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Featured Application: Inelastic analysis of RC slender beam elements under cyclic loading.

Abstract: A mathematical model for RC beam elements is presented that falls into the category of
distributed inelasticity models discretizing the cross-section in polygons (trapezoids, triangles). The
models falling into these categories are considered to be able to describe in the best manner the
inelastic behavior of the element across its whole clear length, since its response results from the
numerical integration of the stiffnesses of its cross-sections, while presenting an ideal combination of
accuracy, simplicity, and computational cost. The behavior of the cross-section is described through
the constitutive relationships σ–ε of its materials for cyclic loading. The main objectives for the
development of the proposed mathematical model are as follows: (a) the increased accuracy of the
results compared to existing experimental ones; (b) the limitless generalization of its application, re-
garding of the cross-section shape; and (c) the elimination of the numerical problems presented by the
application of other related models, a fact that leads to their impractical use in real three-dimensional
structures. The proposed model falls under the category of distributed inelasticity models. This paper
focuses on its initial version, which targets slender beam elements with negligible shear and bond-slip
effects (i.e., with ribbed bars, sufficiently anchored). Thus, it is applicable to 2D and 3D framed
structures that fulfill these conditions, while its modular structure allows for future adjustments for
the inclusion of other effects.

Keywords: bending with axial load; FEM mathematical model; inelastic analysis of RC structures;
reinforced concrete; RC fiber model; RC random cross-section shape

1. Introduction

The finite element method (FEM) is a well-established computational method used in
the field of structural analysis. According to this method, a framed structure is represented
as a set of connected beam-like elements used to describe the response of the corresponding
real RC members (beams and columns). The constitutive laws of plasticity are assigned
to these elements, either at the member level (as phenomenological rules expressed in
terms of moment–curvature, M–φ, concentrated at its ends), or at the cross-sectional level
(distributed along the element’s axis and expressed in terms of stress–strain laws, σ–ε, of
its materials). These approaches correspond to two categories of inelastic models: those of
concentrated response and those of distributed inelastic response.

Distributed plasticity models are considered to be more accurate than the concentrated
ones. According to the first models, elements can behave inelastically not only at their
ends but also in between their end nodes. The inelastic behavior is initially calculated at
the cross-sectional level, while the whole element’s response results from the numerical
integration of the responses of a predefined number of control cross-sections, defined
appropriately along the member’s clear length.
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Coming to the cross-section’s inelastic behavior, according to the well-known fiber
model approach, a section is usually discretized into a large number of material fibers each
adopting uniaxial behavior. The response of each material fiber is calculated in terms of
its uniaxial constitutive stress–strain law, σ–ε, using Navier–Bernoulli’s classic hypothesis
of plane cross-sections after bending. The resultant internal forces of the cross-section are
derived from the integration of the stresses of all its fibers.

An alternative approach to that of the fiber models, which is used in the proposed
model, is to discretize the section into a number of polygons, mainly trapezoids and
triangles, and to compute their inelastic responses in a similar manner to that of the fibers,
as will be described in the following sections.

Historically, two categories of finite element formulations have been used: the stiffness
method and the flexibility method. In the flexibility method (also known as the force
method), flexibilities appear in the equations of compatibility and forces are the unknown
quantities. On the other hand, in the stiffness method (also known as displacement method),
displacements are the unknown quantities. Typical models using the stiffness method
are those of Hellesland and Scordelis [1] and Mari and Scordelis [2], which use cubic
polynomials as interpolation functions to approach the distribution of displacements along
the length of the member.

The flexibility method was first followed by Mahasuverachai and Powell [3], using
interpolation functions that are updated at each step, depending on the degree of inelasticity,
for cross-sections under uniaxial bending. Zeris and Mahin [4] created a similar model for
biaxial bending where the sections’ stiffnesses also change and adapt according to the degree
of inelasticity in the current step of the analysis. Moreover, they applied some improvements
to the member-equilibrium calculation process in order to improve convergence.

Taucer et al. [5] and Spacone et al. [6–8] developed a mixed-formulation method
combining stiffness and flexibility methods. The element-state determination process
is based on the stiffness method, while the element-flexibility matrix is calculated by
integrating the respective flexibility matrices of the control sections along the element
length. They suggest a more transparent iterative process to perform the element-state
determination at each step of the imposed displacements. According to this formulation,
the element’s equilibrium is always satisfied (based on computational limits), and the
model can converge after a few iterations, satisfying the constitutive laws of the fibers of
the materials. It does not require a large number of control sections along the length of
the member. It also proves to be relatively stable compared to previous models mentioned
above, especially for RC sections subjected to very high inelastic stress–strain conditions.

Monti and Spacone [9] extended the model of Taucer et al. [5] to take into account
the bond-slip phenomenon. Kagermanov and Ceresa [10] proposed a model based on
the stiffness-method formulation, which uses a triaxial constitutive law for concrete.
Bairan and Mari [11] developed another formulation of the fiber model that takes into
account shear and torsion phenomena. In this formulation, the displacement field is ex-
tended by adding a torsional field. At the same time, the fiber state is calculated in the
three-dimensional space using a three-dimensional constitutive law for concrete. Finally,
Kashani et al. [12] presented a fiber model that takes into account the buckling of reinforcing
bars for the circular cross-sections of bridge pillars.

Coming to the proposed model [13], it belongs to the general category of the distributed
inelasticity models for the inelastic response of slender RC-beam elements subjected to
cyclic bending with axial force. The main target of the model is its applicability for the
inelastic response of RC beams and columns, regardless of their cross-sectional shape,
the position of longitudinal reinforcement bars, the possible presence of holes or exterior
concrete-strengthening jacket, etc. Special computational care is given for the accurate
description of the 3D shape of the concrete compressive-stress shell that, in general, acts
in a random cross-section shape under a specific deformation profile. The detailed and
accurate description of these stresses leads to the best approximation of the experimental
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results. On the other hand, it proves to contribute significantly to the numerical stability of
the model, as will be described in the following.

A model is considered stable if convergence is achieved in each loading step, meaning
that the applied forces are balanced by the internal resisting forces. Many models suffer from
numerical instabilities as described in Section 6.1.4, thus reducing their practical applicability.

For the present model, the limitations mentioned in the abstract are applied, while the
influence of the speed of deformation (strain rate effect) during dynamic loading of shock
type is not taken into consideration.

The concepts described in the following sections are as follows: the concrete and steel
constitutive laws used in the model, the general FEM-formulation that is adopted, the
cross-sectional-discretization process, and the overall numerical algorithm of the model
along with its significant computational characteristics.

2. Concrete Constitutive Stress–Strain Law

The proposed model incorporates the concrete constitutive stress–strain law of Martinez-
Rueda and Elnashai [14], which is an extension of the corresponding Mander’s law [15].
Mander’s model is considered the most widely acceptable model for concrete, while the
modifications proposed by Martinez-Rueda and Elnashai enhance its numerical stability
and robustness. Both of these models are widely used in commercial FEM software like
ANSYS, SAP2000, etc.

This law consists of a uniaxial model for the behavior of confined or unconfined
concrete under cyclic loading, while the tensile strength of concrete is neglected. The
loading-unloading-reloading branches, as well as the branch-transition criteria of the initial
Mander’s model, have been appropriately modified.

The constitutive law of Martinez-Rueda and Elnashai [14] is based on two observations.
First, the stress–strain envelope curve of concrete under cyclic load is almost identical to the
stress–strain curve obtained from monotonic loading. Secondly, all loading, unloading and
reloading branches (in blue color) have a common intersection point, called the “epicenter”
point (εf, ff), as shown in Figure 1. It is defined as the common point of the extended dashed
lines which connect the unloading points with those of remaining plastic strains.
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The adopted concrete model consists of one loading, one unloading, and two reloading
branches. The loading branch follows the monotonical stress–strain relationship of concrete
(Figure 2), which is described by the following equations,
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fc =
fcc · x · r

r − 1 + xr (1)

fcc = k · fco (2)

x = εc/εcc (3)

εcc = εco

[
1 + 5

(
fcc

fco
− 1
)]

(4)

r =
Ec

Ec − Esec
(5)

Ec(MPa) = 5000
√

fco(MPa) (6)

Esec =
fcc

εcc
(7)

where:

k—confinement factor
fco—compressive strength of unconfined concrete
fcc—compressive strength of confined concrete
εco—strain at maximum concrete stress fco
εcc—strain at maximum concrete stress fcc
Ec—initial tangent modulus of elasticity and
Esec—secant modulus of elasticity at peak stress of the confined concrete

The tangent modulus of elasticity at any point of the loading branch is given by
differentiating Equation (1) with respect to the strain εc. Thus,

Etan =
d fc

dεc
=

(xr − 1) · fcc · (1 − r) · r

εcc · (xr + r − 1)2 (8)

When the direction of the imposed load reverses, the loading branch is followed by
an unloading branch that starts from point (εun, fun) (see Figure 1) and is described by
a second-order polynomial equation connecting points (εun, fun) and (εpl, 0). The latter
point lies on the horizontal axis εc. The plastic strain εpl is calculated from the following
equations as a function of the unloading strain, εun. Three different concrete strain regions
are used to define εpl, reflecting the cumulative damage achieved in the element level.
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Thus, the following three equations correspond to low, intermediate and high plastic strain
range, respectively:

εpl = εun −
fun

Ec
, 0 ≤ εun ≤ ε35 (9)

εpl = εun −
εun + εa

fun + Ecεa
, ε35 ≤ εun ≤ 2.5εcc (10)

εpl =
fcrεun −

∣∣∣ε f

∣∣∣ fun

fcr + fun
, 2.5εcc ≤ εun (11)

In these equations, strain ε35 corresponds to a stress equal to 0.35fc, while strains εa
and εf are computed as follows:

εa = a
√

εunεcc (12)

a = max
[

εcc

εcc + εun
,

0.09εun

εcc

]
(13)

∣∣∣ε f

∣∣∣ = fcrεplcr

Ec

(
εcr − εplcr

)
− fcr

(14)

Term εplcr is the inelastic plastic strain computed from Equations (9)–(11), using for un-
loading strain the value εun = εcr = 2.5·εcc for confined concrete and the value εun = εcr = 2.5·εco
for unconfined. Having determined the value of εpl, the stress and the corresponding tan-
gent modulus of elasticity at any point of the unloading branch are computed as follows:

fc = fun

(
εc − εpl

εun − εpl

)2

(15)

Etan =
d fc

dεc
= 2 fun

(εc − εpl)

(εun − εpl)
2 (16)

Finally, the total reloading branch consists of two consecutive and linear segments,
each having a different slope.

As depicted in Figure 1, the first reloading segment connects the load reversal point,
which may lie on the εc axis or above it, with point (εun, fnew), where εun is the maximum
strain ever experienced during the previous loading history. So, for the first reloading
segment, strength fnew and tangent modulus Etan are computed by the following equations:

fnew =
fcc2 · x · r

r − 1 + xr (17)

fcc2 = 0.9 fcc (18)

x =
εcc

εcc2
(19)

εcc2 = 0.9εcc (20)

fc =
fro(εun − εc) + fnew(εc − εro)

εun − εro
(21)

Etan =
d fc

dεc
=

fnew − fro

εnew − εro
(22)

In Equations (18) and (19) the values of εco and fco are used instead of εcc and fcc for the
case of unconfined concrete, i.e., for the cases with concrete under low confinement degree.
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The second reloading segment is described with Equation (25). It starts from point
(εun, fnew) and ends at the returning point (εret, fret). Strain εret and tangent modulus slope
Etan for this segment are computed by the following Equations (23) and (26), respectively:

εret =
sr · εun + εun

2
(23)

sr = 0.00273 + 1.2651
εun

εcc
(24)

fc =
fnew(εret − εc) + fret(εc − εun)

εret − εun
(25)

Etan =
d fc

dεc
=

fret − fnew

εret − εun
(26)

In conclusion, a typical complete loading–unloading–reloading cycle of the model
of Martinez-Rueda and Elnashai [14], that is implemented in the proposed model and is
shown in Figure 3, consists of four branches. One loading branch (red color), one unloading
branch (blue color),and two linear consecutive-reloading segments (green and magenta
colors). A separate fifth branch (yellow color) is used for tension with zero strength since
concrete tensile strength is neglected. This branch follows the blue unloading branch in the
case where a tensile loading occurs immediately after unloading.
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3. Steel Reinforcement Constitutive Stress–Strain Law

The steel constitutive law of Menegotto and Pinto [16] has been incorporated in the
proposed model, as it was modified by Filippou et al. [17] and was integrated in Opensees
software with the code name Steel02 by Mazzoni et al. [18]. This model is an evolution of
the well-known model of Giuffre and Pinto [19], with appropriate modifications in order
to better describe the hardening of steel. In Figure 4, a full stress–strain, fc-εc, load cycle is
presented (in blue color), as it is obtained from this model, where the various stress and
strain parameters are described by Yassin [20].

In this model, load cycles are not composed using discrete branches, as in concrete.
Instead, in each loading step the stress–strain response fs-εs is calculated from the following
equation set, using normalized values for stress and strain, fs

∗ and εs
∗, respectively.

fs
∗ = b · εs

∗ +
(1 − b)εs

∗[
1 + (εs∗)

R
]1/R (27)

b =
Esh
Eo

(hardening ratio) (28)

Eo =
fo − frev

εo − εrev
(tangent modulus of elasticity) (29)
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The corresponding normalized values of stress fs and strain εs are defined as follows:

fs
∗ =

fs − frev

fo − frev
(30)

εs
∗ =

εs − εrev

εo − εrev
(31)

In Equations (29)–(31) (εrev, frev) is the last load reversal point, while (εo, fo) is the
intersection point between initial and secant stiffness. More specifically, Equation (27)
describes a curve with initial tangent stiffness:

Eo = fs
∗/εs

∗ (32)

According to experimental data, for strains where ε∗s → ∞ the curve described by
Equation (27) asymptotically tends to the following straight-envelope line with slope Esh:

fs
∗ = b · εs

∗ + (1 − b) (33)

In the above formulation of Equations (27)–(31), if εrev = frev = 0, then the Equation (27)
describes pure monotonic loading.

Moreover, if b = 0, then the response is elastic–perfectly plastic, while for positive or
negative values of b, the post-elastic branch is upward or downward, respectively.

In Figure 4, the superscript of parameters εrev and frev denotes the serial number of
each subsequent loading. For example, for the first positive loading the superscript is equal
to 1, while for the subsequent negative loading the superscript is equal to 2.
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Tangent stiffness, E∗
tan, results from differentiating Equation (27) with respect to

εs
∗ as follows:

E∗
tan =

d fs
∗

dεs∗
= b +

1 − b[
1 + (εs∗)

R
]1/R ·

[
1 − (εs

∗)R

1 + (εs∗)
R

]
(34)

The tangent stiffness, E∗
tan of Equation (34), is used in the calculation of the section

stiffness along with the corresponding Equation (8) for concrete.
Parameter R is crucial for the behavior of the model and governs the curvature of

the loading or unloading branch enclosed between the line with stiffness Eo and that with
stiffness Esh. The value of this parameter is adjusted after each load reversal and depends
on the value of the maximum plastic excursion, ξ, up to the current loading step:

R(ξ) = Ro

(
1 − cR1 · ξ

cR2 + ξ

)
(35)

ξ =

∣∣∣∣ εm − εo

εy

∣∣∣∣ (36)

In the previous equations, R(ξ) is the value of parameter R, after its update according
to Equation (35), while Ro is its initial value (see Figure 5). Furthermore, εm (where
m is an index) is the strain in the previous minimum or maximum (algebraically) load
reversal point, depending on whether the deformation increases or decreases, respectively.
Thus, referring to Figure 5, which is the stress–strain normalized version of Figure 4, for
positive loading εm = ε1

rev (point C in Figure 4) and for negative loading εm = ε2
rev (point A

in Figure 4).
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From the above information, it can be concluded that the calculation of parameter R
from Equation (35) requires knowledge of the following parameters of the loading history:

• The value of stress fs and strain εs of the previous loading step.
• The value of stress frev and strain εrev of the previous load reversal point, according

to Figure 4.
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• The value of stress fo and strain εo of the last intersection point between the two
branches with stiffnesses Eo and Esh, respectively (see Figure 4).

• The minimum and maximum values of the strain εs throughout the loading, εmin and
εmax, respectively.

The steel model is taking into consideration the strain-hardening phenomenon via the
modification of εo and σo according to the following conditions.

When the strain increment ∆ε from a positive value becomes negative, then:

∆N = 1 + A1 ·
(

εmax − εmin
2A2 · εy

)0.8
(37)

εo =
− fy · ∆N + Esh · εy · ∆N − frev + E0 · εrev

E0 − Esh
(38)

σo = − fy · ∆N + Esh

(
εo + εy · ∆N

)
(39)

When the stain increment ∆ε from a negative value becomes positive, then:

∆P = 1 + A3 ·
(

εmax − εmin

2A4εy

)0.8

(40)

εo =
fy · ∆P − Esh · εy · ∆P − frev + E0 · εrev

E0 − Esh
(41)

σo = − fy · ∆P + Esh

(
εo + εy · ∆P

)
(42)

where εmax is the absolute value of the maximum strain in the current loading branch, and
εy and fy are the yield strain and yield stress, respectively.

In conclusion, this steel model is capable of capturing the stress hardening during
a cyclic loading. The model parameters A1 to A4, cR1, cR2, and Ro depend on the steel
type and can be considered as constant mechanical properties of steel, which are usually
determined experimentally. For common steel types used in daily practice, these model
parameters that mainly characterize the constitutive law of steel can take the following
values in Table 1.

Table 1. Parameter values of steel constitutive model.

Parameter Proposed Value

b 0.02
Ro 10 to 20
cR1 0.925
cR2 0.15
A1 0.00
A2 1.00
A3 0.00
A4 1.00

4. General RC-Beam-Type Element—FEM Formulation

In this paragraph, the prerequisite mathematical relations for the FEM formulation of
the proposed model’s algorithm are presented. The model algorithm is described in the
next paragraphs.

Figure 6 shows the forces, Q, and the corresponding displacement degrees of freedom,
q, of the member’s end nodes in its local coordinate system xyz, considering rigid body
mode (RBM). The torsional moment is neglected as it is considered constant and uncoupled
with the rest of the degrees of freedom. Thus, the degrees of freedom of each element



Appl. Sci. 2024, 14, 2188 10 of 40

consist of three forces and two bending moments corresponding to three displacements
and two rotations per end node, respectively.
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In the present mathematical formulation, in addition to the complete kinematic state,
the relative position of the member in the XYZ space is also adopted due to its transverse
displacements. This relative position results from eliminating the transverse degrees of
freedom to the axis of the element. The complete kinematic state can be recovered later
based on the geometric relationship that relates the two states. Thus, there are five degrees
of freedom left in the member, which correspond to the axial force Q5 and two bending
moments at each node (Q1, Q3, and Q2, Q4, respectively), as shown in Figure 7. These
forces correspond to an axial displacement q5 and to two rotations per end node (q1, q3, and
q2, q4, respectively).
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Element displacement and force vectors, q and Q, (considering RBM) are related to their
corresponding vectors, q and Q, (without RBM) via the following transformation matrix LRBM:

Q =
[

Q1 Q2 Q3 Q4 Q5 | Q6 Q7 Q8 Q9 Q10
]T

q =
[

q1 q2 q3 q4 q5 | q6 q7 q8 q9 q10
]T (43)

Q =
[

Q1 Q2 Q3 Q4 Q5
]T

q =
[

q1 q2 q3 q4 q5
]T (44)

q = LRBM · q
Q = LRBM · Q

(45)

LRBM =

1̄ 2 3 4 5 6 7 8̄ 9̄ 10
0 1/L 0 0 1 | 0 −1/L 0 0 0
0 1/L 0 0 0 | 0 −1/L 0 0 1
0 0 −1/L 1 0 | 0 0 1/L 0 0
0 0 −1/L 0 0 | 0 0 1/L 1 0
−1 0 0 0 0 | 1 0 0 0 0


1
2
3
4
5

(46)

The conversion of vector quantities (forces, displacements) between local and global
coordinate systems is performed through the transformation matrix LTM. In its general
form for a finite element with six degrees of freedom per node, the matrix LTM has the
following form,

LTM =


R 0 0 0
0 R 0 0
0 0 R 0
0 0 0 R

, (47)

where R is the following submatrix with the direction cosines Cx, Cy, and Cz with respect to
the global coordinate system XYZ. Angle α is the rotation angle around x axis of the element.

R =

 Cx Cy Cz

−CxCy cos a+Cz sin a
Cxz

Cxz cos a −CyCz cos a+Cx sin a
Cxz

CxCy sin a−Cz cos a
Cxz

−Cxz sin a CyCz sin a+Cx cos a
Cxz

, Cxz =

√
Cx

2 + Cz
2 (48)

For the present 5-degree-of-freedom element, the 4th and 10th rows and columns of
matrix LTM must be omitted.

Finally, the multiplication LRBM·LTM gives the final element-transformation matrix
LELE that relates the two element states (with and without RBM) and is used for either
forces or displacements.

LELE = LRBM · LTM
q = LELE · q
Q = LELE · Q

(49)

Figure 8 depicts the forces (axial force N and two bending-moment components My
and Mz with respect to local axes y and z) for a typical cross-section of arbitrary shape of an
RC beam element in a distance x from the start node. The corresponding cross-sectional
deformations are the axial displacement εo(x) of its mass center cm and the curvature φ(x)
about the neutral axis n-n with curvature components φy(x) and φz(x), respectively. The
orientation of axis n-n is θn(x) with respect to the y centroidal axis at a normal distance dn(x)
from point cm.

Thus, without RBM, the force and displacement vectors of the element are:

the force vector Q =
[
Q1 Q2 Q3 Q4 Q5

]T (50)

and the displacement vector q =
[
q1 q2 q3 q4 q5

]T (51)
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while the corresponding cross-sectional vectors are:

the force vector D(x) =

Mz(x)
My(x)
N(x)

 (52)

and the displacement vector d(x) =

φz(x)
φy(x)
εo(x)

. (53)
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According to the classic FEM formulation, matrix b(x) relates the element-nodal load
vector Q with the corresponding cross-sectional load vector D(x) at a specific location x,
using the relation

D(x) = b(x) · Q (54)

where

b(x) =

Q1 Q2 Q3 Q4 Q5 x
L − 1 x

L 0 0 0
0 0 x

L − 1 x
L 0

0 0 0 0 1


Mz(x)

Mz(x)

N(x)

. (55)

In the above equation, it is assumed that the axial force, N(x), remains constant along
the length of the member, while the distributions of the bending moments Mz(x) and My(x)
are linear. Therefore, the interpolation functions described in matrix b(x) do not cover the
case of intermediate loads on a member. To be able to support this case, it is necessary to
appropriately modify the interpolation functions of this matrix.

5. Cross-Section Model Based on Polygonal Discretization

The main cross-section-analysis problem of a typical RC member subjected to a known
set of bending moments combined with axial force is to find the correct position and
orientation of the neutral axis of the cross-section and of its curvature, adopting the classical
Navier–Bernoulli assumption about plain sections after bending.
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In these geometric computations, calculation of the concrete-compressive force is
involved, which is performed by integrating the concrete compressive-stress distribu-
tion (usually a second-order polynomial) that acts on a random geometric shape of the
compressive zone of the cross-section.

In classical fiber models, the cross-section is divided into fibers, which are usually
square, rectangular, or in some cases, triangular. Each fiber is associated with a material,
which is either concrete or steel, with the appropriate stress–strain constitutive law, consid-
ering only its uniaxial response. The control point of each fiber, i.e., the geometric point at
which the stresses are calculated according to the relevant constitutive law, is defined at its
mass center. The circular reinforcing bars are placed in their predetermined positions, and
their control points are placed at their geometric center.

An example of discretization of a cross-section with random shape into rectangular or
square fibers is shown in Figure 9a,b.
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Figure 9a shows a coarse-fiber mesh, in which the reinforcement bars are not inscribed
in the predefined fibers, which are initially characterized as concrete fibers only. For this
reason, the compressive force Fs,bar of a particular steel bar of area As,bar and centroid strain
εs,bar is computed as

Fs,bar = As,bar · [σs(εs,bar)− σc(εs,bar)] (56)

where σs and σc are the stress functions of steel and concrete, respectively.
Figure 9b shows a fine mesh of fibers, with fully inscribed reinforcement bars in the

predefined fibers. Thus, the fiber mesh consists of discrete concrete or steel fibers.
In both of the meshes above, a basic computational problem of a geometric nature

arises from the use of the classical fiber model, as described above, which in turn can lead
to a loss of accuracy in subsequent calculations. The problem is related to the geometrical
shape of the fibers (mainly rectangular) that can lead to a loss of computational accuracy
when the cross-section edges and/or the neutral axis, n-n, are not parallel to the local y and
z coordinate axes.
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In this case, any inclined line (edge or neutral axis) is approximated in a “scalable”
form, as shown in Figure 9. Thus, in cases where an inclined line intersects a fiber, the latter
is considered to be belonging entirely to the cross-section (for an edge) or in its compressive
or tensile part (for the neutral axis), depending on which side of the line its geometric center
lies on, as illustrated in Figure 9a,b. For the special case of finding the exact location of an
inclined neutral axis, this control leads to enormous convergence problems of the iterative
process of searching for this location, especially when this axis is at finite normal distances
from the fiber centers. This happens because of the different fiber areas from each side of the
inclined neutral axis in combination with their different strains and consequently stresses.

For the classical fiber method, it is known that the accurate computation of the neutral
axis position governs in turn the accuracy of the computation of the cross-section’s internal
force magnitudes. This accuracy and the iterative stability of the algorithm depend on the
density of the fiber mesh.

The finer the mesh, the more accurate the results received. On the other hand, a
large or huge number of fibers leads to high computational costs, which until recently
was a computation barrier for the practical use of fiber computational models to nonlinear
analyses of 3D framed structures.

The proposed model aims to give almost identical computational accuracy, solving
all of the above computational problems of the classical fiber models. It uses a different
approach for the cross-sectional discretization and for the concrete compressive-stress
integration over the compressive zone.

The discretization of the cross-section initially concerns its polygonization and subse-
quently concerns the use of the derived polygons for the purposes of the above-mentioned
stress integration. The whole process is performed in the following two stages.

• In the first stage, the cross-section geometric polygonization is performed separately
for its cover and its core area. Practically, this means that each one of these two areas is
suitably divided into trapezoids or triangles with their bases parallel to one centroidal
axis, e.g., y. This polygonization process uses the very fast algorithm of Zalik and
Clapworthy [21], which can handle any polygonal areas of random geometry, exclud-
ing any internal parts (such as holes in the case of RC cross-sections). An example
of discretizing such random polygonal areas into trapezoids or triangles is shown in
Figure 10, where each different color represents a separate area.
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Discretized area.

• In the second stage of the process, control points are placed uniformly and with
appropriate density on the perimeter and the inside of each trapezoid or triangle in
order to create a grid of points to be used for Delaunay triangulation. Next, a Voronoi
diagram is computed that defines the influence area of each control point. Figure 11
depicts the process of polygonising a random RC-cross-section shape, placing control
points in it followed by Delaunay triangulation, and the final result of the Voronoi
diagram of each separate polygonal area. Cyan and yellow colors refer to core and
cover of the cross-section, respectively.
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As will be described in the following sections, the Delaunay triangulation will be used
for calculating the concrete-compressive force Fc, due to the distribution of the concrete-
compressive stresses over the cross-section compressive area, while the Voronoi diagrams
will be used for the computation of the cross-sectional stiffness.

The above-mentioned inelastic constitutive stress–strain law is assigned to control
points of a specific trapezoid of a material (concrete cover or confined core). Therefore, the
inelastic response at each control point is calculated in each iteration of the main model
algorithm, according to its constitutive law.

However, in order to calculate the stiffness of the cross-section, it is also necessary to
know the influence area of each control point, cp,i. This influence area, AIp,i, is obtained from
the calculated Voronoi diagram of all the points of each trapezoid (Figures 11e,f and 12).

Following the classic definition of the Voronoi diagram (Figure 12), it should be recalled
that for a given plain area with a given set of scattered points in it, which are considered
control points, the diagram is essentially a discretization of the whole area into a set of
individual influence areas, one for each control point of the set. A unique characteristic
of a particular influence area is that all of the points contained within it are closer to its
particular control point than to any other point of the given control-point set. Thus, each
Voronoi area can be considered the influence area of its control point.
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5.1. Control Cross-Sections and Neutral Axis Position and Orientation

The main algorithm of the proposed model, which is described in the following section,
considers a number of control cross-sections along its axial coordinate x (Figure 13) in order
to take into account the distributed inelasticity over its length L.
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For each load step, the deformation vector d(x) of Equation (53) of each control cross-
section is computed iteratively in the global algorithm of the model. Thus, for a specific
control section, the values of the components εo, φy, and φz of vector d(x) determine
the position and orientation of the neutral axis n-n. After that, the internal axial load
N and its corresponding moment components My and Mz, of the force vector D(x) of
Equation (52) can be computed, adopting the aforementioned triangulation technique. The
computation of N, My, and Mz is performed per material, concrete or steel, as described in
the following text.

5.2. Concrete Compressive Resultant Force Fc

In the proposed model, for every neutral axis position and orientation in a particular
control cross-section, the process of calculating the concrete-resultant-compressive force Fc
over the compressive zone of this cross-section significantly differs from that followed in the
classical fiber models. In the proposed model, the 3D shell shape of concrete-compressive
stresses σc is obtained point-by-point from the determination of the corresponding stresses
at each vertex (control point) of the Delaunay triangles. Thus, the total resultant compres-
sive force Fc of concrete is calculated as the volume enclosed by this 3D shell.

The general case of a cross-section under bending with combined axial load considers
two parts of the total compressive zone of a cross-section: the unconfined part, consisting of
the concrete cover, and the confined one, consisting of the concrete core inside the stirrups.
Each of these parts obeys its own 3D shell of concrete-compressive stresses due to the
different strengths of these two concrete parts. The subcase where the two parts obey a
unique continuous 3D shell of stresses is that in which the confinement by the stirrups is
extremely small and is thus neglected. This happens in old RC structures with insufficient
stirrup confinement.

Figure 14 shows the 3D-shell shape of concrete-compressive stresses σc for the random
cross-section shape of Figures 8 and 9. For presentation simplicity, insufficient stirrup
confinement is assumed so both the concrete cover and the core of the compressive zone
are affected by a continuous 3D shell of stresses. Due to biaxial bending conditions, an
inclined neutral axis n-n is shown, at angle θn with respect to the centroidal axis y. It
is noted that angle θn differs in general from the angle a of the bending moment com-
ponents My and Mz of the external imposed-bending moment vector M, as explained in
Sfakianakis [22]. A typical triangle with vertices as the control points, cp,i, is shown in the
compression zone of the cross-section, in correspondence with Figure 11d, as resulted from
the polygonization technique.
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Each vertex cp,i has a strain Icp,i and a concrete-compressive stress σcp,i. Adopting the
Navier–Bernoulli assumption about plain cross-sections after bending, the strain εcp,i is
computed as

εcp,i
(
ycp,i, zcp,i

)
= εo − ycp,i · φz + zcp,i · φy (57)

whereas the concrete-compressive stress σcp,i(εcp,i) is computed from the constitutive stress–
strain law of Section 2.

Thus, the shape of the 3D shell of the concrete-compressive stresses is approximated
by drawing the values of the stresses σc = σcp,i of each control point cp,i of the cross-section,
corresponding to a given deformation εc = εcp,i that is calculated using Equation (57). As a
result, the 3D shell of the stress space is composed of triangular prisms. The bases of these
triangular prisms, on the cross-section plane, correspond to the Delaunay triangulation,
while their tops form the 3D shell of the concrete-compressive stresses on the compres-
sion zone of the cross-section. An example of the formed 3D stress surface is given in
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Figure 15a for a classic rectangular cross-section, considering biaxial bending (inclined
neutral axis n-n) and an unconfined concrete core. Figure 15b shows the detail of Delaunay
triangles intersected by the neutral axis n-n. Each of these triangles, and their corresponding
triangular prisms, is split into a compressive part (yellow color) and a tensile part (cyan
color), the latter with zero stress values.
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and (b) Delaunay triangles intersected by the neutral axis.

Because of this splitting, each triangular prism is divided into two different stereomet-
ric shapes (i.e., tetrahedron, etc.).

The special case where, during previous load steps, a failure has been preceded in one
or two compressed vertices of a split triangle by the neutral axis is taken into account by
setting zeroed values for the compressive stresses in these vertices. The same technique
is also applied to concrete vertices that are entirely inside the compressive zone of the
cross-section where a failure may had occurred during previous load steps.

Figure 16 shows all of the six possible stereometric forms of the prisms, which may
occur according to the following scenarios:

• Cut of a prism by a plane normal to the cross-section plane and passing through the
neutral axis n-n, considering failure or no failure of the vertices.

• A prism belonging entirely to the compressive zone with one or more vertices in failure
during previous load steps.

Stresses σ1,2,3 are the concrete-compressive stresses of vertices 1, 2, and 3 of a Delau-
nay triangle. Force Fc,tr is the resultant compressive force of the remaining compressed
stereometric part of the triangular prism, after it is cut off, while (ytr, ztr) are the coordinates
of the point of application of this force. The cyan-shaded areas denote the cut-off part of
the triangle with completely zeroed stresses. Flowchart FC4 in Appendix A shows the
searching algorithm for categorizing a prism to one of the six stereometric cases of Figure 16,
based on the stress state of its triangular base.

In this way, the progressive failure of small concrete areas inside the compressive
zone is also taken into account quite realistically. To achieve this result, the previous
loading history of each control point cp,i must be taken into account. For the cross-section
of Figure 15, Figure 17 shows an indicative “subsidence” that occurs in the 3D shell of
concrete compressive stresses σc due to the failure of two control points.

Finally, for the computation of the resultant concrete (index “con”) compressive force Fc,
only the n nonzero prismatic volumes inside the compressive zone of a particular control
cross-section are taken into account. This force and its moment components My and Mz are
computed as follows:

Ncon = Fc =
n

∑
itr=1

Fitr , Mcon
y =

n

∑
itr=1

Fitr · zitr , Mcon
z =

n

∑
itr=1

Fitr · yitr (58)
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5.3. Steel Resultant Force Fs

For the calculation of the resultant force Fs of the longitudinal-reinforcement steel
bars, the constitutive law of Section 3 is used. For each bar, ibar, with section area Aibar and
position coordinates (yibar, zibar) in the cross-section, its stress σibar is computed as a function
of its centroidal strain εibar. The latter is computed from Equation (58) after replacing
subscript cp,i with ibar. Thus, the resultant steel (index “st”) force Fs and its moment
components My and Mz in a particular control cross-section are computed as follows:

Nst = Fs =
nbar

∑
ibar=1

σibar · Aibar , Mst
y =

nbar

∑
ibar=1

σibar · Aibar · zibar , Mst
z =

nbar

∑
ibar=1

σibar · Aibar · yibar (59)

For a more accurate calculation of the internal force and moment components of the
cross-section, the circular areas Aibar that are occupied by the steel-reinforcing bars must be
subtracted from the surface of the Delaunay triangles. The methodology implemented to
achieve this is the placement of additional control points for the concrete-steel bar regions,
icbar, at the centroids of the reinforcing bars, having assigned on them the constitutive law
of concrete. In this way, the resultant concrete-steel (index “cst”) force and its moment
components at regions Aibar, which must be subtracted, are computed as follows:

Ncst =
nbar

∑
ibar=1

σicbar · Aibar , Mcst
y =

nbar

∑
ibar=1

σicbar · Aibar · zibar , Mcst
z =

nbar

∑
ibar=1

σicbar · Aibar · yibar (60)
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5.4. Final Internal Force and Moment of Cross-Section

For each control cross-section of coordinate x along the element length (Figure 13),
the final internal axial load N and its moment components My and Mz are obtained as the
algebraic sum of the Equations (58)–(60).

N = Ncon + Nst − Ncst , My = Mcon
y + Mst

y − Mcst
y , Mz = Mcon

z + Mst
z − Mcst

z (61)

5.5. Cross-Section Stiffness Matrix

In the FEM formulation of the proposed model, the stiffness matrices ks of the control
cross-sections are used for the derivation of the element-stiffness matrix KE. For each control
cross-section with coordinate x along the element length, its stiffness matrix ks is formulated
as the contributions of all of the n Voronoi regions of area Acp,i of the control points cp,i with
coordinates (ycp,i, zcp,i) (Figures 11f and 12). Taucer et al. [5] used the same formulation for
their fiber model, where the areas Acp,i were those of the fibers. The modulus of elasticity
Ecp,i of each control point is computed from Equations (8), (16), (22) and (25), depending
on the loading-unloading-reloading branch of the concrete constitutive law in which its
stress–strain state belongs. Following these definitions, the relation of the cross-sectional
stiffness matrix ks is as follows:

kS =

Mz My N

n
∑

cp,i=1
Ecp,i · Acp,i · y2

cp,i

n
∑

cp,i=1
Ecp,i · Acp,i · ycp,i · zcp,i

n
∑

cp,i=1
Ecp,i · Acp,i · ycp,i

n
∑

cp,i=1
Ecp,i · Acp,i · ycp,i · zcp,i

n
∑

cp,i=1
Ecp,i · Acp,i · z2

cp,i

n
∑

cp,i=1
Ecp,i · Acp,i · zcp,i

n
∑

cp,i=1
Ecp,i · Acp,i · ycp,i

n
∑

cp,i=1
Ecp,i · Acp,i · zcp,i

n
∑

cp,i=1
Ecp,i · Acp,i


φz

φy

N

(62)

6. Algorithm of the Proposed Model

In the following sections, the critical points of the algorithm of the proposed model
are described at the levels of structure, member, and cross-section. The complete algo-
rithm is provided in three flowchart forms in Appendix A, and it is presented with full
computational detailing for each of its steps. It consists of the following three nested
iterative loops:

• The first-outer loop (Flowchart FC1) refers to the classic FEM formulation on the
structural level, introducing some major modifications for the needs of convergence,
as will be described in Section 6.1.

• The second loop (Flowchart FC2), internal to FC1, refers to the element level. The
mixed-formulation method of Taucer et al. [5] is applied for equilibrium achievement
for each element of the structure, using an iterative procedure.

• Finally, the third loop (Flowchart FC3), internal to FC2, refers to the cross-sectional
level of an element. The cross-section equilibrium is achieved through an iterative
process, based on the element’s nodal internal forces and displacements of the second
loop (Flowchart FC2). This process is applied to each cross-section of the element as
a subroutine of the second loop. For reference purposes, the computational steps of
each flowchart of Appendix A are accompanied with numbering.

6.1. Algorithm of the Proposed Model on the Structural Level

As mentioned before, the mixed-formulation method of Taucer et al. [5] is the basis of
the developed FE algorithm on the structural level. The choice was made using the criterion
that this algorithm outperforms in comparison with other alternative ones in terms of the
numerical stability it provides. More specifically, according to this reference, the major
advantages of the algorithm can be summarized as follows:
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• Equilibrium is always satisfied throughout an RC member after selecting linear inter-
polation functions assuming no intermediate loads on the member. Compatibility of
deformations is achieved by computing the member’s end deformations by integrating
those of the distributed control cross-sections.

• The inelastic response of the RC members can be calculated without particular compu-
tational difficulties, even in cases of lightly reinforced members or members under
high axial load.

Special convergence criteria and methods for avoiding numerical problems have been
introduced in the main FE algorithm (Flowchart FC1), which are critical for the proposed
model. Numerical problems can arise for a number of reasons, the main ones being the
following:

• The use of the Newton–Raphson method, whose convergence becomes unstable when
the tangent stiffness tends to zero.

• The advanced degree of inelasticity of the structure. This can happen when a number
of control cross-sections of elements have yielded or failed.

• The partial failure of cross-sections, caused either by concrete cracking or by yielding
of the reinforcement bars.

• The method of calculating the cross-section’s internal forces (more details in Section 6.2)
• Imposing large values of load increments.
• Accumulative error, regarding the unbalanced forces, from previous analysis steps.

The main and critical points of the FEM algorithm are described in the next sections,
in reference to flowchart FC1 of Appendix A.

6.1.1. Loop for the Application of Load Steps

The outermost loop, with backward step order 15-16-17-18-19-20-6 (red path), refers to
the imposing of load-step increments ∆P in the structural level. In this loop, the load-step
counter is denoted as k, while the iteration counter within a load step (intermediate loop) is
denoted as i. The loop is repeated for every step k of the analysis. The load is imposed in
the form of load increments ∆P, considering all structural degrees of freedom.

At every load step k and iteration i, solution for the change of the displacement incre-
ments δ∆Uk,i is performed in step 7. With given δ∆Uk,i, the element-state determination is
computed in step 9. Then, the loop continues with the classic FE formulation in steps 12
through 15. In step 15, the convergence of the algorithm is checked. If it is successful, then
all of the necessary quantities are updated in step 16 (i.e., element and structure stiffness,
forces and deformations of element control cross-sections and stress–strain status of control
points cp) following the classic FE formulation.

6.1.2. Convergence Criteria for Newton–Raphson Iterations per Load Step

The intermediate loop, with backward step order 15-22-23-24-7 (green path), refers to
the iterations of the Newton–Raphson method, which is necessary for the determination of
the structure state in terms of forces and deformations at each load step. These iterations,
indicated by i, aim for the minimization of the unbalanced forces of the structure, resulting
in convergence of the algorithm and therefore the equilibrium of the structure.

The decision for convergence or no convergence is made in step 15, which includes
two criteria for this purpose. Convergence is considered to be achieved if at least one of the
two criteria is satisfied.

The first criterion is the major one and it concerns the evolution of the relative change
of the structure internal forces Pint in successive iterations i of the following algorithm∣∣∣∣∣Pi

int − Pi−1
int

Pi−1
int

∣∣∣∣∣ < tol1 (63)

where the tolerance tol1 usually takes values between 0.001 and 0.01. The criterion is
applied for each degree of freedom of the structure.
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The second convergence criterion accompanies the first and concerns the decreasing
evolution of the absolute values of the unbalanced forces, according to the equation∣∣∣Pi

U

∣∣∣ < tol2 (64)

where tol2 depends on the number of iterations i in the structure level of the algorithm.
It is also applied for each degree of freedom of the structure and is checked along

with the first criterion in each iteration i, if necessary. Generally, the value of tolerance tol2
gradually relaxes the value of limit tol1, but in terms of load values (forces or moments), up
to an upper limit predefined by the user for the computer analysis.

As it is explained in detail in a section below, in the case of no convergence at all,
for a particular load step k, the load increment ∆P is reduced by successive divisions by
three and computations of the load step k are repeated from the beginning. The greater
number of successive divisions of the load increment declares the greater difficulty of the
algorithm to converge. The small increase of the value of tol2 leads to a “relaxation” of this
convergence criterion. But it is pointed out that this relaxation facilitates convergence at the
current load step k, while at the same time it has no adverse effect on the overall accuracy.
The small error introduced in the current load step k is corrected in the next k + 1, where
the tolerance tol2 is reset to its original value. Thus, the minimal negative influence of the
second accompanying convergence criterion is locally limited to the specific step in which
the problem occurred.

The combination of the above two convergence criteria guarantees the stability and
convergence of the overall FE algorithm as it has been successfully verified in a large
number of analyses for predicting experimental results.

6.1.3. Loop for Calculation of Unbalanced Forces per Element

The innermost loop, with backward step order 10-11-9 (blue path), refers to the appli-
cation of the mixed-formulation method to determine the force and deformation state of
each element of the structure. For this purpose, step 9 of this loop is implemented in the
embedded flowchart FC2 and it is presented in Section 6.2. In this inner flowchart, con-
vergence is considered to be achieved after j iterations trying to minimize the unbalanced
forces of the element.

6.1.4. Split of the load-step increment for Convergence of the FEM Algorithm

The most usual numerical problems that occur in the practical application of sim-
ilar FEM formulations and lead the algorithm to no convergence for equilibrium, are
the following:

• The iterations of the algorithm do not lead to the solution monotonically.
• The algorithm is getting “trapped” between two values, one on each side of the

solution (“flip-flop” phenomenon).
• Unacceptable convergence tolerance.

In the proposed model, a simple methodology for handling such problems has been
introduced to the main FEM algorithm. It is based on the fact that small loading steps
∆P usually lead to easier convergence. As for the computational cost due to the possible
use of many small steps, this is discussed in Section 7.

Thus, for convergence purposes, a maximum number of Newton–Raphson iterations,
max_iter, is defined in which the method is expected to converge without problems. If, in
a particular load step k, this value is reached without convergence of the algorithm, then
the initial load increment ∆Pk is divided by 3 and the computational process of load step k
starts from the beginning (setting the iteration counter i to zero), with a “new” ∆P value
equal to ∆Pk

1/3 = ∆Pk/3. If the algorithm fails again to converge, having reached the
maximum number of iterations max_iter, the previous process is repeated by dividing the
already reduced value of ∆Pk/3 by 3. The new value ∆Pk

1/3 = ∆Pk/32 is now used for the
recomputation of step k. This process of dividing the initial load-step increment ∆Pk by
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three is continued until a final appropriate value ∆Pk
1/3 = ∆Pk

3split3 < ∆Pk is found for which
convergence occurs for load step k. Superscript split3 is the counter of the number of divi-
sions by 3. Therefore, for split3 number of successive divisions, the current value of ∆Pk

1/3
is given by the following equation:

∆Pk
1/3 =

∆Pk

3split3 (65)

The decision for the splitting of load increment ∆Pk is made in step 22 of the algorithm.
Split is activated if i = max_iter and the whole process follows the backward step order
22-25-26-6 of flowchart FC1.

Thus, step k is divided into two parts, the first ∆Pk
1/3 and the second ∆Pk

res that is
equal to:

∆Pk
res = ∆Pk − ∆Pk

1/3 = ∆Pk − ∆Pk

3split3 (66)

If the application of the first part leads to convergence, then the application of the
second part follows without changing the load-step counter k, i.e., this second part is
applied as a supplementary load portion in the current step k. The process of application
of the second part ∆Pk

res is implemented in steps 17-21-6 of flowchart FC1. The decision
for this application is made in step 17 that gives a “reminder” that a previous split has
occurred in step 22.

As mentioned previously, the two convergence criteria of step 15 are used, when the
split-load increments ∆Pk

1/3 and ∆Pk
res are applied.

In flowchart FC1, the magenta paths refer to the bifurcation of steps 22 and 17 of
the algorithm, when the process of applying a reduced load increment ∆Pk

1/3 and its
supplementary value ∆Pk

res is activated.
This methodology of local reductions of the loading increments ∆P, when needed,

proved to be very effective. For the purpose of computing cost, in combination with getting
only a small error, divisions by three proved to be the best choice after thorough numerical
investigation with other values, such as two, four, and five.

6.2. Algorithm of the Proposed Model on the Element Level

In classic FEM formulation, in analysis step-iteration k-i, the following displacement
vector is applied to the structural end nodes of an element:

qk,i = qk−1,i + ∆qk,i (67)

As proposed by Taucer et al. [5], internal to iteration i, another iterative procedure
(with iteration index j) is taking place with the aim of minimizing the unbalanced forces in
the cross-section level.

The procedure starts with the computation of the nodal-force increments ∆Qj of each
element in iteration j as

∆Qj =
[
FE

j−1
]−1

· ∆qj = KE
j−1 · ∆qj if j = 1 (68)

Herein, the element’s flexibility matrix, FE, results from integrating the individual
flexibility matrices fs(x) of the control cross-sections over the element length using the
Gauss–Lobato integration scheme as follows:

Fj−1
E =

L∫
0

bT(x) · fj−1
s (x) · b(x)dx ⇒ Kj−1

E =
[
Fj−1

E

]−1
(69)

Thus, the element-stiffness matrix KE can be computed by inverting its flexibility
matrix FE.
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Next, from the element nodal-force increments ∆Qj the control cross-section force
increment vector ∆Dj(x) can be derived using Equation (55), i.e.,

∆Dj(x) = b(x) · ∆Qj (70)

For each control cross-section x, the corresponding deformation vector ∆dj(x) is com-
puted from the following equation.

∆dj(x) = rj−1(x) + fj−1
s (x) · ∆Dj(x) , x ∈ [0, L] (71)

In Equation (71), fj−1
s (x) is the cross-section-flexibility matrix at the previous iteration

j − 1, and rj−1(x) is the corresponding vector of the residual deformations that must be
minimized during the j iterations. This vector was computed in the previous iteration
j − 1, as

rj−1(x) = fj−1
s (x) · Dj−1

U (x) , Dj−1
U (x) = Dj−1(x)− Dj−1

int (x) (72)

where Dj−1
U (x) is the cross-section’s unbalanced forces and Dj−1(x), Dj−1(x)

int are its external
and internal forces, respectively.

Then, for the current iteration j, the internal cross-section forces Dj(x)
int are computed.

The computation is based on the procedure of Section 5 and is implemented in the embed-
ded flowchart FC3 (see Section 6.3). Also, new values of quantities Dj

U(x) and rj(x) are

computed from Equation (72). The cross-section-flexibility matrix fj
s(x) is computed by

inverting the corresponding stiffness matrix kj
s(x) of Equation (62).

The execution of the above computations for all control cross-sections of an element
is followed by the update of its flexibility and stiffness matrices, Fj

E and Kj
E, respectively,

using Equation (69), for use in the next iteration j + 1.
The final step of the above procedure is the check for minimization of the unbalanced

forces Dj
U(x) for every control cross-section x, using the convergence criteria of Section 6.1.

If convergence is not achieved, a new iteration j + 1 starts with the element’s residual
displacements sj

E in place of the original ∆qj of Equation (68). The element’s residual
displacements are computed by integrating the residual deformations rj(x) of all control
sections over its length using the Gauss–Lobato integration scheme:

sj
E =

L∫
0

bT(x) · rj(x)dx (73)

It is obvious that the formulation method of Taucer et al. [5] is a hybrid method in the
sense that it tries to satisfy both the equilibrium conditions and the compatibility of nodal
displacements with cross-section deformations.

The above iterative computations of the control cross section incremental force vector ∆D
and the corresponding deformation vector ∆d are similar to that of the Newton–Raphson
method in the structural level.

On the element and cross-sectional levels, the mixed-formulation method of Taucer et al. [5]
works primarily with the infinitesimal changes δ∆x of increments ∆x, with x being the force
or displacement or deformation vectors of an element and of its control cross-sections.

In the following sections, the main and critical points of the algorithm on element
level are described with reference to flowchart FC2 of Appendix A.

6.2.1. Loop for Element-state determination

The outermost loop of the algorithm, with backward step order 13-14-15-17-18-2 (red
path), refers to each element ele of the structure. It encloses the full algorithmic-iterative
procedure that was described previously in detail, i.e., all of the computations on the
element and cross-sections levels.
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Initially, in step 2 the incremental displacement changes δ∆
−
q

k,i
of the ends of each

element are recovered from the vector of structural displacements ∆U, which in turn are
converted without RBM mode, i.e., to δ∆qk,i (see Figures 6 and 7 and Equations (43)–(49)).
Then, in step 3 follows the update of the element-end-nodal-displacement increments ∆qk,i.
Step 4 and onward follow the iterative procedure of the algorithm.

6.2.2. Loop for Iterations

The intermediate loop, with backward step order 13-19-23-24-5 (green path), encloses
the iterative part of the computations, on element and cross section levels, which are
performed in each iteration j of the algorithm. A maximum number max_iter_elem of
permitted iterations is assumed. The decision for convergence of the unbalanced forces
Dk,i,j

U of the control cross-sections of each element is made in step 13. The two convergence
criteria of Section 6.1 are used.

In steps 12 and 23, the Gauss–Lobato integrations of Equations (69) and (72) are
performed with weights w. Subscript sec denotes positions x of the control cross-sections
along an element length.

6.2.3. Loop for Cross-Sections

The innermost loop, with backward step order 10-11-7a (blue path), encloses the
computations of the algorithm related to the control cross-sections, sec, of each element. The
aim of this loop is the computation of the unbalanced forces Dk,i,j

U of each control section of
an element. This computation is performed in step 8 of this loop and is implemented in
the embedded flowchart FC3 which is presented in Section 6.3. Moreover, in this loop the
residual deformations rk,i,j the flexibility and stiffness matrices, fk,i,j

s and kk,i,j
s , respectively,

are computed and stored for each control cross-section of an element.

6.2.4. Split of the Change of the Element Incremental Displacement

In cases where the maximum permitted number of iterations max_iter_elem is exceeded
without convergence in step 13, a procedure for reducing the order of magnitude of

the change of the incremental displacements δ∆
−
q

k,i
is applied, similarly to that for the

incremental load step ∆Pk in the main FEM algorithm (see Section 6.1).

The reduction of δ∆
−
q

k,i
is achieved by successively dividing its current value by

three. A counter split3e is used for the number of divisions, establishing an upper bound
max_split3e for them.

It is to be remembered that these reductions of δ∆
−
q

k,i
occur during the current load

step k and iteration i of the FEM algorithm. Thus, in cases where the bound max_split3e has
been exceeded (step 20) it is assumed that there is no convergence for the current element,
and the flow of computations returns to step 25 of flowchart FC1 for new reduction

of ∆Pk. In this way, the algorithm is not “trapped” to unlimited reductions of δ∆
−
q

k,i
for

a particular element, thanks to the upper bound max_split3e. If convergence is achieved

for a reduced value of δ∆
−
q

k,i
, δ∆

−
q

k,i

1/3, then rest value δ∆
−
q

k,i

res = δ∆
−
q

k,i
− δ∆

−
q

k,i

1/3 is applied
supplementarily.

In flowchart FC2, the magenta paths refer to the bifurcation of steps 19 and 15 of

the algorithm, when the process of applying a reduced load increment δ∆
−
q

k,i

1/3 and its

supplementary value δ∆
−
q

k,i

res is activated.
If the reduction process is successful, then the flow of computations returns to step 10

of flowchart FC1.
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6.3. Algorithm of the Proposed Model on the Cross-Section Level

In this section, the part of the algorithm for computing the internal resisting force
vector Dint of each control section of the element is described. This part is implemented
in flowchart FC3 and consists of three independent and successive loops of computations
which are described in the following sections.

6.3.1. Loop for Concrete Stresses of Control Points of a Cross-Section

In this loop, the concrete-compressive stress σcp is computed for each concrete control
point, cp, of the total, Ncp, of a control cross-section of an element.

Following the assumption of Navier–Bernoulli for plane sections remaining plane
after bending, the axial deformation of each control point cp of a cross-section in distance x
from the member’s start node is computed from Equation (57), i.e.,

εcp
(

x, ycp, zcp
)
= εo + ycp · φz(x) + zcp · φy(x) , cp = 1, Ncp (74)

Then, for each control point cp, its stress σcp(εcp) is computed in step 3 from the concrete
σ–ε constitutive law of Section 2. It is to be remembered that this law takes into account the
previous loading history of each control point, i.e., in which unloading or reloading branch
it belongs.

6.3.2. Loop for Concrete Forces Fc of Triangular Prisms

Having computed in the previous loop the stresses σcp of the vertices of each Delaunay
triangle, tr, of the total Ntr triangles of the concrete cross-section, the corresponding trian-
gular prism’s concrete-compressive force Fc,tr is now computed, along with the coordinates
(ytr, ztr) of the point of its application. These computations take place in step 8, taking into
account the subcases of the intersected prisms (see Section 5, Figures 15 and 16) that are
included in flowchart FC4.

The total axial force N and its moment components My and Mz, which are due to
concrete-compressive stresses only, are computed in step 9 (see Equation (58)).

6.3.3. Loop for Rebar Forces

In the third loop, the forces Fb of the reinforcement-longitudinal bars are computed
according to Equation (59) for each bar, b, of total Nb. The axial force Fb of a bar is equal to
σb·Ab, where σb and Ab are the axial stress and area, respectively, in its center point, which
is a separate control point for this purpose. Stress σb is a function of the bar’s axial strain εb,
σb = σb(εb), with εb computed in step 13 as

εb(x, yb, zb) = εo + yb · φz(x) + zb · φy(x) , b = 1, Nb (75)

Then, in step 14 the stress σb(εb) is computed from the steel σ–ε constitutive law of
Section 3. As with concrete, the steel σ–ε law takes into account the previous loading history
of the bar’s center point.

For each bar, in step 15 its axial force Fb and its moment components My,b and Mzb
are computed (see Equation (59)), while in step 16 they are added to the total force and
moments of the cross-section.

In step 17, force Fcd and its moment components My,cb and Mz,cb are computed for
the cyclic area of concrete occupied by each reinforcing bar (see Equation (60)). This force
and these moments are then subtracted from the corresponding ones of the cross-section in
step 18.

Thus, after the completion of the computations of the three loops, the internal resisting
force vector Dint = [N, My, Mz]T of a cross-section has been fully determined and the flow
of computations returns to step 8 of flowchart FC2.
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7. Significant Computational Characteristics of the Proposed Model

The proposed model aims to give a very good accuracy of its predicted numerical
results in comparison with experimental data, provided either in the specimen level or in
the form of scaled structures, while keeping the computational cost at a reasonable level.

Extensive previous experience using classical fiber models has shown that their numer-
ical accuracy depends on fine discretization of the fiber grid that leads to high computational
cost, even with the use of computational parallelization, in regard to modern computers
used in daily practice by engineers. When using a coarse discretization of the fiber grid
for keeping a low computational cost, the numerical accuracy gradually falls due to the
extremely approximative manner of integrating the concrete-compressive stresses σc over
the compressive zone of the cross-section. As this computational integration procedure
is embedded in the core of the algorithm of most of the inelastic models for RC beam ele-
ments, it has been proved that the low accuracy of computation of the concrete compressive
resultant force Fc and its acting point leads to an increase in Newton–Raphson iterations
and, therefore, in the computational cost (e.g., nonlinear analyses with SAP2000 or ETABS
using alternatively coarse or fine fiber discretization). Thus, when focusing on relevant
issues, such as:

• the issue of computational accuracy with reference to the aforementioned stress inte-
gration and cross-section-stiffness computation,

• the cross-section geometric shapes,
• the computational cost of the model, and
• the convergence improvement of the algorithm,

The basic computational characteristics of the proposed model, which give closer
numerical results to the experimental data in comparison with the models of Taucer et al. [5]
and Spacone et al. [6–8], are being summarized in the following subsections.

7.1. Shape of 3D Shell of Concrete-Compressive Stresses σc—Delaunay Triangularization

For the rectangular cross-section of Figures 15 and 18b shows the “scalable” forms
of the 3D-shell surface of stresses and of the neutral axis n-n, as produced by a fiber
model using a moderate-to-coarse grid of fibers. In classic fiber models, the cross-sections
of fibers are usually defined as rectangular, assuming constant stress equal to that of
their mass center, which also serves as a control point. The proposed model uses the
polygonization technique described in Section 5, according to which the polygons are
transformed to a Delaunay grid of triangles, with their vertices serving as stress-control
points. Comparison of the results between the proposed model and the fiber model shows
the evident superiority of the first, since it leads to the exact representation of the shell
surface of concrete-compressive stresses.

7.2. Inclined Cross-Section Boundaries with Respect to the Centroidal Axes

In the case of inclined cross-section boundaries with respect to the centroidal axes, the
classic fiber models approach any inclined boundary line in a “scalable” form, as depicted
in Figures 9 and 19. Figure 19 shows such an inclined boundary of a cross-section for which
unconfined concrete is assumed for both cover and core. Between the proposed model and
that of fibers, there is a deviation of the concrete-compressive-stress values in the vicinity
of the inclined boundary that is usually a common reason for the losses of accuracy and
convergence in the fiber models when they are used with relatively coarse fiber grid.
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7.3. Compressive Stresses σc at the Outermost Compressive Boundary of the Cross-Section

Another problem that leads to the loss of accuracy and convergence of the fiber models,
with relatively coarse fiber grids, is related to the concrete-compressive-stress values of the
outermost compressible boundary of the cross-section. As is shown in Figure 20, in the
classic fiber models the concrete-compressive stresses are calculated at the center points of
the fibers. These points deviate from the actual boundaries of the cross-section. In contrast,
the proposed model uses control points that lie on the real boundaries (see Figure 20). This
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means that any abrupt stress fluctuations close to the outermost compressive boundary
that may occur, for example due to cyclic loading, are accurately captured.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 31 of 43 
 

 
Figure 19. Concrete-compressive-stress approach at cross-section-inclined boundary by the pro-
posed model and the classic fiber model. 

7.3. Compressive Stresses σc at the Outermost Compressive Boundary of the Cross-Section 
Another problem that leads to the loss of accuracy and convergence of the fiber mod-

els, with relatively coarse fiber grids, is related to the concrete-compressive-stress values 
of the outermost compressible boundary of the cross-section. As is shown in Figure 20, in 
the classic fiber models the concrete-compressive stresses are calculated at the center 
points of the fibers. These points deviate from the actual boundaries of the cross-section. 
In contrast, the proposed model uses control points that lie on the real boundaries (see 
Figure 20). This means that any abrupt stress fluctuations close to the outermost compres-
sive boundary that may occur, for example due to cyclic loading, are accurately captured. 

 
Figure 20. Concrete compressive stresses σc at the outermost compressible boundary of cross section. 
Comparison of proposed and classic fiber model. 

7.4. Cross-Section Stiffness Matrix—Voronoi Diagram of Control Points 
For the computation of the stiffness matrices of the control cross-sections of an ele-

ment, a Voronoi diagram of the stress-control points is used. Based on the definition of a 
Voronoi diagram, the basic idea is that the stiffness of the cross-section area around a par-
ticular control point can reliably defined by the Voronoi area of this point. This technique 
led to rapid convergence of the model’s algorithm, significantly reducing the number of 
iterations per load step, as resulted from thorough numerical investigations on this theme. 
For this reason, the use of Voronoi diagrams in the topic of the computation of the cross-
section stiffness matrix is considered a very important innovation of the present model. 

7.5. Search Algorithms for Neutral Axis Position 
Numerical algorithms of some RC-beam-element models of distributed inelasticity 

for use a direct geometrical search algorithm for locating the position and orientation of 
neutral axis n-n of control cross-sections, for given values of end-nodal displacements and 

Figure 20. Concrete compressive stresses σc at the outermost compressible boundary of cross section.
Comparison of proposed and classic fiber model.

7.4. Cross-Section Stiffness Matrix—Voronoi Diagram of Control Points

For the computation of the stiffness matrices of the control cross-sections of an element,
a Voronoi diagram of the stress-control points is used. Based on the definition of a Voronoi
diagram, the basic idea is that the stiffness of the cross-section area around a particular
control point can reliably defined by the Voronoi area of this point. This technique led to
rapid convergence of the model’s algorithm, significantly reducing the number of iterations
per load step, as resulted from thorough numerical investigations on this theme. For this
reason, the use of Voronoi diagrams in the topic of the computation of the cross-section
stiffness matrix is considered a very important innovation of the present model.

7.5. Search Algorithms for Neutral Axis Position

Numerical algorithms of some RC-beam-element models of distributed inelasticity
for use a direct geometrical search algorithm for locating the position and orientation of
neutral axis n-n of control cross-sections, for given values of end-nodal displacements and
forces of an element. In fiber models, mainly when used with a relatively coarse-fiber grid,
this search algorithm may fall into a reciprocating “entrapment” within the dimension of
the height of a fiber, e.g., in the case of uniaxial bending of an orthogonal cross-section, as
depicted in Figure 21. This happens mainly because of the constant stress value over the
whole area of the fiber.
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The proposed model does not directly use such a geometrical search algorithm. Instead,
the cross-section deformation vector d, which describes the position and orientation of
the neutral axis n-n, results from Equation (71) iteratively (see Section 6.2 and step 7b of
flowchart FC2). Taking into account accurately the variation of stress values perpendicularly
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to the neutral axis, in combination with the geometric procedures for Delaunay triangles
that are intersected by it (see Section 5), the algorithm of the proposed model is free of the
danger of such “entrapment”.

Of course, the aforementioned iterative procedure of the proposed model could be charac-
terized as an indirect geometrical search of the position and orientation of neutral axis n-n.

7.6. Arbitrary Cross-Section Shapes

The main characteristic of the proposed model is that it can handle cross-sections of
arbitrary geometric shapes without the loss of accuracy regarding the before mentioned
integration over a geometrically randomly shaped compressive zone under biaxial bending
conditions combined with axial force.

7.7. Computational Cost of the Proposed Model

Coming to computational cost of the proposed model as a function of the discretization
of the cross-section with the Delaunay triangular grid, thorough numerical investigations
showed that a relatively coarse grid is enough for the accuracy and the convergence of
the algorithm. This is a major advantage of the proposed model in comparison to the
requested high discretization of the fiber models. The low computational cost of the
proposed model was also checked in a modern computer, similar to those used in daily
practice by the engineers.

7.8. Computer Implementation—Convergence Improvement of the Algorithm

The proposed model is implemented in the form of a finite element in the MINOS
FEM code, originally developed by Sfakianakis [23] in the university of Patras in Greece.
Further modifications were made on the core of the FEM algorithm in order to be adapted
to the mixed-formulation method of Taucer et al. [5]. The program is of general purpose
and is focused on nonlinear analyses of framed and solid structures with various types of
inelastic FE in its library. Verification applications of the proposed model using the MINOS
FEM code include the inelastic response prediction of experiments of beam and column
specimens and 2D and 3D scaled frames, and these are presented in Part II of this paper.

Focusing on the computational part of the algorithm, another major advantage is the
procedure of splitting the structural load increments ∆P and/or the incremental displace-
ments ∆q at the element level, which has been proven as very efficient for the convergence
of the whole algorithm. When needed, this procedure is activated automatically.

7.9. Concrete and Steel Reinforcement Parameters for Nonlinear Analyses

Usually, the incorporation of inelastic cyclic concrete and steel models into the devel-
opment of corresponding mathematical inelastic beam models for RC members must be
followed with the definition of the values of the ultimate strains εcu and εsu for concrete
and steel, respectively. Beyond these values, it is assumed that the complete failure modes
of the two materials have taken place.

For the case of nonlinear analysis for the prediction of the experimental nonlinear re-
sponse of a specimen (i.e., a single RC member or a scaled structure) these values, especially
for concrete, must be provided by the experimental investigators. If not, then the most
realistic values are those of specific modern codes for interventions, such as Part 3 of the Eu-
rocode 8 or the Greek Code for Interventions and Repairs of RC Structures KAN.EPE. [24].

For the concrete ultimate strain εcu, the above codes give formulas for both uncon-
fined and confined concrete, covering the most usual cases of the geometric shape of the
confined core of a cross-section. The value of the steel-ultimate strain εsu is also given
from the above codes, distinguishing this for the cases of before and after spalling of the
concrete cover. As for the values of the parameters in Table 1 for the steel cyclic model
of Menegotto and Pinto [16], they can be determined either experimentally, if possible, or
alternatively the values of Table 1 can be taken as suitable for the most common steel types
of the daily practice, as mentioned in Section 3.
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8. Conclusions

A new model is proposed for the inelastic behavior of RC-beam elements under
biaxial bending with axial load. The model is suitable for slender beam elements without
significant influence of the bond-slip phenomenon. It can also be used for elements with
arbitrary cross-section shapes, which is one of its main targets.

The model uses a polygonization technique for discretizing the cross-sections into
polygons. This polygonization initially appears as a Delaunay grid of triangles, and then
it is transformed to a Voronoi diagram of control points. The latter act as fibers, similarly
to the classic fiber models. The grid of triangles is used for the integration of concrete-
compressive stresses over the compression zone of the cross-section, while the Voronoi
diagram is used for the computation of its stiffness matrix.

This polygonization technique in combination with the mixed-formulation method
of Taucer et al. [5] proved to be very efficient for inelastic analyses of RC specimens or
framed structures, overcoming the usual numerical problems which occur in the classic
fiber models when used with relatively coarse-fiber grids. Thus, the low computational
cost of the model is due to the small degree of dependence on the number of the required
critical control points that form the Delaunay triangularization.

Application of the model to various examples from the literature can be found in
Part II of the present research work. Comparison between experimental and analytical
results show very good to excellent agreement.
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