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Abstract: Agricultural drought events have become more frequent in the Inner Mongolia inland 

river basin in recent years, and the spatio-temporal evolution characteristics and development rules 

can be accurately and comprehensively understood using the three-dimensional identification 

method. In this paper, standardized soil moisture index (SSMI) was used to characterize agricultural 

drought, and modified Mann–Kendall trend test (MMK) and 3D recognition of drought events were 

used to analyze the spatio-temporal evolution characteristics of agricultural drought events in this 

basin and reveal the drought development law. The relationships between drought and temperature 

(T), precipitation (P), evapotranspiration (E), and humidity (H) were analyzed using a cross-wavelet 

method. The results are as follows: (1) When the time scale of agricultural drought was short 

(monthly scale), the alternations of dry and wet were frequent, but the SSMI index of all scales 

showed a downward trend; (2) The spatial distribution characteristics of drought change trend in 

four seasons were similar, but the area with a significant downward trend of drought in spring was 

the largest, and the area of high frequency region was also the largest, and the drought trend was 

the most obvious; (3) The most serious agricultural drought event occurred from October 2000 to 

May 2002, and reached its maximum value in September 2001 (drought area and drought severity 

of 2.26 × 105 km2 and 3.61 × 105 months·km2, respectively), which mainly experienced five pro-

cesses—drought onset–intensification–decay–re-intensification–termination—and the migration 

path of the drought center showed the characteristics of southwest–northeast transmission; (4) All 

the four meteorological factors were correlated with SSMI, and P had a greater impact on SSMI. 

This article aims to reveal the spatio-temporal evolution of agricultural drought events in the Inner 

Mongolia inland river basin, and provide a new way to accurately evaluate the spatio-temporal 

evolution of drought. 

Keywords: agricultural drought; three-dimensional identification; dynamic evolution;  

spatio-temporal characteristics; meteorological factors 

 

1. Introduction 

Drought is one of the most destructive natural hazards for humans; as the global 

temperature rises gradually and the shortage of water resources is aggravating, humans 

face more severe drought situations [1–3]. Once drought occurs, it poses a serious threat 

to the ecological environment, water resources security, and social economy [4,5]. 

Drought is a regional phenomenon that changes with time and has significant continuity 
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and dynamics on the spatio-temporal scale, so it is necessary to accurately and compre-

hensively understand its spatio-temporal evolution characteristics and development laws 

[6–8]. Therefore, it is of great significance to accurately evaluate the spatio-temporal dy-

namic evolution of drought and quantify its characteristics for drought mitigation. 

At present, the international classification of drought is generally recognized as me-

teorological drought, agricultural drought, hydrological drought, or socio-economic 

drought [9,10]. Agricultural drought refers to the phenomenon of continuous precipita-

tion deficit, resulting in crop reduction or loss of harvest [11,12]. This study of temporal 

and spatial evolution characteristics of agricultural drought is helpful in analyzing and 

extracting its law, which has an important role in production and life. Dai et al. analyzed 

the dynamic evolution characteristics of agricultural drought in the Pearl River Delta by 

calculating the standardized precipitation index (SPI) [13]. Potopova et al. characterized 

agricultural drought risk by calculating the standardized precipitation evapotranspiration 

index (SPEI) of 304 weather stations in the Czech Republic and analyzed the sensitivity of 

11 crop yields to SPEI on different time scales during 1951–2012 [14]. Qin et al. compared 

and analyzed the drought monitoring effect of the Haihe River Basin based on precipita-

tion and soil moisture index from 1960 to 2010 and conducted correlation analysis with 

normalized difference vegetation index (NDVI), which characterized agricultural drought 

[15]. The above agricultural drought indicators are analyzed and processed based on the 

data of ground stations, but the spatial distribution of stations is uneven, and the data of 

a certain period may be missing, which may deviate from the actual situation. Remote 

sensing technology has become the most promising technology for drought monitoring 

due to its advantages of timeliness, efficiency, wide coverage, and data continuity, and it 

has also achieved good results in practical application [16]. In addition, agricultural 

drought is mainly due to the decrease in soil water content, which leads to the inability of 

crops to absorb water from the soil to meet transpiration consumption, thus forming ag-

ricultural drought [17]. Relevant studies also show that the water in crops mainly comes 

from soil water, so the drought index based on soil water content can more truly reflect 

agricultural drought [18]. Based on the soil water content monitored using remote sensing 

technology to characterize the standardized soil moisture index (SSMI), it has the ad-

vantages of multiple time scales and strong spatio-temporal continuity, which is condu-

cive to the characteristics analysis and rule recognition of drought events. Therefore, SSMI 

is selected to characterize agricultural drought. 

Certain achievements have been made in the study of the spatio-temporal evolution 

characteristics of drought: Andreadis introduced a clustering algorithm and used the se-

vere-area-duration (S-A-D) curve to analyze the spatial changes in drought events in the 

United States under a given time [19]. An et al. analyzed the characteristics and changing 

trend of drought in Inner Mongolia based on the SPEI of different time scales [20]. Zhang 

et al. analyzed the characteristics of drought in the North China Plain during 1982–2020 

using the vegetation health index (VHI) and various climate factors [1]. Du et al. discussed 

the spatio-temporal evolution of meteorological drought and agricultural drought based 

on the cultivated land type [21]. In fact, the drought event is an abnormal problem of dry 

and wet in three dimensions. However, the above research is limited to the analysis of 

one-dimensional time change trend or two-dimensional spatial change trend, and the di-

mension reduction in the drought events destroys the three-dimensional spatio-temporal 

structure of the drought events, which will also lead to the loss of drought characteristic 

variables [22]. In order to analyze drought events more accurately, scholars have identi-

fied and studied drought events based on a three-dimensional perspective. Lloyd-Hughes 

extended Andreadis’ drought identification method, applied the clustering method to 

three-dimensional space, and made a complete spatio-temporal representation of the 

drought events [23]. Guo et al. analyzed the drought events by improving the three-di-

mensional clustering algorithm and extracting multiple feature variables [24]. Wen et al. 

identified the meteorological drought events in the Huaihe River Basin from 1961 to 2015 

via the three-dimensional drought structure and analyzed the spatio-temporal evolution 
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characteristics of the drought [25]. Feng et al. identified the drought event in the Heihe 

River Basin during 1961–2018 based on the three-dimensional drought recognition 

method and extracted several drought characteristic variables such as duration, area, in-

tensity, severity, center, and migration distance [26]. Therefore, it is necessary to analyze 

drought based on a three-dimensional perspective, which is helpful in extracting multiple 

drought characteristic variables and accurately revealing the evolution law of drought 

events. 

The Inner Mongolia inland river basin (IMIRB) is the main grain-producing area in 

China, but because of the vulnerability zone of drought and semi-drought, the economic 

development process is seriously affected by drought. With the intensification of climate 

change, agricultural drought events become more frequent in IMIRB, which hinders agri-

cultural development. Studying the agricultural drought in this area is helpful to the de-

velopment of agriculture, economy, and society. However, previous studies mostly ana-

lyzed the spatio-temporal evolution characteristics from a two-dimensional perspective 

but did not analyze the drought events from a three-dimensional perspective, ignoring 

the spatio-temporal continuity of drought, resulting in the failure to comprehensively and 

accurately evaluate the spatio-temporal dynamic evolution of drought [20,27–30]. At the 

same time, meteorological factors are important driving factors for the occurrence and 

change in agricultural drought, but the driving mechanism of meteorological factors on 

agricultural drought in the study area is still unclear. According to the existing studies, 

the modified Mann–Kendall trend test (MMK) method can be used to analyze the tem-

poral variation trend of drought and further obtain the spatial distribution characteristics 

of drought variation trend at grid scale so as to analyze the drought variation trend at each 

grid point. Cross-wavelet transform can be used to reveal the periodicity and correlation 

of two signals, which is helpful in analyzing the law of change between the two signals. 

Therefore, this study uses the MMK trend test, three-dimensional identification 

method, and cross-wavelet analysis to analyze the spatio-temporal variation characteris-

tics of agricultural drought in this region, reveals the spatio-temporal evolution law of 

agricultural drought events, and discusses the driving mechanism of meteorological fac-

tors on agricultural drought. In view of this, the main research objectives of this paper are 

as follows: (1) To study the spatio-temporal trends of agricultural drought at different 

scales from 1960 to 2021; (2) Reveal the spatio-temporal evolution of agricultural drought 

from a three-dimensional perspective; (3) Clarify the driving mechanism of meteorologi-

cal factors on agricultural drought. The research results provide a new way to evaluate 

the spatio-temporal dynamic evolution of drought in this study area. 

2. Study Region 

The IMIRB is located in the middle of Inner Mongolia. The study area is located at 

105°12′~120°70′ E, 40°33′~46°46′ N, bounded by Yanshan Mountain and Helan Mountain 

in the east and west and Yinshan Mountain and Greater Hinggan Mountains in the north 

and south. The area is about 316,600 km2, with annual average precipitation of 295 mm 

and average temperatures of 3~7 °C. It consists of a series of grasslands, cultivated land, 

and sandy land, and the main inland rivers are Tabu River, Uraghel River, Xilin Gol River, 

Bayin River, and so on. Drought in this region is a serious problem, which easily leads to 

crop reduction and grassland degradation, which is a great harm to agriculture [31,32]. 

Therefore, this paper will study the agricultural drought problem in this region, which 

will help the drought prevention and control in this region in order to reduce the harm 

caused by drought. The basic situation in the study area map is shown in Figure 1. 
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Figure 1. Basic situation in the study area. UBB, Urat Rear Banner; UMB, Urat Middle Banner; DM, 

Darhan Muminggan United Banner; SG, Shiguai District; WC, Wuchuan County; SZW, Siziwang 

Banner; CRW, Qahar youyi houqi; EL, Erenhot City; SRB, Sonid Right Banner; XB, Xianghuang Ban-

ner; SD, Shangdu County; XH, Xilinhot City; SLB, Sonid Left Banner; ZB, Zhengxiangbai Banner; 

ZLB, Zhenglan Banner; AB, Abaga Banner; XH, Xinghe County; KT, Hexigten Banner; WU, Wast 

Ujumuqin Banner; EU, East Ujumuqin Banner. 

3. Materials and Methods 

3.1. Materials 

3.1.1. Soil Moisture Data 

Due to the small number of observation stations and uneven spatial distribution of 

soil water content, the measured data are very limited and cannot meet the research needs, 

so GLDAS data products are selected. Combining satellite and ground observation data 

with advanced land surface models and assimilation techniques, the product features op-

timized near-real-time features that provide important information about land surface 

and energy flux for scientific research, especially in areas where reliable ground measure-

ments are not possible [33,34]. The Noah model in GLDAS can provide soil moisture, tem-

perature, atmospheric pressure, and other data, but for agricultural drought, soil water 

content in the root zone can be more accurately evaluated [35]. Soil water content can di-

rectly affect the root water absorption and transpiration of crops, which is suitable for the 

evaluation of agricultural drought [31]. Therefore, this paper selects the monthly time se-

ries raster data set of 1960–2021 soil root zone water content obtained via the Noah model 

in GLDAS V2.0 (spatial resolution is 0.25° × 0.25°) to calculate agricultural drought index 

(SSMI) at different time scales. On this basis, the temporal and spatial variations and pe-

riodic characteristics of agricultural drought at monthly, seasonal, and annual scales in 

IMIRB were analyzed. The root zone soil Moisture grid dataset was obtained from 

NASA’s Goddard Earth Science Data and Information Services Center 

(h�ps://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.0/, accessed on 3 November 

2023). 

3.1.2. Meteorological Factor Data and Drought Statistics 

The CRU TS v.4.07 dataset is one of the most widely used climate datasets, produced 

by the National Centre for Atmospheric Science (NCAS) in the United Kingdom, that pro-

vides 0.5° resolution monthly scale data covering the global land surface from 1901 to the 

present. In this paper, the data of temperature (T), precipitation (P), evapotranspiration 

(E), and humidity (H) are derived from the CRU TS v.4.07 dataset, and the time scale is 



Water 2024, 16, 440 5 of 21 
 

 

obtained monthly 

(h�ps://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.07/cruts.2304141047.v4.07/, accessed on 

1 November 2023). The data on crop disaster areas and extinct areas in the study area were 

obtained from China Statistical Yearbook, but due to the limited statistical years of China 

Statistical Yearbook, only data from 1998 to 2021 were collected 

(h�ps://www.stats.gov.cn/sj/ndsj/, accessed on 27 November 2023). 

3.2. Methods 

3.2.1. Standardized Soil Moisture Index 

Due to the advantages of multiple time scales and strong spatio-temporal continuity, 

SSMI was selected to characterize agricultural drought in this paper. Previous studies 

have shown that normal distribution is the optimal distribution for fi�ing soil water con-

tent [26,36]. Therefore, in this paper, the normal distribution is used to fit and calculate 

the cumulative distribution function of soil water content, and then the cumulative distri-

bution function is standardized to obtain SSMI. 

The SSMI is built as follows: 

(1) Construct cumulative soil water sequence � at different scales: 

��
� = ∑ ��

�
�����   (1)

where � is the month; � is the time scale, and � = 1, 2,… 12, �� is the soil water content; 

(2) The normal distribution function is used to fit the ��
� sequence and calculate the 

probability density function �(�) and the cumulative distribution function �(�): 

�(�) =
�

√���
�

�
(���)�

���   (2)

�(�) =
�

√���
∫ �

�
(���)�

����

��
��  (3)

where � is the mean, and σ2 is the variance; 

(3) Standardize �(�) to obtain SSMI: 

���� = � −
����������

���������������  (4)

� = �−2 ��(�)  (5)

where when � ≤ 0.5, � = 1 − �(�), and when � > 0.5, � = �(�). The other parameters 

are �� = 2.515517, �� = 0.802853, �� = 0.010328, �� = 1.432788, �� = 0.189269, and �� = 

0.001308. 

According to the existing research results, the agricultural drought was graded, and 

−0.5 was selected as the drought threshold [37,38]. Table 1 shows the classification criteria 

of drought grade. 

Table 1. Drought classification of SSMI. 

Drought Level SSMI Drought Severity 

I −0.5 < SSMI No drought 

II −1 < SSMI ≤ −0.5 Light drought 

III −1.5 < SSMI ≤ −1 Moderate drought 

IV −2 < SSMI ≤ −1.5 Severe drought 

VI SSMI ≤ −2 Extreme drought 

3.2.2. Modified Mann–Kendall Test 

MMK trend test can eliminate the autocorrelation components in time series, making 

the results of the trend test more reliable. This method firstly calculates the estimated 
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trend value of time series, then calculates the autocorrelation coefficient, then obtains the 

variance of trend statistics according to the autocorrelation coefficient, and finally calcu-

lates the trend value of time series according to the variance and characterizes the change 

trend of time series and its significance. Many scholars have used this method to study 

the time variation trend of drought index [39–41]. In this paper, the MMK method is used 

to analyze the temporal variation trend of SSMI, and it is applied to the grid scale to reveal 

the spatial distribution characteristics of drought variation trend in IMIRB. See the litera-

ture for detailed calculation steps [42]. 

3.2.3. Three-Dimensional Identification Method of Drought Events 

The 3D drought recognition method is the method to extract the drought events from 

the 3D space (time–longitude–latitude) of the drought index [43]. Drought 3D recognition 

mainly includes drought patch recognition, drought patch time–history connection, and 

drought characteristic variable extraction [26]. 

(1) Drought patch recognition 

Before the identification of drought patches, A minimum drought area threshold (A) 

should be set in advance. The drought patch recognition method first divides the spatially 

adjacent grids into categories; that is, the grids (SSMI < −0.5) that have drought at the same 

time in adjacent locations are classified into one category and marked with the same num-

ber, and then they are combined into one drought patch. If there is no other drought grid 

adjacent to the current drought grid, a number is re-labeled to create the next drought 

patch, and the steps are repeated until there is no drought grid adjacent area. According 

to the above method, a number of dry patches with different areas can be obtained and 

marked with different numbers. If the area of the identified drought patch is smaller than 

A, it is judged that it does not constitute a drought event, and it is eliminated (A3 and A4 

in Figure 2). At the same time, this area threshold can also be used to judge the time con-

tinuity between drought patches so as to avoid the combination of drought events that 

were not related or completely unrelated within the next two months, resulting in unsat-

isfactory identification results [44]. According to the relevant literature, this paper only 

considers the drought pa�ern spots whose area is larger than 1.6% of the whole study area 

[45–47]; 

 

Figure 2. Schematic diagram of drought patch recognition. 

(2) Drought patch time–history connection 

For the identified dry patches, it is determined whether there is a connection between 

the dry patches in time and whether it constitutes a continuous drought event. For exam-

ple, in A3 and A4 of Figure 3, if the coincidence area (A*) between a certain dry patch At 

and a certain dry patch At+1 at an adjacent time is greater than the threshold value A, then 

At and At+1 are considered to be continuous in time, and it is determined that they belong 

to the same drought event; otherwise, it did not belong to the same drought event. Ac-

cording to this rule, the overlapping area between any pair of drought patches at two 

adjacent moments is judged, in turn, from the first month until the overlapping area is less 
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than a, and the drought patches identified as belonging to the same drought event are 

assigned the same number. The above steps are repeated to connect the longitude and 

latitude drought patches in the time course to form a spatio-temporal connected drought 

index continuum and obtain multiple three-dimensional drought events; 

 

Figure 3. Schematic diagram of time–history connection of arid patches. 

(3) Drought characteristic variable extraction. 

Compared with the two-dimensional recognition method, the drought features ex-

tracted based on the three-dimensional recognition method are more complex and can 

more comprehensively reflect the spatio-temporal continuous evolution characteristics. 

Compared with the traditional results of drought identification, this method can extract 

more characteristic variables reflecting the dynamic change in drought space. This paper 

analyzes the continuous spatio-temporal evolution characteristics of a single drought 

event and the development law of regional drought from five drought characteristic var-

iables: drought duration, area, severity, center, and migration direction. 

(1) Drought duration is the duration of the drought event; it is the first and the last time 

interval between dry patches; it can also be considered a drought at the height of the 

three-dimensional continuum; 

(2) Drought area is the vertical projection area of the three-dimensional continuum of 

drought on a two-dimensional plane (longitude × latitude); 

(3) Drought severity is the sum of the water shortage degree of all arid bodies, that is, 

the volume of the three-dimensional drought continuum; 

(4) Drought center is a drought three-dimensional continuum center of mass; 

(5) Drought migration direction is a drought three-dimensional continuum drought 

center at every moment. 

3.2.4. Cross-Wavelet Transform 

The cross-wavelet transform reveals the two signals in time-frequency distribution 

on the related degree [48]. Detailed definitions and calculations can be found in [49]. In 

this paper, the dynamic relationship between SSMI and meteorological factors was inves-

tigated via the cross-wavelet method, and the driving effect of meteorological factors on 

IMIRB agricultural drought was revealed. Suppose that the continuous wavelet trans-

forms of two-time series X = (x1, x2,… xn) and Y = (y1, y2,… yn) are ��
�(�) and ��

�
(�); 

then, the cross-wavelet transform between them is 



Water 2024, 16, 440 8 of 21 
 

 

��
��(�) = ��

�(�) ∗ ��
�∗

(�)  (6)

where ��
�∗

(�) represents the complex conjugation of ��
�

(�), and s represents the delay. 

4. Results 

4.1. Temporal Evolution Characteristics of Agricultural Drought 

4.1.1. Characteristics of Drought Time Evolution in Multi-Scale Agriculture 

The fluctuations of SSMI on different time scales can reflect the drought effects of 

different cumulative periods in the past. For example, SSMI-1, SSMI-3, SSMI-12, and 

SSMI-24 reflect the drought conditions in the past month, quarter, year, and two years, 

respectively. In this paper, the SSMI time series of 1–24 months in IMIRB in the last 60 

years is calculated, and the heat map is drawn to depict the temporal variation character-

istics of the agricultural drought index at multiple scales (Figure 4). The light color indi-

cates that the larger SSMI value means the lighter drought degree, and the dark color in-

dicates that the smaller SSMI value means the heavier drought degree. As can be seen 

from Figure 4, agricultural droughts are a gradual process in time evolution, and when 

the time scale is short, dry and wet alternate frequently. With the increase in time scale, 

the fluctuation of drought decreases, and the periods of drought and we�ing increase sig-

nificantly, which means that the number of droughts decreases while the duration and 

intensity of droughts increase. Under different time scales, the SSMI in IMIRB showed a 

decreasing trend before 1968 and from 2001 to 2014; that is, the drought showed an in-

creasing trend. The SSMI showed an upward trend from 1968 to 2000 and from 2015 to 

now; that is, the drought showed a weakening trend. It can also be seen in Figure 4 that 

relatively serious agricultural droughts occurred in IMIRB around 1967, around 2002, and 

from 2005 to 2012. In other periods, droughts and floods appeared alternately, and hu-

midification was the main factor. 

 

Figure 4. Temporal evolution characteristics of multi-scale SSMI in IMIRB from 1960 to 2021. 

4.1.2. Variation Trend of Agricultural Drought Time at Different Scales 

The temporal variation characteristics of monthly, seasonal, and annual scales SSMI 

of IMIRB are shown in Figure 5. Among them, the SSMI index at all scales showed a down-

ward trend. From the perspective of the monthly scale, the linear tendency rate of SSMI 
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was close to 0, and the drought trend was small. From the annual scale, the linear tendency 

rate of SSMI was −0.063/10a, and it developed toward drought, and the change trend in 

each period was roughly the same as that in the monthly scale. SSMI showed a decreasing 

trend in all seasons, and the change trend in spring was the largest. From the multi-year 

trend, all seasons showed an arid trend. In addition, the change trend of SSMI in different 

seasons was consistent, with alternating upward and downward trends. SSMI of each sea-

son showed a downward trend in the 1960s, showing the characteristics of drought, and 

showed an upward trend of fluctuation from 1970 to 2000; that is, drought showed a weak-

ening trend. It reached the maximum value around 1998 and showed a downward trend 

in the 2000s, which showed the characteristics of drought. After 2015, the SSMI of each 

season showed a rapid upward trend, and the we�ing trend in summer during this period 

was significant. 

 

Figure 5. Monthly, seasonal, and annual scales SSMI time trends in IMIRB from 1960 to 2021. (a) 

Month. (b) Spring. (c) Summer. (d) Autumn. (e) Winter. (f) Year. 

4.1.3. Temporal Characteristics of Seasonal Drought Intensity and Area Proportion 

As can be seen in Figure 6, the variation characteristics of drought area proportion 

and intensity in the IMIRB were similar in four seasons. The drought area proportion and 

intensity in four seasons around 1966 and the 2000s were relatively large, and the drought 

intensity of other seasons fluctuated around 0.75 in 1968–1990 except for summer. Since 

2000, the spring drought in the study area has been characterized by high intensity, strong 

persistence, and significant drought. There were the most years without drought in sum-

mer, which was weaker than the other three seasons. The correlation between autumn and 

winter was great, and the maximum drought intensity could reach 1.5; the maximum 

drought area accounted for 95%, and the drought influence of the two seasons was greater. 
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Figure 6. Variation characteristics of seasonal drought intensity and area proportion in IMIRB from 

1960 to 2021. (a) Spring. (b) Summer. (c) Autumn. (d) Winter. 

4.2. Spatial Evolution Characteristics of Agricultural Drought 

4.2.1. Spatial Distribution Characteristics of Drought Change Trend 

Figure 7 shows the spatial distribution characteristics of seasonal SSMI change trends 

based on the MMK trend test. On the whole, the four seasons of drought trend distribution 

characteristics of IMIRB were similar. The regions where SSMI showed a significant 

downward trend were concentrated in the middle and northwest of IMIRB, and the re-

gions where SSMI showed an upward trend were concentrated in the east and west of 

IMIRB. The specific characteristics of each season are as follows: compared with other 

seasons, the area of spring showed a significant decline trend, accounting for 35.40%, and 

the SSMI also showed a decline trend in the northeastern part of Abaga Banner (AB), the 

northern part of Silinghot City (XH), and the western part of Eastern Ujamuqin Banner 

(EU). In summer, there are fewer areas in IMIRB where SSMI showed a significant upward 

trend than in other seasons. In autumn, the area of SSMI in IMIRB showed a significant 

downward trend, accounting for 26.46%. The spatial distribution of SSMI in IMIRB in 

winter was roughly the same as that in autumn. Compared with autumn, SSMI in the 

eastern part of AB and the western part of EU showed a downward trend in winter. 

4.2.2. Spatial Distribution Characteristics of Agricultural Drought Intensity 

Figure 8 shows that the drought intensity of IMIRB in four seasons is concentrated 

between 0.68 and 1.47. In this paper, the regions with agricultural drought intensity less 

than 1 are defined as low-value regions, and those with agricultural drought intensity 
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greater than 1.2 are defined as high-value regions. The high-intensity area and low-inten-

sity area of agricultural drought are different in different seasons. Specifically, the area of 

high agricultural drought intensity in spring was relatively small, and the area of low ag-

ricultural drought intensity was larger. The low- and high-value areas of agricultural 

drought intensity in summer were most concentrated in the northeastern and central parts 

of IMIRB, respectively. The high-value and low-value areas of autumn drought were dis-

tributed in the east and middle of IMIRB, respectively. In winter, the area of high-intensity 

drought was the largest, but the western region was in the low-intensity area. 

 

Figure 7. Spatial distribution characteristics of seasonal SSMI trends in IMIRB. (a) Spring. (b) Sum-

mer. (c) Autumn. (d) Winter. 

 

Figure 8. Spatial distribution characteristics of seasonal drought intensity of IMIRB during 1960–

2021. (a) Spring. (b) Summer. (c) Autumn. (d) Winter. 

4.2.3. Spatial Distribution Characteristics of Agricultural Drought Frequency 

As shown in Figure 9, the frequency of agricultural drought in most areas of IMIRB 

in four seasons was mainly maintained between 30% and 35%. Therefore, regions with 

drought frequency of less than 30% were defined in this paper as low-value regions, while 

those with drought frequency greater than 35% were high-value regions. Specifically, the 

high-frequency areas of spring agricultural drought were widely distributed, accounting 

for 42.70%, including the south of West Ujumuqin Banner (WU), the south of Zhenglan 

Banner (ZLB), and the west of Urat Rear Banner (UBB). In summer, the agricultural 
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drought low-frequency area was the widest, accounting for 22.99%, which was widely 

distributed in the central and western parts of IMIRB. The high-frequency area of autumn 

drought was larger in the four seasons, and the drought frequency was higher in the cen-

tral and northeastern parts of IMIRB. Compared with autumn, the high-frequency area of 

agricultural drought in winter was greatly reduced, and the low-frequency area was more 

widely distributed. 

 

Figure 9. Spatial distribution characteristics of seasonal drought frequency in IMIRB from 1960 to 

2021. (a) Spring. (b) Summer. (c) Autumn. (d) Winter. 

4.3. Dynamic Evolution of Agricultural Drought Events Based on Three-Dimensional 

Recognition Method 

4.3.1. Drought Recognition Results Based on Three-Dimensional Recognition Method 

Based on the three-dimensional recognition method, SSMI-3 was used to identify 85 

agricultural drought events in the study area from 1960 to 2021, accounting for 11.61% of 

the total number of months, among which 34 drought events lasted at least two months. 

According to the order of drought severity, the most serious in the first 10 games, specific 

features of agricultural drought events, and variables are listed in Table 2, where the num-

ber represents the serial number of each drought event determined in chronological order 

among the 85 drought events. The duration of these 10 drought events lasted at least eight 

months. Among them, the 36th agricultural drought event occurred from October 2000 to 

May 2002, which was the most serious, with a drought severity of 3.528 × 106months·km2 

and a drought area of 2.419 × 105 km2. The longest durations of the 5th (August 1965–June 

1966) and 59th (September 2008–July 2009) drought events were 11 months, ranking 4th 

and 8th, respectively. The 51st drought event lasted 9 months, from September 2006 to 

May 2007, with a drought severity of 1.089 × 106 months·km2 and a drought area of 1.407 

× 105 km2. 

Table 2. The 10 worst agricultural drought events, 1960–2021. 

Number 
Start Time  

(Month Year) 

End Time  

(Month Year) 

Drought Duration 

(Month) 

Drought Center Drought Area 

(104 km2) 

Drought Severity 

(105 months·km2) Lon Lat 

36 October 2020 May 2002 20 113.81 43.20 24.19 35.28 

56 October 2007 June 2008 9 114.52 43.73 26.31 27.58 

83 July 2017 August 2018 14 111.09 42.51 12.99 23.12 

5 August 1965 June 1966 11 111.80 42.31 16.85 18.99 

45 September 2005 May 2006 9 114.44 43.89 19.40 18.32 

69 September 2011 June 2012 10 112.43 42.68 14.62 18.20 

61 September 2009 May 2010 9 114.69 43.58 17.43 16.59 
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59 September 2008 July 2009 11 115.84 44.58 16.84 15.17 

41 October 2002 May 2003 8 112.38 42.64 13.71 11.63 

51 September 2006 May 2007 9 111.76 42.59 14.07 10.89 

4.3.2. Analysis of Typical Agricultural Drought Events 

Taking the most severe drought event (No. 36) as a typical agricultural drought event, 

Figure 10 shows the three-dimensional perspective of the spatio-temporal changes in the 

event and the time trend of the characteristic variables. As one can see from Figure 10, the 

monthly trends of drought area and severity of No. 36 were basically the same, showing 

an upward trend from October 2000 to May 2001, reaching a maximum value in May 2001 

(7.99 × 104 km2 and 1.17 × 105 months·km2, respectively) and then showing a downward 

trend in the next month. From June 2001 to September 2001, it showed a significant up-

ward trend and reached the maximum in September 2001. The drought area and drought 

severity were 2.26 × 105 km2 and 3.61 × 105 months·km2, respectively. From October 2001 

to May 2002, the drought area and drought severity showed downward trends and 

reached a minimum in May 2002, with the drought area and drought severity of 9.62 × 104 

km2 and 1.39 × 105 months·km2, respectively. 

 

 

Figure 10. Three-dimensional perspective of the 36th agricultural drought and temporal trend of 

characteristic variables. 

Taking this typical agricultural drought event as an example, Figure 11 analyzes the 

spatio-temporal dynamic evolution process from the beginning to the end of the drought, 

and Figure 12 analyzes the central migration path of the drought event. This agricultural 

drought event lasted 20 months from October 2000 to May 2002, with a drought severity 

of 3.528 × 106 months·km2, ranking first among all agricultural drought events. Its spatio-

temporal dynamic evolution and migration process were relatively simple, with specific 

characteristics as follows: the agricultural drought began in October 2000, with an area of 

2.92 × 104 km2, covering the western part of Zhengxiangbai Banner (ZB), the southern part 

of Sunid Right Banner (SRB), Xianghuang Banner (XB), Shangdu County (SD), Xinghe 

County (XH), and Qahar youqi houqi (CRW). The drought center was located in the south-

ern part of SRB. In September 2001, the drought area expanded rapidly to 2.26 × 105 km2, 
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and the drought center moved southeast to the southern part of Sunid Left Banner (SLB). 

Except for the western and northeastern parts of IMIRB, other regions suffered from 

drought, and the northwestern part of EU and the central part of WU suffered the most 

severe drought. In November, the drought area and severity decreased to 1.68 × 105 km2 

and 2.63 × 105 months·km2, respectively, and the drought center moved from the southeast 

to the west of AB. In March 2002, the drought severity increased, and the drought area 

was 2.15 × 105 km2, concentrated in the northeastern and central regions. Subsequently, 

the drought was alleviated. In May 2002, the drought area was reduced to 9.62 × 104 km2; 

the drought situation was weakened, and the drought event was lifted. 

 

Figure 11. Temporal and spatial dynamic evolution of typical agricultural drought events (a–t): Oc-

tober 2000–May 2002. 
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Figure 12. Migration path of typical agricultural drought center. 

5. Discussion 

5.1. Driving Factor Analysis 

The cross-wavelet energy spectrum and condensation spectrum of SSMI with T, P, E, 

and H are shown in Figure 13. It can be seen from Figure 13a that there is no obvious 

correlation between SSMI and T in the high-energy region, and the three significant reso-

nance periods all show non-positive correlation, which are 1–2 years from 1964 to 1967, 4–

5 years from 1999 to 2005, and 7–8 years from 2005 to 2013, respectively. As can be seen 

from Figure 13b, there is only a significant resonance period of 1–2 years between 1987 

and 1993, and the correlation between the two is low. Figure 13c is the cross-wavelet en-

ergy spectrum of SSMI and P. It can be seen from the figure that there is a certain correla-

tion between them, in which there is a significant resonance period of 2–3 years in 1964–

1967 and a significant resonance period of 4–8 years in 1997–2011, all of which are approx-

imately positive correlations. As can be seen from Figure 13d, SSMI and P mainly have 

four significant resonance periods in the low-energy region, among which there are 1–8 

years of significant resonance periods in 1964–1983, 16–20 years in 1982–2002, 3–10 years 

in 1993–2015, and 1–2 years in 1996–2002. Figure 13e,f shows the cross-wavelet energy 

spectra and condensation spectra of SSMI and E, respectively. Both figures show that there 

is a significant resonance period of 4–5 years from 2000 to 2005, and it tends to be nega-

tively correlated. As can be seen from Figure 13g, SSMI and H only had a significant res-

onance period of 4–6 years from 2000 to 2010, mainly in a positive correlation. Figure 13h 

shows that SSMI and H mainly have three significant resonance periods in the low-energy 

region, among which a significant resonance period of 1–3 years existed from 1965 to 1985; 

3–6 years existed from 1985 to 2010, and 1–2 years existed from 1995 to 2000. 
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Figure 13. Cross-wavelet energy spectrum and condensation spectrum of SSMI with T, P, E, and H. 

(a) XWT: SSMI-T; (b) WTC: SSMI-T; (c) XWT: SSMI-P; (d) WTC: SSMI-P; (e) XWT: SSMI-E; (f) WTC: 

SSMI-E; (g) XWT: SSMI-H; (h) WTC: SSMI-H. 

This paper analyzed the influence of T, P, E, H, and other meteorological factors on 

SSMI using the cross-wavelet method and found that T and E were negatively correlated 

with it, but P and H were positively correlated with it. All four meteorological factors have 

certain driving effects on agricultural drought, and P has a greater influence on drought 

and a stronger correlation. Agriculture depends on rainfall, and when it is not sufficient, 

it leads to crop failure [50]. Miao et al. identified that P is the main driving factor of vege-

tation growth that can reduce the possibility of drought disasters when analyzing drought 

characteristics and influencing factors in Inner Mongolia [51]. Guo et al. also pointed out 

that precipitation in Northern China can slow down drought and has a positive impact on 

it, which plays a dominant role in the dynamic characteristics of drought [52]. It is worth 

noting that the cross-wavelet energy spectrum and condensation spectrum of the four me-

teorological factors and SSMI all have significant resonance periods of different time scales 

in the 21st century, which corresponds to the above research results, indicating that agri-

cultural drought has occurred frequently and with high intensity since the 21st century. 

5.2. Advantages and Limitations 

With global warming, the problem of drought in IMIRB has become more and more 

serious, and many scholars have studied the drought problem in this region [20,30,53,54]. 

An et al. analyzed the drought characteristics and changing trend of Inner Mongolia based 

on SPEI and showed that the areas with strong drought intensity were distributed in the 

north-central and western regions [20]. Existing studies showed that drought was more 

serious in the western region, which is similar to this study’s research results. The main 

reason is that the western region is dominated by desertification grassland, and the rain-

fall is scarce. It takes a long time and is difficult to recover after the drought, so the drought 

in the western region shows the characteristics of high intensity. Based on the SSMI index, 

this study identified the spatio-temporal evolution characteristics of agricultural drought 

events in IMIRB from 1960 to 2021 and found that the SSMI index of all scales showed a 

downward trend and showed the characteristics of drought, which was similar to the re-

search result of Zhao et al., indicating that climate warming led to more severe drought 

situation [55]. At the same time, the research results showed that the 2000s SSMI in this 

region showed a downward trend, and the drought was the most severe around 2007, and 

then the SSMI showed an upward trend, and the drought was alleviated, indicating that 

the drought had phased characteristics, which is in good agreement with the existing re-

search results [56]. On a spatial scale, Zhang et al. found that the area with an upward 
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trend of drought was more than the area with a downward trend in Inner Mongolia, and 

Wang et al. showed that the drought intensification trend was most significant in the 

northern central part of IMIRB [57,58]. The research results of this paper support the above 

viewpoint and show that the area with a significant increase in spring drought is the larg-

est, and drought is also the most prone to occur, which deepens the previous research 

results. 

The above studies used a one-dimensional or two-dimensional scale to identify 

drought events and characterized drought from the aspects of drought duration, drought 

frequency, drought intensity, etc., but failed to identify drought variables such as drought 

center and drought migration path, resulting in the loss of some drought characteristic 

variables, and, thus, unable to comprehensively and accurately analyze its spatio-tem-

poral evolution characteristics and dynamic evolution laws. In this paper, the agricultural 

drought events in IMIRB are identified from a three-dimensional perspective, and the 

drought characteristic variables of each drought event are obtained so that the spatio-tem-

poral and dynamic evolution laws of each agricultural drought event could be intuitively 

recognized according to drought characteristic variables such as drought duration, inten-

sity, drought center, and migration path. According to the results of three-dimensional 

identification, 9 of the 10 most serious agricultural drought events from 1960 to 2021 were 

in 2000–2021, and the most serious drought event began in October 2000 and ended in 

May 2002. At the same time, as can be seen from Figure 14, in 2000–2010 and 2015–2018, 

there were more areas affected by crops and areas of crop failure, reflecting the serious 

agricultural drought during this period. This is very similar to the results identified by the 

three-dimensional identification method, indicating that the three-dimensional identifica-

tion method can be used to identify agricultural drought and its characteristic variables. 

 

Figure 14. The affected area of crops and the area of crop failure from 1998 to 2021. 

However, there are still some limitations in this study. In this paper, a monthly time 

series raster data set of soil root zone water content with a resolution of 0.25° × 0.25° was 

selected to calculate SSMI at different time scales. The raster accuracy is a li�le coarse, 

which leads to insufficient data accuracy and cannot fully and accurately reflect the soil 

root zone water content in various locations in the study area. Therefore, the agricultural 
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drought index calculated on the basis of soil root zone water content may be somewhat 

different from the actual situation. In addition, when we calculate the agricultural drought 

index, we only consider the soil water content but do not consider the impact of human 

activities on drought. In fact, human activities can lead to changes in land types and also 

affect the division of dry areas [26]. Finally, this paper only studies the influence of four 

meteorological factors on agricultural drought and does not consider the influence of 

other meteorological factors, human activities, and underlying surface factors. In future 

studies, the effects of other factors on agricultural drought should be considered, and it is 

suggested that the drought center and migration path of each agricultural drought should 

be identified comprehensively and deeply, and the spatio-temporal dynamic law of agri-

cultural drought should be understood so as to formulate corresponding drought preven-

tion and relief programs. 

6. Conclusions 

This paper uses SSMI to characterize the agricultural drought in IMIRB from 1694 to 

2021 and analyzes its temporal and spatial evolution characteristics. Then, the drought 

events are identified via the three-dimensional identification method, and the drought 

characteristic variables of typical drought events are extracted, revealing the development 

law of typical drought events. Finally, the influence of T, P, E, and H on SSMI is analyzed 

using the cross-wavelet method. This paper draws the following conclusions: 

(1) With the increase in time scale, the fluctuation of agricultural drought decreased, but 

the SSMI index of all scales showed a downward trend, and the spring drought was 

the most obvious (linear tendency rate was −0.072/10a), and the change trend of 

drought area proportion and intensity was similar in four seasons; 

(2) The spatial distribution characteristics of drought change trend in four seasons were 

similar, but the area with a significant downward trend of drought in spring was the 

largest, and the area of the high-frequency region was also the largest, accounting for 

35.40% and 42.70% respectively; 

(3) The most serious agricultural drought happened from October 2000 to May 2002, and 

both the drought area and severity reached the maximum in September 2001, with 

the drought area and intensity of 2.26 × 105 km2 and 3.61 × 105 months·km2, 

respectively. The drought event mainly experienced five processes: drought onset–

intensification–decay–re-intensification–termination, and the migration path of the 

drought center was characterized by southwest to northeast transmission; 

(4) T, P, E, and H all played a driving role in the occurrence of agricultural drought. T 

and E were mainly negatively correlated with SSMI; P and H were mainly positively 

correlated with SSMI, and P had a greater impact on SSMI. 
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