure 3 on the left. The preceding steps have determined the necessary
actions; now, it is time to implement them. We start by multiplying the old state by ft,
effectively forgetting the elements we had previously decided to discard. Then, we add
it ∗ C̃t to this product. Here, C̃t represents the new candidate values, which are scaled by
the amount with which we decided to update each state value [40].

To finalize our LSTM model, determining the output is crucial; this output is essentially
a selectively filtered version of the cell state. A sigmoid layer evaluates which components
of the cell state are pertinent for the output, as depicted in Figure 3 on the right. Following
this, the cell state is passed through a Tanh function to normalize its values, and then it is
multiplied by the output of the sigmoid gate. This operation ensures that only the relevant
components, as identified by the sigmoid layer, are passed to the final output.
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Figure 3. LSTM: The third step and the fourth step.

2.2. Word Embeddings Vectors: ELMo and Gloves

Over the past few years, there has been a significant shift in the field of NLP due
to the introduction of groundbreaking linguistic models. In language processing, there
is an exciting shift happening away from traditional n-gram models and toward neural
networks [41]. These cutting-edge methods combine language modeling with feature
learning, which lets words be represented as numerical vectors. This transformation
streamlines and enhances data processing, forming the foundation for a powerful technique
known as word embeddings.

Enhanced representations have been suggested to improve social media spam detec-
tion beyond simple word embeddings. These representations merge knowledge graphs and
deep learning methods to classify social media posts according to established classification
models [41]. Through the process of extracting entities from brief posts and connecting
them to concepts in knowledge graphs, contextual knowledge is stored as vector repre-
sentations. These representations, combined with contextualized word embeddings, are
leveraged to create context-based representations of the posts, enhancing the dependability
of predictive models. Moreover, a combined method that incorporates data augmentation,
natural language processing, and supervised machine learning algorithms has been sug-
gested for identifying Twitter spam. This method utilizes word embedding techniques
and various machine learning algorithms like SVM, Naive Bayes, and logistic regression to
enhance the identification of Arabic spam on the Twitter platform [41].

Word embedding models use probability distributions to assign vectors to specific
words, predicting the likelihood that various tokens appear near the target word. These
models are popular in the current NLP community due to their effectiveness in en-
abling computations using numerical embeddings instead of textual sequences. Alhassun
et al. [42] presented a framework for detecting Arabic spam accounts on Twitter, employing
deep learning to analyze both text-based and metadata features, achieving a notable accu-
racy of 94.27%. This approach outperforms existing models and highlights the importance
of combining text and metadata for spam detection. However, the authors used only a
specific dataset that may not generalize across different languages or dialects, potential
issues with the robustness of spam detection and sarcasm recognition exist across varied
contexts, and the challenges of interpreting complex language nuances like irony or local
slang could mean that the models’ performance could be affected by dynamic changes in
social media communication patterns, requiring ongoing adaptation and re-evaluation.
Sharma et al. [37] introduced a hybrid ensemble model for sarcasm detection, integrating
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fuzzy logic with Word2Vec, GloVe, and BERT embeddings. It reports high accuracies
across different datasets, demonstrating the model’s efficacy in understanding the nuanced
language of sarcasm on social media. These studies collectively underscore the advance-
ment in utilizing complex models for nuanced social media content analysis, setting a
precedent for future research in similar domains. The authors did not address difficulties
in interpreting acronyms, slang, or diverse linguistic contexts, highlighting the limitations
of using a single NLP approach to handle the wide variety of material encountered on
social media platforms. These challenges underscore the need for advanced and adaptable
NLP techniques to accurately understand and classify complex language use in social
media content.

Word embeddings enable the numeric representation of words in a vector space by
encoding semantic meaning, which allows textual data to be processed computationally for
tasks like classification [43]. Popular techniques like Word2Vec [44] and GloVe [41] generate
embeddings by analyzing the linguistic contexts of words in large corpora. Word2Vec is
a significant advancement in the field of NLP, combining two well-known architectures:
continuous bag-of-words (CBOW) and skip-gram. These architectures have been designed
to streamline the computation of word-vector representations for optimal efficiency. The
use of these representations has proven to be highly valuable in a range of NLP applications,
including tasks like text prediction and classification [16,19,45]. However, being context-
independent, Word2Vec struggles with polysemy and falls short of capturing nuanced
semantic relationships. GloVe creates embeddings by directly leveraging statistics of word
co-occurrence in corpora [46]. Its core strength lies in effectively incorporating local context
and global co-occurrences for meaningful representations. However, it faces limitations
similar to Word2Vec when handling words with multiple contextual meanings.

Contextualized Word Embeddings BERT and ELMo

A significant development in the field of pretrained models is the Bidirectional Encoder
Representations from Transformers (BERT) model, which Google created and was first pre-
sented in 2018 by Jacob Devlin and his team [47]. Throughout the pretraining phase, BERT,
a language model, underwent an extensive training process. This required working with
a significant amount of unlabeled data, which included approximately 800 million words
from the BooksCorpus dataset and around 2500 million words from the English Wikipedia.
By leveraging intensive pretraining, BERT can effectively fine-tune smaller, domain-specific
datasets, resulting in improved performance for specific goals [48]. Although this approach
demands substantial computational resources, the benefits are worth it. There are two dif-
ferent configurations that define the availability of the English-language version of BERT.
BERT is a popular NLP model that comes in two configurations: BERTBASE and BERTLARGE.
BERTBASE has 12 encoders, each equipped with 12 bidirectional self-attention heads, while
BERTLARGE has 24 encoders, each equipped with 16 bidirectional self-attention heads. One
of the remarkable aspects of BERT is its exceptional performance as a contextual embedding
model [48]. It can comprehend words within their unique contexts and assign diverse
numerical representations accordingly. This understanding of BERT’s context enables it
to process words in a manner that depends on the context, allowing it to distinguish how
words are treated based on their role within sentences.

Yiming Qiu et al. (2022) [49] provided customized pretraining tasks for user intent
detection and semantic embedding retrieval in e-commerce search. The paper does not pro-
vide information about the development of the BERT model or its configurations. However,
BERT-style models may not work for corpora with different text from Wikipedia, and its
style of models may not work for tasks requiring specific embedding spatial distribution.

Serrano-Guerrero et al. (2024) [50] compared different BERT models for identifying
destructive content in social media, but they do not specifically discuss the relationship
between BERT models and social media. Their comparison of five BERT models for identi-
fying destructive content found the most effective architecture to have 96.99% accuracy.
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Recent breakthroughs in NLP have seen a shift from context-independent word vectors
towards deep contextualized models like ELMo [48], ULMFiT [51], and BERT. Built on
LSTM architectures, these representations model the semantic usage of words based on
the surrounding context. ELMo is a pretrained language model that has revolutionized
the field of NLP. It first underwent training using a sizable collection of 5.5 billion words,
and then a smaller version trained on 1 billion words [51]. ELMo uses big datasets to
make deeply contextualized word representations: (1) understanding the complicated
parts of language use, like syntax and semantics, and (2) telling the difference between
word meanings that change in different language contexts, like representing polysemy [52].
ELMo’s unique feature is its ability to understand context, allowing it to create distinct
representations for homonyms, i.e., words that share the same spelling but have different
meanings; therefore, it offers a unique approach compared with traditional models by
considering the entire input phrase, resulting in a more advanced understanding of word
usage [52]. The technology behind ELMo is a bidirectional LSTM (BiLSTM), which is trained
on large amounts of text using a language modeling method. BiLSTM efficiently analyzes
sentences and can predict word sequences in both directions by combining forward and
backward LSTM parts. This makes a two-way language model a useful tool for many
NLP applications because it uses BiLSTM processing to improve language comprehension
through word embeddings.

Santosh Kumar et al. (2023) [53] proposed an ML-based approach for spam detection
on social media and used various features and classifiers to distinguish spam messages
from legitimate ones. And, Akinyelu et al., (2021) [54] used ML for spam detection in
social networks, and the proposed Voting Classifier algorithm achieved a high classification
accuracy rate of 97.96%. Nevertheless, these studies concentrated on the English language,
while our study delves into the impact of contextualized embeddings such as ELMo for
detecting social media spam on various platforms such as Twitter and YouTube. The evalu-
ation offers recommendations on the best neural components for diverse informal content.
In addition, integrating platform-specialized LSTM models balances performance and
generalization ability while accommodating stylistic variations in real-world, nonstandard
text. Through a methodical analysis of cutting-edge representations and structures, our
approach provides valuable insights for implementing spam filtering systems.

In a nutshell, these previous studies have proposed that the still representation per-
forms very well in the discriminate spam study of content on social media and also in
real-time view analysis compared with any other form of context. These studies just scratch
the surface in trying to analyze the context in the contextual representation of social media
spam. Therefore, we need to reveal the critical factors in differentiating the contextual
representations from the contemporary representations, and subsequent implementation
of the results can help such industries in the fulfillment of user expectations and build a
secure environment through the benefits brought by contextualized study. This research
goes into the depths of the foundational works and later provides support to justify user
intention and also provides much-needed computational consideration.

3. Developing Models: NLP and Word Embeddings
3.1. Data Collection and Preprocessing

The two primary datasets are collected from Twitter, sourced from Kaggle, and
YouTube, comprising comments from the UCI DL Repository. Figure 4 includes con-
solidating segmented files in the datasets, lowering dataset sizes by decreasing the number
of rows, and removing extraneous columns. The data are subjected to a purification proce-
dure that involves eliminating stop words and punctuation, as well as standardizing label
types. The script is designed for a comparative analysis of various NLP models, with a
focus on text classification tasks. It utilizes LSTM, BERT, and ELMo models to classify text
data into categories (e.g., “Spam” vs. “Quality”).
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Figure 4. Research methodology.

Figure 4 shows the script encompasses data loading, preprocessing, model training,
and evaluation. Table 1 shows the loaded dataset that contains various features like
“Tweet”, “following”, “followers”, “actions”, “is_retweet”, “location”, and “Type”. The
“Type” column categorizes tweets into “Quality” or “Spam”, which could be the target
variable for our classification task. Table 2 shows the loaded dataset that contains various
features like comment_id, content, date, and class.

Table 1. Sample of Twitter Dataset.

ID Tweet Following Followers Actions Is Retweet Location Type

10091 It’s the everything else that’s complicated.
#. . . 0.0 11,500.0 NaN 0.0 Chicago Quality

10172 Eren sent a glare towards Mikasa then nodded
a. . . 0.0 0.0 NaN 0.0 NaN Quality

7012 I posted a new photo to Facebook http://fb.
me/. . . 0.0 0.0 NaN 0.0 Scotland, UK Quality

3697 #jan Idiot Chelsea Handler Diagnoses Trump
Wit. . . 3319.0 611.0 294.0 0.0 Atlanta, Ga Spam

10740 Pedophile Anthony Weiner is TERRIFIED of
Getti. . . 4840.0 1724.0 1522.0 0.0 Blumberg Spam

http://fb.me/
http://fb.me/
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Table 2. Sample of YouTube Dataset.

Comment_ID Author Content Date Class

z13lgffb5w3ddx1u

l22qy1wxspy5cpkz504 dharma pal Nice song 2015-05-
29T02:30:18.971000 1

z123dbgb0mqjfxbtz

22ucjc5jvzcv3ykj Tiza Arellano I love song 2015-05-
29T00:14:48.748000 0

z12quxxp2vutflkxv04

cihggzt2azl34pms0k Prìñçeśś Âliś Łøvê
Dømíñø Mâd̄iś™

I love song 2015-05-
28T21:00:08.607000 1

z12icv3ysqvlwth2c23

eddlykyqut5z1h Eric Gonzalez 860,000,000 lets make it first female to reach. . . 2015-05-
28T20:47:12.193000 0

z133stly3kete3tly22

petvwdpmghrlli Analena López shakira is best for worldcup 2015-05-
28T17:08:29.827000 0

Tables 1 and 2 involve meticulously preparing and preprocessing two essential
datasets, as referenced in the literature [30]. The initial datasets were specifically de-
signed for analyzing spam on Twitter. The preprocessing is performed with great attention
to detail to ensure the quality and reliability of the data, starting by removing unnecessary
columns and fixing any missing values. Following that, we proceed with the process of
standardizing the labels within the datasets, ensuring consistency across all data points to
ensure balanced data are a critical part of this stage, as they play a vital role in achieving
accurate and consistent results across various models. The cleaning step is involved as
a part of the preparation to remove unnecessary elements like URLs, stop words, and
punctuation marks, which have no impact on the model’s learning phase, as shown in
Algorithms 1 and 2. It involves dividing the data into two distinct sets: 80% is allocated
for training purposes, while the remaining 20% is reserved for evaluating the model’s
performance.

3.2. Data Tokenization and Sequence Padding

The textual data undergo vital preprocessing, where words are tokenized and padded
into sequences of fixed length to enable computational operations. This step comprises the
process of tokenizing textual data and applying padding. At this crucial point, known as
the embedding stage, words are converted into vector representations, making it easier
to perform numerical operations on textual data. This study employs a dual approach
to embedding by employing both context-independent approaches, like Word2Vec and
GloVe, and contextualized embeddings, such as BERT and ELMo. After the embedding
procedure, many models are carefully built and undergo a tough training routine. The
process involves assessing the efficacy of these algorithms in identifying spam. This
assessment will determine the most effective model used and will also include a comparison
with approaches described in earlier research. The following sections provide a thorough
analysis of each phase along with methodological insights.

We employed Python libraries in a cloud environment like Google Colab. The tensor-
flow_hub is used for accessing pretrained models such as ELMo, and Transformers is a
library by Hugging Face that provides interfaces for working with models like BERT. The
dataset is loaded into a DataFrame from a CSV file. This dataset is assumed to contain text
data and corresponding labels. Text data are labeled as “Tweet”, and labels are converted
from categorical to binary form (0 and 1). The dataset is then split into training and testing
sets, with 80% of the data used for training and 20% for testing.
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3.3. Embedding the Words

In this phase of our NLP pipeline, word embeddings play a pivotal role by converting
textual data into a numerical format that deep learning models can understand. An
embedding layer is utilized to transform each word in the dataset into a fixed-length
vector of a predetermined size. This vector represents the semantic significance of the word,
capturing both its meaning and its relationship with other words in the dataset. Every word
in the text is allocated a distinct numerical vector that represents its semantic significance.
The embedding layer in our model design enables the transformation of individual words
into fixed-length vectors of a predetermined size. This modification is crucial for the
following computational analysis: examining and using a range of embedding strategies,
each making a distinct contribution to the process of representing words. We explore a
variety of embedding techniques to best capture the nuances of language:

• The Word2vec embedder from the gensim package is used to convert the processed
text into embeddings. These embeddings are then fed into the LSTM model for
classification.

• The GloVe technique is used to produce word embeddings in vector form. The
embeddings are used as input features for the LSTM network. The Glove model is
used to generate word vectors, which are then used as inputs for the architecture,
similar to the method described above.

• The BERT model incorporates an embedding layer. The BERT model comes with its
own contextual embedding layer, which was trained beforehand. This layer processes
the textual data to create word embeddings based on the context.

• ELMo has an internal embedding layer that uses its biLSTM structure, which creates
contextual vectors that are then used for classification. The models are then given
the embedding vectors that were generated in the previous rounds, forming the
foundation for their training and eventual application in spam detection.

3.4. Training the Models

The heart of DL involves training models on a subset of data, allowing them to discover
data features and apply this knowledge to new, unseen data. In our specific scenario, the
models have the responsibility of categorizing text into either the “spam: 0” or “quality:
1” categories.

As depicted in Figure 4, passing embedding layer representations into the architectures
provides the foundation for acquiring this knowledge. Specifically, recurrent networks like
LSTMs effectively model sequential dependencies in language. The input, output, and
forget gates of LSTM cells allow capturing long-range contexts and nuanced relationships
within textual data. On the other hand, contextualized techniques like BERT and ELMo
generate dynamic token embeddings based on the surrounding context. Pretraining them
on our diversified corpora (Twitter(X)/YouTube) imparts semantic encoding capabilities.
Our approach loads these pretrained models via TensorFlow-Hub/Text and generates
contextual word vectors to feed into the classification layers after fine-tuning, enhancing
performance over static embeddings. We employ binary classification layers tailored for
spam detection—logistic regression for ELISA and feedforward network for BERT. The
training process involves iterating over text sequences in the Twitter/YouTube datasets
and updating model parameters to minimize the loss function chosen. Tracking validation
accuracy and loss metrics over epochs then allows us to quantitatively evaluate model
effectiveness on unseen data.

Embedding layers, such as those derived from ELMo and BERT, are pivotal in text
classification models by enabling the extraction of dynamic and context-aware word repre-
sentations. These embeddings are instrumental in analyzing textual characteristics, thus
informing the model’s ability to categorize text. The model weights are optimized through
a process aimed at minimizing the loss function, represented as
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Lossmodel = −
1
N

N

∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (1)

where N is the number of samples, yi is the actual label, and ŷi is the predicted label by
the model. This equation exemplifies the cross-entropy loss, a common choice for binary
classification tasks.

Following our training phase, the effectiveness of the models is assessed on a test set,
focusing on metrics such as accuracy and loss, which provide quantitative insights into
the models’ performance. ELMo and BERT contribute significantly to this approach by
offering rich, pretrained word embeddings that enhance the model’s understanding and
classification of text. These embeddings are sourced from TensorFlow-Hub and TensorFlow-
Text, facilitating the generation of deep contextualized word representations that improve
the performance of downstream NLP tasks [55].

For ELMo, we embed a generation process for each text in the Twitter and YouTube
datasets, and it is formalized as follows:

ELMo embeddings = Function (Text) (2)

These embeddings serve as input features for the classification model, which under-
goes training on the derived ELMo embeddings. The training regimen entails multiple
iterations over the dataset (epochs), with the objective of refining model weights to reduce
the loss function further. The model’s post-training evaluation on the test set involves
calculating both the loss and accuracy, furnishing a quantitative measure of its efficacy.

RNNs, and by extension LSTMs, offer a solution to the limitations of traditional
neural networks in processing sequential data. The construction of RNN/LSTM models,
facilitated by frameworks such as Keras, typically involves layers conducive to binary
classification tasks. The architecture of an NN/LSTM distinguishes itself by allowing
variable connections between neurons, as opposed to the static, feedforward nature of
traditional neural networks. This variability is characterized by directed cycles in the
network, enabling data to circulate in loops and allowing the model to capture temporal
dependencies in the data effectively. The update of the LSTM cell is represented as

ft = σ(W f · [ht−1, xt] + b f ) (3)

it = σ(Wi · [ht−1, xt] + bi) (4)

C̃t = tanh(WC · [ht−1, xt] + bC) (5)

Ct = ft ∗ Ct−1 + it ∗ C̃t (6)

ot = σ(Wo · [ht−1, xt] + bo) (7)

ht = ot ∗ tanh(Ct) (8)

where ft, it, and ot are the forget, input, and output gates, respectively, Ct and ht are the
cell state and output at time t, and xt is the input at time t. These equations highlight
the LSTM’s ability to manage information flow, enhancing its capacity for learning from
sequences with varying lengths and complexities.

The model is much better at binary classification tasks because it uses advanced embed-
ding techniques like ELMo and BERT along with the complex architecture of RNN/LSTM
networks. It does this by learning from different text inputs and applying what it has
learned across them.

3.5. Evaluation Model

Upon the completion of the training phase, each model undergoes a comprehensive
evaluation using test sets derived from the Twitter and YouTube datasets. The goal of
this study is to find out which contextualized embeddings (BERT, ELMo) work better
than traditional, noncontextualized embeddings (Word2Vec, GloVe) in RNN architectures.
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Additionally, a comparative analysis is conducted between RNN models (LSTM) and
standalone models of BERT and ELMo. To accurately evaluate the performance of these
models, we utilize a variety of evaluation metrics: misunderstanding the matrix metric
offers a comprehensive analysis of the model’s classifications, providing valuable insights
into the different types of errors that were made.

Accuracy is a crucial factor in evaluating the model’s performance when it comes to
predicting spam tweets or comments, encompassing both true positives and false positives.
Remember, sensitivity is calculated by dividing the number of correct positive predictions
by the total of correct positives and incorrect negatives, which evaluates the overall rate
of correct classifications made by the model. Accuracy and completeness are especially
important when assessing the models’ performance in detecting spam content; therefore,
the F1-score is a valuable metric that takes into account both precision and recall, providing
a holistic assessment of the model’s performance. Through these evaluations, the research
goal is to find the best combination of embedding techniques and model architectures to
efficiently and universally detect spam on social media platforms. To achieve this, we
trained a Word2Vec model on the collected dataset and used it as a pretrained model,
where a GloVe utilizes pretrained GloVe embeddings to represent words to compare the
performance of these models using different embeddings (Word2Vec vs. GloVe) and error
analyses, which investigate types of errors (e.g., false positives and false negatives), as
shown in Table 3. Word2Vec has lower precision but higher recall compared with the GloVe
model. The F-score, which is the harmonic mean of precision and recall, is moderately high,
indicating a balance between precision and recall. The accuracy is lower than GloVe’s.

Table 3. Comparison of Word2Vec, GloVe, and Combined Embeddings.

Model Precision Recall F-Score Accuracy

Word2Vec 0.689356 0.795987 0.738844 0.718881
GloVe 0.802305 0.756689 0.778830 0.785297
Word2Vec & GloVe 0.773601 0.739967 0.756410 0.761905

The probability distributions of the predicted classes are displayed in Figure 5 for both
Word2Vec and GloVe embeddings. There is a clear bimodal distribution of probabilities
for both classifiers, suggesting a high level of certainty in their classification decisions.
This histogram probably shows the distribution of predicted probabilities for the positive
class. The x-axis represents the probability that a given instance is classified as positive,
and the y-axis represents the frequency of these probabilities. The histogram for each
model can help you understand the confidence of the predictions. A model with many
predictions clustered near 0 or 1 is often more confident, whereas a model with many
predictions around 0.5 is less confident. Figure 6 contains two components: The upper
panel displays the confusion matrices for classifiers that use both Word2Vec and GloVe
embeddings. The lower panel, on the other hand, shows the precision–recall curves for
both embedding methods. The confusion matrices showcase the number of correct and
incorrect classifications for each class, while the precision–recall curves provide a holistic
view of the trade-off between precision and recall at different threshold settings.

Figure 6 shows the area below these curves can offer valuable insights into the overall
effectiveness of the classifiers. The confusion matrices for classifiers utilizing Word2Vec
and GloVe embeddings. This matrix provides a thorough comparison of the number of
accurate positive predictions, accurate negative predictions, inaccurate positive predictions,
and inaccurate negative predictions between the two methods. The two images at the
bottom show precision–recall curves for both embeddings, illustrating the trade-off between
precision and recall at different thresholds. The confusion matrices for Word2Vec and GloVe
provide a detailed comparison of the accuracy of each method, displaying the number
of correct and incorrect classifications made. The precision–recall curves offer valuable
insights into the balance between precision and recall across various threshold settings,
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and the region below these curves can also be used as a measure of the overall effectiveness
of the classifier. A larger area indicates a more efficient model.

Figure 5. Probability distributions of the classifiers.

Figure 6. Word2Vec performance vs. GloVe performance.

Figure 7 shows the confusion matrix for the classifiers on the left and the performance
metrics line plot on the right. They present two distributions, one for each embedding
method, indicating how each method’s classifier assigned probabilities to the instances.
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Figure 7. Performance metrics of embedding Word2Vec and Glove.

4. Results and Discussion

Extensive experiments were conducted to evaluate the effectiveness of different em-
bedding strategies and model architectures for social media spam detection, comparing
the performance of embeddings integrated into LSTM models with that of standalone
textual embeddings, specifically BERT and ELMo. A variety of Python libraries, including
TensorFlow, Keras, and Scikit-learn, all within the Google Colab environment, aided in
the development and training of these models. The efficacy of these models was evalu-
ated on two distinct spam detection datasets: one comprising Twitter data and the other
containing YouTube comments. Both datasets feature text classified into “spam” and
“quality” categories.

The Twitter and YouTube datasets were utilized to train a total of five models with
different embedder–architecture combinations. Rigorous hyperparameter tuning was
performed prior to the final model selection. The evaluation metrics of precision, recall,
accuracy, and F1-score were computed on the test set. The tests showed that contextualized
embeddings consistently performed better than word vectors. This shows that they can
pick up important semantic signals and accurately display social media text. Though the
RNN models with tuned hyperparameters achieved respectable performance, the ELMo
contextual embedder with a logistic regression classifier emerged as the top performer. On
the Twitter dataset, ELMo obtained 90% accuracy, 91% precision, 89% recall, and 90% F1-
score. The accuracy of the YouTube comments reached 94%, with 98% precision, 88% recall,
and 93% F1-score. This demonstrates the significance of contextual awareness and the
transfer learning capacity of pretrained language models for enhanced generalization. The
comparative assessment provides valuable insights into tailoring embedding strategies and
model components for the unique challenges posed by multiplatform social media spam
detection in real-world deployed systems.

4.1. LSTM—Word2Vec/GloVe Embeddings

Our approach employs LSTM networks alongside Word2Vec and GloVe embeddings
for spam classification. The text data are initially preprocessed via tokenization and padding
to generate fixed-length input sequences. For instance, the Word2Vec embedder, sourced
from the Gensim library, was used to transform the processed text into embeddings, which
were then inputted into the LSTM model for spam classification.

Algorithm 1 presents the overall process for training LSTM models with Word2Vec
and GloVe embeddings on the Twitter and YouTube datasets for spam classification. Af-
ter the dataset is loaded and preprocessed by converting text to lowercase, removing
URLs/mentions/hashtags/numbers, and trimming extra whitespace, the data is then
converted to binary labels for spam/nonspam and balanced to ensure equal representation
of both classes. The dataset is split into training and testing sets. For Word2Vec/GloVe, an
embedding model is trained only on the training data to learn vector representations of
words. The maximum text sequence length is determined to enable padding sequences
to a fixed length. Helper functions are defined to convert text to corresponding index
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sequences based on the trained embedding model and pad them to the max length. This
numerical conversion of text enables feeding as input to the LSTM models. An embedding
matrix is constructed from the learned vectors. The LSTM architecture is defined using
this matrix to represent text input. The model is compiled, trained on the training set, and
finally evaluated on the testing set. Learning distributed embeddings through predicting
words in context encodes meanings based on similarity. GloVe enhances this by using
log-bilinear regression modeling on word–context co-occurrence statistics. Through the
pretrained vectors capture detailed contextual meanings, enabling the downstream LSTM
models to process text sequences as real-valued vectors instead of sparse one-hot encoded
inputs. This incorporation of modern word embedding techniques like Word2Vec and
GloVe enriches the textual feature representation fed into the LSTM models.

Algorithm 1 Classification with LSTM and Word2Vec/GloVe Embeddings

1: D ← Load (‘twitter/youtube.csv’) ▷ Load dataset from Twitter or YouTube
2: function PREPROCESSTEXT (text)
3: text← toLowercase (text)
4: text← removeURLsMentionsHashtagsNumbers (text)
5: text← replaceNonWordCharsWithSpace (text)
6: text← trimSpaces (text)
7: return text
8: end function ▷ Preprocess text data
9: Dprocessed ← ApplyPreprocessText (D)

10: Dbinary ← ConvertToBinary (Dprocessed)
11: Dbalanced ← Balance (Dbinary)
12: (Dtrain, Dtest)← TrainTestSplit (Dbalanced)
13: modelW2V/GloVe ← TrainEmbedding (Dtrain) ▷ Train Word2Vec or GloVe model on the

training set
14: max_length← DetermineMaxLength (Dtrain)
15: function CONVERTTOINDICES (text, modelW2V/GloVe, max_length)
16: indices← ConvertWordsToIndices (text, modelW2V/GloVe)
17: padded← PadSequence (indices, max_length)
18: return padded
19: end function ▷ Convert text to indices and pad sequences
20: Dindices ← ConvertAllToIndices (Dtrain, modelW2V/GloVe, max_length)
21: E← CreateEmbeddingMatrix (modelW2V/GloVe) ▷ Create embedding matrix from the

trained model
22: modelLSTM ← DefineLSTMModel (E) ▷ Define the LSTM model using the embedding

matrix
23: Compile (modelLSTM)
24: Train (modelLSTM, Dtrain) ▷ Compile and train the LSTM model
25: predictions← Predict (modelLSTM, Dtest)
26: Evaluate (modelLSTM, predictions) ▷ Predict and evaluate the model on the test set

Word2Vec embedding falls short in capturing semantic nuances: Algorithm 1 provides
the configuration details for the Word2Vec-LSTM architecture, with corresponding accuracy
results in Table 4. This model achieves only 67% and 72% accuracy on the Twitter and
YouTube datasets, respectively. As evident in Figure 8, the ROC and precision–recall curves
showcase the model’s limited discrimination capability. This significant deviation from
an optimal classifier (top-left corner) indicates the prevalence of false positives due to the
inability to capture nuanced semantics.
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Table 4. Accuracy of Different Models on Twitter and YouTube Datasets.

Model Twitter Dataset Accuracy YouTube Dataset Accuracy

Word2Vec-LSTM 67% 72%
GloVe-LSTM 80% 87%

Figure 8. Training and validation accuracy to Word2Vec-LSTM.

We posit that Word2Vec embeddings, despite their simplicity, are inadequate for
encoding the contextual variations in language necessary for accurate spam detection. The
vectors are created from a relatively small corpus and conflate multiple meanings into
singular representations. This results in poor generalizations based on informal textual data
with ambiguities and polysemy. More robust semantic modeling is imperative through
large-scale pretraining, as offered by methods like GLoVe and ELMo. Our comparative
analysis quantitatively demonstrates that Word2Vec lags behind context-aware techniques
better equipped to handle the complex features of evolving spam. Significant performance
gains in our experiments on two different social media landscapes show how important
more advanced embeddings are.

To employ LSTM networks alongside GloVe embeddings for spam classification, as
depicted in Figure 9. The text data are initially preprocessed via tokenization and padding
to generate fixed-length input sequences. These sequences are then transformed into dense
vector representations using 300-dimensional GloVe word vectors pretrained on a large
textual corpus. The resulting embeddings capture semantic and contextual information
for each token. These embeddings are subsequently fed as inputs into an LSTM model
comprised of dropout regularization and sigmoid output units for binary spam/nonspam
predictions. As evidenced in Figure 9, the model achieves strong performance, with 79.74%
validation accuracy on the YouTube dataset after five training epochs. The convergence of
training and validation loss curves indicates minimal overfitting.

Figure 9. Training and validation accuracy to GloVe-LSTM.



Appl. Sci. 2024, 14, 2254 19 of 25

The model begins with a training loss of 0.5581 and an accuracy of 69.53%. On the
validation set, it achieves a loss of 0.4681 and an accuracy of 77.78%. The final epoch
shows training loss at 0.4316 and accuracy at 79.73%, with validation loss and accuracy
improving to 0.4309 and 79.74%, respectively. The close performance on both training and
validation sets suggests that the model is convergent well and learning from the training
data without significantly overfitting. In Figure 9, the blue line (training accuracy) and
the orange line (Validation accuracy) show the accuracy of the model for each epoch on
the training and validation datasets, respectively. There is a noticeable dip in validation
accuracy in the second epoch, which could be indicative of some instability in the training
process at that point. However, from the third epoch onwards, both training and validation
accuracy improved consistently. The final epoch shows the training and validation accuracy
converging, which is a sign of good generalization.

The blue line (training loss) and the orange line (validation loss) indicate the loss
on the training and validation datasets across epochs. Similar to the accuracy plot, there
is an increase in the validation loss during the second epoch. However, in subsequent
epochs, both training and validation losses decrease, indicating improvement in the model’s
performance. The convergence of the training and validation losses by the fifth epoch
suggests that the model is not overfitting significantly.

The precision for classification is 76% of the predicted comments. The recall is higher,
at 87%, which means that the model can capture 87% of the actual data. The F1-score,
which is a harmonic mean of precision and recall, is 81% for comments, indicating a balance
between precision and recall. For spam, precision is higher at 0.85, suggesting that when
the model predicts spam, it is correct 85% of the time. The recall for spam is lower at 0.72,
meaning the model misses around 28% of actual spam tweets. The F1-score for spam is 78%,
slightly lower than for nonspam, due to a lower recall. Overall, the accuracy model correctly
identified 80% of the tweets and 87% of the comments, as shown in Table 4. In essence,
the role of GloVe in encoding semantics explained the convergence plots, interpreted the
precision/recall trade-off, and contrasted against Word2Vec—all in service of enhancing
our approach design.

4.2. BERT and EMLO Embedding

Our study provides novel experimentation and analysis to contrast standalone BERT
and ELMo models for social media spam detection. We employ state-of-the-art transfer
learning approaches by leveraging the innate contextual modeling capabilities of these
pretrained language representations. Specifically, we instantiate BERTBASE cased and
ELMo original 5.5B models for generating token embeddings on the Twitter and YouTube
datasets. While both architectures use LSTM networks, a key distinction lies in ELMo’s
deeper bidirectional conditioning compared with BERT’s single direction. We hypothesize
this enables richer semantic encoding vital for handling informal textual styles. As shown
in Table 5, ELISA consistently attains a higher accuracy of 90–94% against BERT’s 84–91%.
We posit the performance gap arises from ELISA’s intrinsic focus on modeling linguistic
contexts across two directions. This allows capturing nuanced syntactic and semantic
patterns within noisy social posts to improve discrimination. Additionally, we employ
an innovative pipeline (Algorithm 2) involving pairing pretrained embedders like BERT
and ELISA with simple downstream classifiers (logistic regression). This end-to-end
approach eliminates extensive task-specific fine-tuning and provides strong off-the-shelf
performance, uniquely suited for real-world spam filtering systems that need to rapidly
adapt to evolving data.
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Table 5. Validation Accuracy for EMLO and BERT Models.

Model Twitter Dataset YouTube Dataset

EMLO BERT EMLO BERT

f1-score 90% 83% 93% 91%
Precision 91% 87% 98% 94%
Recall 89% 79% 88% 87%
Accuracy 90% 84% 94% 91%

Algorithm 2 leverages pretrained contextualized embedding models like BERT and
ELMo to generate representations of text for training classifiers to categorize posts as spam
or not spam. The input data from two separate datasets (e.g., Twitter and YouTube) are
first preprocessed, converted to lowercase, and cleaned by removing URLs and special
characters. Helper functions are set up to make embeddings from BERT and ELMo models.
For BERT, the text is tokenized using a predefined tokenizer and then fed into the model
to get token embeddings that match. For ELMo, the raw text strings are directly input
into the model to produce embeddings. These pretrained models encode rich semantic
representations of text by considering contextual information. The embeddings are then
used as features for training machine learning classifiers on the downstream spam detection
task. Then, the data are split into training and test sets. Classifiers like logistic regression are
trained on the embedding inputs from the training set, so we can apply model performance
that is evaluated on the test set using metrics (accuracy, precision, and recall.) This provides
insights into how these deep contextual models perform for spam detection across different
platforms, like Twitter and YouTube, and how the pretrained representations augment
sequential networks to handle noisy, informal language better.

Algorithm 2 BERT and ELMo Embedding Processes for Text Classification

1: function PREPROCESS (T )
2: Tlower ← lowercase (T ) ▷ Convert text to lowercase
3: Tclean ← remove (Tlower, URLs, special chars) ▷ Remove URLs and special

characters
4: return Tclean
5: end function ▷ Preprocess text data
6: D1,D2 ← Load datasets from specified paths ▷ Load two separate datasets for

processing
7: Dclean

1 ← map (Preprocess,D1)

8: Dclean
2 ← map (Preprocess,D2) ▷ Apply preprocessing to both datasets

9: function GENERATEBERTEMBEDDINGS (S)
10: Ttokenized ← Tokenize (S , BERT Tokenizer) ▷ Tokenize text using BERT’s tokenizer
11: EBERT ← BERT Model (Ttokenized) ▷ Generate embeddings using BERT
12: return EBERT
13: end function ▷ Function to generate BERT embeddings
14: function GENERATEELMOEMBEDDINGS (S)
15: EELMo ← ELMo Model (S) ▷ Generate embeddings using ELMo
16: return EELMo
17: end function ▷ Function to generate ELMo embeddings
18: E1 ← GenerateBERTEmbeddings (Dclean

1 )

19: E2 ← GenerateELMoEmbeddings (Dclean
2 ) ▷ Generate embeddings for each cleaned

dataset
20: Split datasets into training and testing sets ▷ Divide data for model evaluation
21: Train classifiers on respective embeddings ▷ Use embeddings to train text

classification models
22: Predict and evaluate on test sets ▷ Assess model performance on unseen data
23: Print classification reports and accuracies ▷ Display model evaluation results
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The comparative assessment reveals consistent gains achieved by ELMo over BERT
for spam detection across both Twitter and YouTube datasets, as evidenced visually in
Figures 10 and 11. The Receiver Operating Characteristic (ROC) plots showcase ELISA’s
stronger discrimination capability, with Area Under Curve (AUC) values up to 0.96 for
YouTube, significantly higher than BERT’s 0.88. Additionally, the precision–recall curves
demonstrate ELMo’s superior trade-off by achieving over 90% precision at 80% recall levels
on both datasets. In contrast, BERT sees an acute decline in precision as recall increases,
indicating higher false positive rates. We posit ELMo’s bidirectional conditioning enables
the modeling of nuanced contextual cues within noisy textual data, leading to more reliable
predictions. Quantitatively, as compiled in Table 5, standalone ELMo surpasses BERT
on all evaluation metrics, with relative gains of 5–15% in accuracy, precision, recall, and
F1-scores. This aligns with the visual evaluation. The big performance gaps show that
ELMo is good at encoding complex semantic features, which is important for keeping up
with spam campaigns that are always changing. Therefore, our extensive comparative
analysis based on multiple evaluation paradigms provides conclusive proof of ELISA’s
strengths in combating digital threats amidst rapidly expanding OSNs. These insights can
help inform architectural optimizations for advancing NLP techniques against adversarial
attacks.

Figure 10. The performance of a BERT classification.

Figure 11. The performance of an ELMo classification.

Our systematic evaluation conclusively demonstrates the effectiveness of deep contex-
tualized embeddings like ELMo over noncontextualized alternatives for spam detection. As
shown in Table 5, the pretrained 1024D ELMo representations attain remarkable accuracy
between 90–94% on Twitter and YouTube data, constituting absolute gains of 7–15% over
prior best methods relying on 300D GloVe vectors. We posit that ELMo’s deeper bidirec-
tional LSTM conditioning enables the encoding of higher-order sequential dependencies
within comments, allowing the capture of nuanced semantic relationships amidst noisy
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textual data. This contextual modeling proved critical for discriminating evolving spam
posts full of obfuscations. Moreover, pairing these 1024D embeddings with shallow down-
stream classifiers like single-layer logistic regression eliminates extensive retrofitting for the
specialized task, providing adaptable and generalizable solutions—a pivotal requirement
for real-world spam filtering systems that need to rapidly adapt to new data. Interestingly,
the longer, conversational nature of YouTube comments better resembles training corpora
like the Billion Word Benchmark, leading to superior performance over Twitter’s constraint-
driven syntax that is full of misspellings and abbreviations. This highlights the need for
pretraining on diversified text spanning diverse linguistic styles to attain consistent robust-
ness. Nevertheless, our 7–15% across-the-board improvements over a strong 300D baseline
clearly validate the advanced contextual encoding methods that must now foreground
spam detection research to combat security threats arising from exponential OSN growth.

Our results directly address the research questions posed at the outset of this study,
providing clear insights into the performance of contextualized embeddings versus noncon-
textualized word vectors, the comparison between RNN models and standalone BERT and
ELMo models, and identifying the most effective combination of embedding techniques
and model architectures for spam detection.

• RQ1: The results indicate that contextualized embeddings (BERT, ELMo) consistently
outperform noncontextualized word vectors (Word2Vec, GloVe) in detecting spam
content across social media platforms. Higher accuracy, precision, recall, and F1-
scores obtained by models using BERT and ELMo embeddings as compared with
those using Word2Vec and GloVe serve as proof of this. The superior performance
of contextualized embeddings can be attributed to their ability to capture semantic
nuances and context-dependent meanings of words, which are crucial for accurately
classifying spam and nonspam content.

• RQ2: The evaluation results indicate that contextualized embeddings (BERT, ELMo)
consistently outperform noncontextualized word vectors (Word2Vec, GloVe) in de-
tecting spam content across social media platforms. This is evidenced by higher
accuracy, precision, recall, and F1-scores achieved by models utilizing BERT and
ELMo embeddings compared with those employing Word2Vec and GloVe.

• RQ3: RNN models, particularly those utilizing LSTM architectures, achieve re-
spectable performance; standalone BERT and ELMo models exhibit higher accuracy in
spam detection tasks. The comparison shows that BERT and ELMo models are much
better at finding and labeling spam content than LSTM models alone. This is because
they have more advanced pretraining and a better understanding of context.

5. Conclusions and Future Work

Systematically, this research evaluated the effectiveness of contextualized word em-
beddings (BERT, ELMo) against noncontextualized alternatives (Word2Vec, GloVe) for
social media spam detection, leveraging the capabilities of RNN architectures, particularly
LSTM networks. Our analysis demonstrates the superior performance of contextualized
models in processing Twitter and YouTube texts. Specifically, BERT and ELMo consistently
achieved considerably higher accuracy, precision, and recall compared with Word2Vec and
GloVe. This can be attributed to their ability to generate distinct representations of the same
word based on its semantic context. The ELMo embedder paired with logistic regression
attained the top classification results across metrics, even on imbalanced datasets. This
underscores the importance of contextual awareness in modeling the nuances of heteroge-
neous social media content. The findings pave the way for exploring innovative directions
like "deep forest" approaches that leverage the transfer learning capacities of contextualized
language models such as BERT and ELMo. Applying these techniques beyond English to
languages like Arabic can accelerate multilingual social spam research, and the rigorous
error analysis provided insights into why certain embedding–model combinations under-
perform, guiding efforts to enhance generalization. We demonstrate the profound impact
of contextualized representations on recurrent neural network performance for real-world
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spam detection across Twitter and YouTube. The analysis offers a robust framework for
evaluating state-of-the-art NLP techniques to identify optimal deployment strategies tai-
lored to diverse platforms. These findings highlight promising pathways for developing
versatile, scalable, and accurate systems to secure burgeoning social media ecosystems
against continuously evolving threats, in addition to emphasizing the superior performance
of contextualized embeddings, discussing potential research directions, and highlighting
the practical implications for real-world social media spam filtering systems.
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