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Abstract

The minimum injective eccentric dominating energy of a graph is defined. The minimum injective eccentric
dominating energy for star, complete and cocktail party graphs are computed. Inspired by McClelland’s
bounds for energy of a graph, the upper and lower bounds of minimum injective eccentric dominating energy
for star, complete and cocktail party graphs are discussed. Properties of eigenvalues of minimum injective
eccentric dominating matrix for star, complete and cocktail party graphs are discussed.

Keywords: Domination; eccentric domination; injective eccentric dominating eigenvalues; minimum injective
eccentric dominating set; minimum injective eccentric dominating energy.

1 Introduction

Ore [1] and Berge [2] introduced domination in graphs. In 1978 Ivan Gutman [3] introduced “the concept
energy of a graph. Inspired by Ivan Gutman many authors have explored different types of energy in graph
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theory”. “The concept of minimum dominating energy of a graph was introduced” by M.R. Rajesh Kanna et al.
[4-6]. “The concept of eccentric domination was introduced” by T. N. Janakiraman et al. [7] in 2010. “The
concept of minimum eccentric dominating energy of graphs was introduced” by Tejaskumar R, A Mohamed
Ismayil and Ivan Gutman [8]. Anwar Alwardi et al. [9] introduced “injective domination of graphs”. Riyaz Ur
Rehman A et al. [10] introduced injective eccentric domination in graphs. Inspired by Tejaskumar et al. [8]
“minimum injective eccentric dominating energy E;,.;(G) of graphs is introduced”.

2 Preliminaries

Definition 2.1: Haynes et al. [11] A subset D of V is said to be a dominating set, if every vertex not in D is
adjacent to at least one vertex in D.

Definition 2.2: Janakiraman et al. [7] The eccentricity e(v) of v is the distance to a vertex farthest from v. Thus
e(v) = max {d(u,v):u € V}. For a vertex v, each vertex at a distance e(v) from v is an eccentric vertex.
Eccentric set of a vertex v is defined as E(v) = {u € V(G):d(u,v) = e(v)}.

Definition 2.3: Janakiraman et al. [7] A set S € V(G) is an eccentric dominating set (ED set) if S is a
dominating set of G and for every vertex v € V — D, there exists at least one eccentric vertex of v in S.

Definition 2.4: Riyaz and Ismayil [10] An eccentric dominating set (ED set) S is called an injective eccentric
dominating set (INED set) if for every vertex v € V — S there exists a vertex u € S such that |[I'(v,u)| = 1
where I'(v, u) is the set of vertices different from v and w, that are adjacent to both v and u.

Definition 2.5: Kanna et al. [4] For G = (V, E), let Ml = (m;;) be a minimum dominating matrix defined by

1, if viv; €E,
(my;) =41, ifi=jandv; €D,
0, otherwise

and 44, 4,, ..., A, are the eigenvalues of M. The minimum dominating energy E, = Y\i-, |4;].

3 The Minimum Injective Eccentric Dominating Energy

In this section the minimum injective eccentric dominating energy is introduced. The minimum injective
eccentric dominating energy for star, complete and cocktail party graphs are computed. Properties, upper and
lower bounds of minimum injective eccentric dominating energy for some class of graphs are discussed. The
eccentricity and eccentric vertices of antenna graph are tabulated in Table 1. The minimum injective eccentric
dominating energy of various standard graphs along with their characteristic equation, eigenvalues and
minimum injective eccentric dominating energy have been tabulated in Table 2. For definitions regarding
standard graphs refer the textbook ‘Graph Classes- A Survey’ [12,13].

Definition 3.1: For G = (V, E), let D be a minimum injective eccentric dominating set (INED set) of G then the
minimum injective eccentric dominating (INED) matrix of G is an X n defined by M;,,.4(G) = (m;;), where

1, if |F(vi,vj)| > 1 and either v; € E(vj) or v; € E(vy),
(my) =11, ifi=jand v; €D,
0, otherwise

Definition 3.2: The characteristic polynomial of the minimum INED matrix M;,.;(G) is denoted by
F. (G, ) = det ( M;,.4(G) — g1), where I is the identity matrix.

Definition 3.3: The eigenvalues of M;,,.4(G) is defined by the minimum INED eigenvalues of G.

Remark 3.1: Since M;,,.4(G) is symmetric, the eigenvalues are real. We label the eigenvalues in non-increasing
order o, = g0, = -+ = §,,.
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Definition 3.4: The minimum INED energy of G is defined by E;,.q(G) = X7, |§#;|, where g, is the
eigenvalues of E;,.4(G).

Remark 3.2: The trace of M;,.4 (G)= Injective eccentric domination number.

Example 3.1: In Fig. 1 antenna graph has 6 vertices and 7 edges.

U1

Y6

Fig. 1. Antenna graph G

Table 1. Eccentricity and eccentric vertices of antenna graph

Vertex Eccentricity e(v) Eccentric vertex E(v)
21 3 {vs, v6}

U2 2 {vs, v6}

U3 2 {v1, v}

Vs 2 {vi,vs}

Vs 3 {v:}

Ve 3 {v:}

The minimum INED sets of an antenna graph given in Fig. 1 are D; = {vy,v,, vs}, D, = {v1, 15,04}, D3 =
{v1,v3,v5}, Dy = {v1, v, V6} and Ds = {vy, Vs, V6 }.

1. D1 = {171, 172,175},

Mineq (G) =

Sorror
R R OO RO
N R ===
or oo oR
oORrRRORO
cooRr RO

The characteristic polynomial £,(G, ) = §° — 3§° — 3p* + 1103 + 20 — 8¢ — 2.

Minimum injective eccentric dominating eigenvalues are g, = 2.6129, %, =~ 1.808,; ~ 1.2582, 0%, ~
—0.2582, o5 = —0.808, o, =~ —1.6129.

Minimum injective eccentric dominating energy E;,.4(G) =~ 8.3582.
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2. D2 = {Ul, Vs, UG}’

101100
010011
Mied @ ={1 0 0 0 1 0
\010100/
011001

The characteristic polynomial ,(G, ) = §° — 3§° — 3p* + 1103 + 20 — 8¢ — 2.

Minimum injective eccentric dominating eigenvalues are g, =~ 2.6129, %, =~ 1.808, 5 ~ 1.2582, 0, =
—0.2582, o5 = —0.808, o, =~ —1.6129.

Minimum injective eccentric dominating energy E;,.q(G) = 8.3582.

3. D3 = {171, Iz vs},

101100
000011
10 1 1
Miea@ =10 g 0 1 0
010110
011000

The characteristic polynomial F, (G, ) = §° — 3%° — 3p* + 110°% + 20% — 8p — 2.

Minimum injective eccentric dominating eigenvalues are g, =~ 2.6129, %, ~ 1.808, 5 = 1.2582, 4, =
—0.2582, o5 = —0.808, o =~ —1.6129.

Minimum injective eccentric dominating energy E;,.q(G) = 8.3582.

4. D4 = {Ul, 174_, UG}'

Mined(G) =

Sorropr
RPRr OO OO
o o0 O R
oOrRr RO OR
coroRr O
R OOR RO

The characteristic polynomial £,(G, ) = $° — 3§° — 3p* + 1103 + 20 — 8¢ — 2.

Minimum injective eccentric dominating eigenvalues are g, = 2.6129, %, =~ 1.808,; ~ 1.2582, 0%, =
—0.2582, o =~ —0.808, o, ~ —1.6129.

Minimum injective eccentric dominating energy E;,.q4(G) = 8.3582.

5. Ds ={v,,vs, 6},

Mined (G) =

Sorror
R oooo
o oo OoR
oOr oo oR
oOrRrRORO
R OoOOR RO
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The characteristic polynomial (G, ) = $° — 3§° — 3p* + 1103 + 34 — 9% — 4.

Minimum injective eccentric dominating eigenvalues are g, = 2.5616,0, =~ 1.618,4; =~ 1.618, 0, =
—0.618, 5 ~ —0.618, 9, ~ —1.5616.

Minimum injective eccentric dominating energy E;,.;(G) = 8.5952.

Observation 3.1: The energy of antenna graph G given in the Example 1 varies for different minimum INED
sets.

For the set Dy, D,, D3, Dy, Eireq (G) = 8.3582,
For the set Ds, E;,0q(G) = 8.5952.

Remark 3.3: The minimum INED energy depends on the different minimum INED set. The examples can be
seen in Table 2.

Theorem 3.1: For a star graph S,, where n > 2 the minimum INED energy of star
]Eined (Sn) — 14+ (Tl _ 3) + (n—2)+\/;n—2)2+4 n (n—2)—\/;n—2)2+4 .

Proof: Consider a star graph S,, with the vertex set V = {v,, v, ..., v, ... v, } Where v, is the central vertex. The
minimum INED set is D = {v,, v, } then

1 1 1 0 1 1 1
101 - 0 - 1 1 1
Mined(sn) =0 O 0 1 -« 0 O O
111 0 01 1
11 1 - 0 -« 1 0 1
111 = 0 « 11 0

1-p 1 1 e 0 - 111
1 —p 1 o0 - 111
1 1 —p 0 - 111

=l o0 o0 v 1= 0 0 0
11 1 w0 e = 11
111 0 1 —p 1
111 w0 11—

The characteristic polynomial £,(S,, ) = (-1)"(¢p — 1)(gp + D" 3(p? — (n — 2)p — 1).
The minimum injective eccentric dominating eigenvalues are
=1

$» =—1((n—3) times),
o = (n-2)+{/(n-2)2+4

2 i)
o = (n-2)—y(n—-2)2+4
B E—

The minimum INED energy of the star S,, is given by
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(n-2)+y/(n-2)%+4 (n-2)—/(n-2)%+4
Einea(Sp) = 1+ |(=1D)|(n = 3) + [~ L E—

(n-2)+y(n-2)%2+4 n (n-2)—y(n-2)%2+4
2 2

Einea (Sn) =1+ (n - 3) +

Remark 3.4: The number of pairs of vertices where the common neighbourhood exists in a star graph S,, is
givenby (n — 1)(n — 2).

Theorem 3.2: For a graph K,, where n > 2 the minimum INED energy of complete graph
Epeq(K,) = (n — 2) + m-1D+J(n-1)2+4 n (n—l)—‘/;n—1)2+4 .

2

Proof: LetV = {v,,v,, ...v,,} be the vertex set of a complete graph K,,. The minimum INED set is D = {v;}
then

1 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
Mineq (Kn) = : :
1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0/ nxn

Characteristic polynomial is F, (K, ) = det(M ;.4 (K,,) — $1).

1-p 1 1 11 1
1 —p 1 - 111
1 1 —p 111
11 1 —o 1 1
11 1 1 —p 1
11 1 1 1 —p

The characteristic polynomial £,(K,, #) = (-1)"2(p + D" 2(p?* —(n— 1)p — 1).
The minimum INED eigenvalues are

$» =-1((n—2) times),
o = (n-1)+/(n—-1)2+4

2 L
o= (n-1)-J(n-1D2Z+4
——

The minimum INED energy of the complete graph K, is given by

(n-1)+J/(n-1)2+4 +

2

(n-1)—J(n-1)2+4
2

Einea (Kn) = I(_l)l(n -2)+

+

(n-1)+J(n-1)2+4 (n-1)—/(n-1)2+4
2 2

Einea(Kn) = (n —2) +

Theorem 3.3: For a cocktail party graph G where n > 4 the minimum INED energy of cocktail party graph

Einea (@ = [157]+ 575

Proof: Let V = {v,,v,,..1,,} be the vertex set of cocktail party graph. The minimum INED set is D =
{v1,v2, .. V2 }, ID]| = /2 then
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cocor
cor o
- oR oo

wmo oo

Mined(G) =
0
0

\

_,Oo OO -
coor
coro

A Y Y=
N e =E=)

o0 O R

(= e R Ne)
(= e R Ne)
S O OO

oo Rk o

0
0

)

nxn

Characteristic polynomial is F, (G, o) = det (M,.4(G) — @1).

1—p 0 0
0 1—-fp 0
0 0

0 0

or oo
[ I = RN
cCoOoR ..

0 0
0 0
0 .. 1
1-p 0
0 .. —p
1 .. 0
0 .. 0
0 .. 0

TP ooo
O ook
cor o

o o

The characteristic polynomial F,(G, ) = (9% — o — 1)3.

The minimum injective eccentric dominating eigenvalues are

o= 1+T\/§ ((g) times),
o= 1—T\/§ ((g) times).

The minimum INED energy of the cocktail party graph G is given by

1+V/5

>+ [

Einea(G) = H + |

n
2

Table 2. Eigenvalues and energy of minimum injective eccentric dominating matrix of various graphs

Graph Figure Minimum  Characteristic Roots (G) Energy
INED set equation F,(G, ) Einea(G)
Dart u o, = 3.3234,
graph /\ {v,, 13}, —05% + 20" + 0, =1, 7.3626
s i 60° — 4p” — §5 = 0.3579,
V3 5¢ + 2. 0. =—1,
\/ 95 = —1.6813.
Vs
o, = 3.2534,
{v2,v4}. —° +2p" + 0, =1, 7.5468
6§° — 5¢° - 05 = 052,
5¢ + 3. 04 = —1,
o5 = —1.7734.
Paw ) (v, 3}, Pt — 2603 — o, = 2.618, 5.236
graph s 3% +4p — 1. $, = 0.618,
U3 5 = 0.382,
$, = —1.618.

Vs
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Graph Figure Minimum  Characteristic Roots o (G) Energy
INED set equation F,(G, ) Einea(G)
{v,, 3}, Pt — 263 — ¢, = 2.5616, 5.1232
3502 +4p. §7 = 1,
3 =0,
$, = —1.5616.
. = 2.618,
{vs, v}. p* —2p° - §, = 0.618, 5.236
3¢ + 4 — 1. 5 = 0.382,
P, = —1.618.
Banner el 702 {v,, vs}. —° + 2p* + o1 = 2.4142, 6.0644
graph 33 — 3p% — 0, = 1.618,
Us a4 4 — 1. 05 =1,
0, = —0.4142,
ot P = —0.618.
Claw (1) {vy,v3}, Pt — 2% — o.=1, 4.8284
graph 260% + 24 + 1. 0, = —1,
o5 = 2.4142,
Vo V3 4, = —0.4142.
o, =1, 4.8284
Uy {v2,v3}, o' —20° - 2 =—1,
20% + 260 + 1. 5 = 2.4142,
0. = —0.4142.
{U3, v4}_ (@4 - 2803 - o.=1, 4.8284
20%+2p + 1. 0, = —1,
5 = 2.4142,
0. = —0.4142.
(3,2) {(v1, 14}, —5 + 20" + #, = 1.8019, 5.7299
Tadpole 20° —4p* —p+  p, = 1.618,
graph 1. §; = 0.445,
0, =—0.618,
P = —1.247.
{va, vs}. —p° + 20" + ©,=18019,  5.7299
20° — 49’ —p+  p, = 1618,
L. 4 = 0.445,
0, =—0.618,
P = —1.247.
Cricket U1 V2 {v3, 4} —° + 2" + 1 = 3.2554, 6.9067
graph ; 2 6§° — 5p° — 4. o, =1.198,
V3 Uy Us #3 =0,
¢, = —0.5345,
s = —1.9188.
{vs, vs}. —0° +2p* + §1 = 3.2554, 6.9067
643 — 5% —4p. g, = 1.198,
3 =0,
$, = —0.5345,
$s = —1.9188.
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Graph Figure Minimum  Characteristic Roots o (G) Energy
INED set equation F,(G, ) Einea(G)
House U1 {vy, 14}, —° + 20* + 1 = 2.1701, 6.1984
graph 33 — 5% — 9, = 1.618,
20 + 1. 5 = 03111,
0, =—0.618,
v2 U3 Ps = —1.4812.
{vs, vs}. o, = 2.1701, 6.1984
Uy Us — 05 + 20" + 0, = 1.618,
3¢° — 5% — 05 = 03111,
2p+1. @, = —0.618,
$s = —1.4812.
Gem U1 V2 {v,,v,}, — 05 + 200" + 9, = 3.2361, 7.3006
graph " " 6§° — 4> — 8.  p, = 1.4142,
$3 = 0,
‘ . = —1.2361,
v s = —1.4142.
(3,1} —° + 20" + $, = 3.4495, 6.899
6§0° — 20> —50. o, =1,
(@3 = 0,
4 = -1,
$s = —1.4495.
Fish {v,, 3}, P° — 245 — ¢, = 2.8136, 7.9218
graph 56* + 5° + 0, = 1.618,
8p* — o — 2. 5 = 0.5293,
@, =—0618,
s = —1,
4 $e = —1.3429.
{v3,vs). P° — 26° — @, = 2.8136, 7.9218
5% +50° + 9, = 1.618,
8gp? —p - 2. @5 = 0.5293,
. = —0618,
s = —1,
P, = —1.3429.
A graph Uq () P, =2,
(v, V5, V6}, $°—30°5—p*+ g, =1.8019, 7.4939
8p% — 2p% — 3 = 0.445,
U3 on 56 + 2. #4=1,
s = —1,
P =—1.247.
° [ ]
Us . 01 =12,
{v2, Vs, v6}. $, = 1.8019, 7.4939
P°=3p° - P+ o. = 0.445,
8803 - 2802 - 4 = 1,
56 + 2. 05 = —1,
P = —1.247
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Graph Figure Minimum  Characteristic Roots o (G) Energy
INED set equation F,(G, ) Einea(G)
4 % b i {v3, 14} 0° — 20° — 0, = 2.247, 7.6627
polynomial 40* + 643 + 9, = 1.8794,
graph / AV N/ 560 —2p — 1. 5 = 0.555,
b v & ., = —0.3473,
$s = —0.8019,
. = —1.5321.
Net (0,05, V6}.  §0° — 3§° — 9, = 2.5616, 8.5952
graph 3p* + 1103 + 9, = 1.618,
3% — 9p — 4. $5 = 1.618,
4 = —0.618,
s = —0.618,
$e = —1.5616.
Kite {vy, U4} —° + 20" + 1 =2, 5.236
graph 2003 — 3% — 2. o, =1.618,
(@3 = 0,
. = —0.618,
s =—1.
3 prism U1 (v, 5}, P° — 205 — 1 = 2.4142, 8.2926
5% + 83 + 0, = 1.7321,
7% — 640 — 3. o5 =1,
§, = —0.4142,
s =—1,
Y U4 e = —1.7321.
Vs Ve
(3,14}, $° — 2§° - 0, = 2.4142, 8.2926
50 +8p° + 0, = 1.7321,
7% — 6§ — 3. 05 =1,
4, = —0.4142,
s =—1,
e = —1.7321.
5064‘ 25"53‘ 0, = 24142,
(v, Vg ). 5502 + 867 + 0, = 1.7321, 8.2926
7607 — 6§ — 3.
3 =1,
4 =—0.4142,
s =—1,
P, = —1.7321.

4 Properties of Minimum Injective Eccentric Dominating Eigenvalues

Theorem 4.1: If D is the minimum INED set and 4, §,, ..., §2,, are the eigenvalues of minimum INED matrix

M;peq (G) then

1. Foranygraph G, Y™, #; = |D|,

2. Forastargraph S,, Y™, 9? = |D| + (n— 1)(n — 2),
3. Foracomplete graph K,,, ¥*, ? = [D| + (n)(n — 1),

4. For acocktail party graph G, Y-, 07 = |D| + n.

1. The trace of M;,.4(G) is the sum of eigenvalues of M;,,.4(G).

Yiz1 80 = Xi=amy = |D].

58



Rehman and Ismayil; Asian Res. J. Math., vol. 20, no. 1, pp. 49-61, 2024; Article no.ARJOM.113136

2. Forastar graph S,,, sum of the squares of eigenvalues of M;,,.4(G) is trace of [M;,,.4(G)]?

iimwu Zm» + 3 mymg = Z(mu>2+22<mu)

i=1j=1 i= i#j i<j

M:

..‘
I
oy

=[Dl+(-Dn-2)

'M=

,.
Il
_

Since for a star graph S,,, 2 Zi<j(mij)2 =m-1)mn-2).

3. Foracomplete graph K,, sum of square of eigenvalues of M, (G) is trace of [M;,,.4(G)]?.

angol = zn:zn:mumu Z(m”) +Zmumu = z:(mu)2 + ZZ(m”)

i=1 j=1 i= i#]j i<j

> ot =D+ @m -1

i=1
Since for a complete graph K,,, 2 Zi<j(mij)2 = m)(n - 1).

4. Similarly, for a cocktail graph G sum of square of eigenvalues of M;,,,,(G) is trace of [M;,,.4(G)]?.

S-S mmy = S+ Ty = S 423 o)

i=1 i=1 j=1 i= i#j i<j
n
2 _
> ot =Ipl+n
i=1

Since for a cocktail graph G, 2 Zi<j(mij)2 =n.

Theorem 4.2: For a star graph S,,, where n > 3, if D be the minimum INED set and
= | det Mined (G)l then

J DI + (0 = (1= 2) + n(n ~ DW3 < By (6) < (G~ D —2) + 1D

Proof: By Cauchy schwarz inequality (X%, g;h)? < &, gH) R, k). If g; = 1 and h; = g, then

(2] <(2) e

(Einea(6))? < n(ID| + (n — 1)(n — 2))
= Einea (6) < /n(ID] + (n — )(n — 2))

Since the arithmetic mean is not smaller than geometric mean

N

1
nn-1)

s 2o = ([ Tied o) [Huo 2= 1>r(n ’ []—[uo |l

L#] l#]

o]

i=1
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1 z 2
nn — 1)2"@1' 2] = |det Mipeq (Sp)|n = Wr

i#j

2
Y 1o 191 = nn - HWn

i#j
Now consider

(Binea (Sn))* = (i |sol-|> = (i sm) + leoil |©,]
i=1 i=1

i#j

(Einea(S))? = (D] + (n — 1)(n — 2)) + n(n — YW

Egnea(Sa) 2 J (DI + (n = D(n - 2)) + n(n — DW=

Theorem 4.3: For a complete graph K,, where n > 2, if D be the minimum INED set and W = | det Ml;;,04(G) |
then

\/lDI (0= 1) +n(n - DWi < Epea(Ky) < y/n(a(n— 1) + D]

Proof: The proof follows on the similar lines to Theorem 4.2.

Theorem 4.4: For a cocktail graph G where n = 4, if D be the minimum INED set and
W = | det Mined(G) | then

2
\/lDl +n+nn—DWn < Ejpeq(G) < /n(n+|D|)
Proof: The proof follows on the similar lines to Theorem 4.2.

Theorem 4.5: If g, (G) is the largest minimum INED eigenvalue of M,,.4(G) then

1. Forastar graph S,,, §,(S,) =

[D|+(n—-1)(n—2)
n

2. For acomplete graph K,,, ¢, (K,,) = 'Dl+"+_1)
|D|+n
n

3. For acocktail graph G, ,(G) =

Proof:

1. LetY be anon-zero vector, then by Bapat [14],

YT Mjpoq(Sn) Y
gol(Mined(Sn)) =;/n:aéc l;+dyn
01 (Mg (S,)) = L MineaSn) U IDH("_nl)(n_z) where U is the unit matrix.

uTu
Analogously,
2. g')l(Mined(Kn)) 2

UTMineq(Kn) U _ ID|+(n-1)(n—2)

; uTu - n
UTM,,q(G) U |D|+n
3. 801(Mined(G))2 ZITE(:] = n

5 Conclusion

In this paper minimum injective eccentric dominating energy of graph is introduced. The injective eccentric
dominating energy of some standard graphs are calculated. Results related to the upper and lower bound of the
energy of standard graphs is stated and proved.
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