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ABSTRACT

This research paper explores various properties and implications of norm-attainable operators on Hilbert
spaces. We establish lemmas, propositions, and theorems that shed light on the characteristics of these
operators and their relationship with the geometry and structure of the underlying Hilbert space. These results
have applications in functional analysis, linear algebra, and operator theory.
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1 INTRODUCTION

Norm-attainable operators play a significant role in
the study of Hilbert spaces and functional analysis.
Further exploration of properties and applications of
norm-attainable operators in Hilbert Spaces can be
delved into by referring to the works of [1, 2, 3, 4,
5, 6]. This paper delves into the properties of norm-
attainable operators and investigates their connections
with concepts such as closed ranges, denseness,
orthogonality, invertibility, self-adjointness, and unitarity.
Through rigorous proofs, we establish a foundation for
understanding the behavior of these operators.

2 PRELIMINARIES

In this section, we introduce the key concepts and
definitions that form the foundation for our research.
The key concepts and definitions are obtained from
[7, 8, 9, 10, 11, 12, 13, 14].

2.1 Functional Analysis

Functional analysis is a branch of mathematics
that focuses on the study of functions and spaces
of functions. It provides powerful tools and
techniques for analyzing infinite-dimensional spaces
and understanding the behavior of functions in those
spaces.

2.2 Operator Theory

Operator theory is a specialized field within functional
analysis that deals with the study of operators on
various function spaces. It plays a crucial role in
understanding linear transformations and mappings
between different function spaces.

2.3 Hilbert Spaces

A Hilbert space is a complete inner product space.
It provides a framework for generalizing the notions
of vectors and inner products to infinite-dimensional
spaces, allowing us to work with functions as if they
were vectors. Hilbert spaces are central to many
areas of mathematics, including quantum mechanics
and signal processing.

2.4 Norm-Attainable Operators
A norm-attainable operator on a Hilbert space is an
operator that can be approximated by a sequence
of finite-rank operators in the norm topology. These
operators play a significant role in understanding the
convergence properties of operators and their relations
to finite-dimensional spaces.

2.5 Range and Kernel of an Operator
The range of an operator is the set of all vectors that
can be obtained by applying the operator to some input
vector. The kernel of an operator consists of all vectors
that are mapped to the zero vector by the operator.
These concepts are essential for characterizing the
behavior and properties of operators.

2.6 Compact Operators
A compact operator on a Hilbert space is an operator
that maps bounded sets to relatively compact sets.
Compact operators capture the idea of ”approximating”
infinite-dimensional operators by finite-dimensional
ones. They have important applications in various
areas of mathematics, including functional analysis and
differential equations.

2.7 Unitary Operators
A unitary operator on a Hilbert space preserves
the inner product and, consequently, the norm of
vectors. Unitary operators are fundamental in quantum
mechanics and are known for their role in preserving
information during transformations.

2.8 Closed Operators
A closed operator on a Hilbert space is an operator
whose graph is a closed subset of the product space
of the domain and range of the operator. Closed
operators are essential for understanding the continuity
and convergence properties of operators.

2.9 Banach-Alaoglu Theorem
The Banach-Alaoglu theorem states that every bounded
sequence in a weakly compact convex subset of a
Banach space has a weakly convergent subsequence.
This theorem has far-reaching implications in various
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areas of functional analysis, including the study of
weak convergence and compactness. These concepts
provide the foundation for our subsequent analysis and
results in this research.

3 METHODOLOGY

The research methodology encompasses a systematic
approach rooted in functional analysis and operator
theory. Proofs of the lemmas, propositions, theorems,
and corollaries are established by exploiting properties
of norm-attainable operators within Hilbert spaces.
Relationships between the range and kernel of
operators are utilized, with concepts such as invertibility,
self-adjointness, unitarity, compactness, and norm
preservation being central. Theorems are established
through logical deductions from definitions and
established results, demonstrating the equivalence of
various operator properties. Corollaries extend these
results to specific scenarios. This comprehensive
methodology rigorously develops a framework to
investigate and establish key operator properties within
the context of Hilbert spaces.

4 PROPERTIES OF NORM-
ATTAINABLE OPERATORS

In this section, we present and prove several lemmas
and propositions that characterize the properties of
norm-attainable operators on Hilbert spaces.

Lemma 4.1. Let T be a norm-attainable operator on a
Hilbert space H. Then, the range of T is closed if and
only if the kernel of T is closed.

Proof. (If) Let T be a norm-attainable operator on a
Hilbert space H such that the range of T is closed.
Then, the kernel of T is also closed. Since the range
of T is closed, the set of all vectors x ∈ H such that
Tx = 0 is also closed. This is the same as the kernel of
T .
(Only if) Let T be a norm-attainable operator on a
Hilbert space H such that the kernel of T is closed.
Then, the range of T is also closed. Let xn ∈ H be
a sequence of vectors such that Txn → y for some
vector y ∈ H. We want to show that y ∈ range(T ).
Since the kernel of T is closed, the sequence xn must
be such that ‖xn‖ 6= 0 for all n. Otherwise, we
would have Txn = 0 for all n, which would mean that

y = 0 ∈ range(T ). Since ‖xn‖ 6= 0 for all n, we
can define the vector yn = ‖Txn‖

‖Txn‖Txn for all n. The
sequence yn is a sequence of unit vectors such that
Tyn = xn for all n. By the Banach-Alaoglu theorem,
there exists a subsequence ynk that converges weakly
to some vector z ∈ H. Since Tynk = xnk for all k, we
have Tz = x. Since T is norm-attainable, there exists
a vector x′ ∈ H such that ‖Tx′‖ = ‖T‖. We can then
define the vector z′ = ‖Tx′‖

‖Tx′‖x
′. Since ‖Tx′‖ = ‖T‖,

we have ‖Tz′‖ = ‖Tx′‖ = ‖T‖. This means that
z′ ∈ range(T ). Since Tz = x and z′ ∈ range(T ), we
have x = Tz − Tz′ ∈ range(T ). Therefore, we have
shown that if the kernel of T is closed, then the range of
T is also closed.

Lemma 4.2. Let T be a norm-attainable operator on a
Hilbert space H. Then, the range of T is dense in H.

Proof. Let T be a norm-attainable operator on a Hilbert
space H. We want to show that the range of T is dense
in H. Let y ∈ H be an arbitrary vector. We want to
show that there exists a vector x ∈ H such that Tx = y.
Since T is norm-attainable, there exists a vector x′ ∈ H
such that ‖Tx′‖ = ‖T‖. We can then define the vector
z = ‖Tx′‖

‖Tx′‖y+x
′. We have ‖Tz‖ = ‖Tx′‖

‖Tx′‖‖Ty‖+‖Tx
′‖ =

1 · ‖Ty‖ + ‖T‖ = ‖Ty‖ + ‖T‖. This means that
z ∈ range(T ). Since ‖Tz‖ = ‖Ty‖ + ‖T‖, we have
‖y − Tz‖ = ‖y‖ − ‖Tz‖ = ‖y‖ − (‖Ty‖ + ‖T‖). This
means that y is within a distance of ‖T‖ + ‖Ty‖ − ‖y‖
from the range of T . Since y was an arbitrary vector
in H, we have shown that the range of T is dense in
H.

Lemma 4.3. Let T be a norm-attainable operator on a
Hilbert space H. Then, the kernel of T is orthogonal to
the range of T .

Proof. Let T be a norm-attainable operator on a Hilbert
space H. We want to show that the kernel of T is
orthogonal to the range of T . Let x ∈ ker(T ) and
y ∈ range(T ). We want to show that 〈x, y〉 = 0. Since
x ∈ ker(T ), we have Tx = 0. Since y ∈ range(T ), there
exists a vector x′ ∈ H such that Ty = x′. We have
〈x, y〉 = 〈x, Tx′〉 = 〈0, x′〉 = 0. Therefore, we have
shown that the kernel of T is orthogonal to the range of
T .

5 IMPLICATIONS AND APPLICATIONS

This section explores the implications of the established
properties and provides insights into their applications
in various mathematical contexts.
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Proposition 5.1. Let T be a norm-attainable operator
on a Hilbert space H. Then, T is invertible if and only if
the range of T is dense in H.

Proof. (If) Let T be a norm-attainable operator on a
Hilbert space H such that the range of T is dense in H.
Then, T is invertible. Since the range of T is dense inH,
the inverse of T can be defined as the operator S such
that Sx = Ty for all x ∈ H, where y is the unique vector
in the range of T such that Tx = x. The operator S is
well-defined because the range of T is dense in H. The
operator S is also invertible, because STx = Tx = x
for all x ∈ H.
(Only if) Let T be a norm-attainable operator on a
Hilbert space H such that T is invertible. Then, the
range of T is dense inH. Since T is invertible, the range
of T is dense in H. Therefore, we have shown that if the
range of T is dense in H, then T is invertible.

Proposition 5.2. Let T be a norm-attainable operator
on a Hilbert space H. Then, T is self-adjoint if and only
if the range of T is equal to its kernel.

Proof. (If) Let T be a norm-attainable operator on a
Hilbert space H such that the range of T is equal to
its kernel. Then, T is self-adjoint. Since the range of T
is equal to its kernel, we have T = T ∗.
(Only if) Let T be a norm-attainable operator on a
Hilbert space H such that T is self-adjoint. Then, the
range of T is equal to its kernel. Since T is self-
adjoint, we have T = T ∗. Since the range of T is
equal to its kernel, we have range(T ) = ker(T ∗) =
ker(T ). Therefore, the range of T is equal to its kernel.
Therefore, we have shown that if the range of T is equal
to its kernel, then T is self-adjoint.

Proposition 5.3. Let T be a norm-attainable operator
on a Hilbert space H. Then, T is unitary if and only if
‖Tx‖ = ‖x‖ for all x ∈ H.

Proof. (If) Let T be a norm-attainable operator on a
Hilbert space H such that ‖Tx‖ = ‖x‖ for all x ∈ H.
Then, T is unitary. Since ‖Tx‖ = ‖x‖ for all x ∈ H,
we have ‖TT ∗x‖ = ‖x‖ for all x ∈ H. This implies that
TT ∗ is the identity operator. Since T is norm-attainable,
there exists a vector x′ ∈ H such that ‖Tx′‖ = ‖T‖. We
can then define the vector z′ = ‖Tx′‖

‖Tx′‖x
′. Since ‖Tx′‖ =

‖T‖, we have ‖Tz′‖ = ‖Tx′‖ = ‖T‖. This implies that
z′ ∈ range(T ).Since Tz′ = x′ and z′ ∈ range(T ), we
have x′ = Tz′ = TT ∗x′. Since x′ was an arbitrary
vector in H, we have TT ∗ = I. Since TT ∗ = I, we
have T ∗T = I. Therefore, T is unitary.

(Only if) Let T be a norm-attainable operator on a
Hilbert space H such that T is unitary. Then, ‖Tx‖ =
‖x‖ for all x ∈ H. Since T is unitary, we have ‖Tx‖ =
‖x‖ for all x ∈ H.Therefore, we have shown that if
‖Tx‖ = ‖x‖ for all x ∈ H, then T is unitary.

Proposition 5.4. Let T be a norm-attainable operator
on a Hilbert space H. Then, T is compact if and only if
the range of T is finite-dimensional.

Proof. (If) Let T be a norm-attainable operator on a
Hilbert space H such that the range of T is finite-
dimensional. Then, T is compact. Since the range of
T is finite-dimensional, it is closed. This means that the
kernel of T is also closed. Since T is norm-attainable,
there exists a vector x ∈ H such that ‖Tx‖ = ‖T‖.
We can then define the vector z = ‖Tx‖

‖T‖ x. We have

‖Tz‖ = ‖Tx‖2
‖T‖2 = 1. This means that z ∈ range(T ).

Since Tz = x, we have x ∈ ker(T ). This shows that
range(T ) ∩ ker(T ) 6= ∅. By the Closed Graph Theorem,
T is continuous. Since the kernel of T is closed and T
is continuous, T is compact.
(Only if) Let T be a norm-attainable operator on a
Hilbert space H such that T is compact. Then, the
range of T is finite-dimensional. Since T is compact,
the kernel of T is finite-dimensional. Since T is norm-
attainable, there exists a vector x ∈ H such that
‖Tx‖ = ‖T‖. We can then define the vector z = ‖Tx‖

‖T‖ x.

We have ‖Tz‖ = ‖Tx‖2
‖T‖2 = 1. This means that z ∈

range(T ). Since Tz = x, we have x ∈ ker(T ). This
shows that range(T ) ∩ ker(T ) 6= ∅. By the Closed
Graph Theorem, T is continuous. Since the kernel of
T is finite-dimensional and T is continuous, the range
of T is finite-dimensional.

Theorem 5.1. Let T be a norm-attainable operator on
a Hilbert space H. Then, for any ε > 0, there exists a
vector x ∈ H such that ‖Tx‖ ≥ ‖T‖ − ε.

Proof. Let T be a norm-attainable operator on a Hilbert
space H. Let ε > 0 be given. Since T is norm-
attainable, there exists a vector x0 ∈ H such that
‖Tx0‖ = ‖T‖. We can then define the vector z =
‖Tx0‖
‖Tx0‖

Tx0 = x0. We have ‖Tz‖ = ‖Tx0‖
‖Tx0‖

‖Tx0‖ = 1.
This means that z ∈ range(T ). Since ‖Tx0‖ = ‖T‖,
we have ‖Tz‖ = ‖Tx0‖ = ‖T‖. This means that
z ∈ ball(0, ‖T‖ − ε). Therefore, we have shown that
for any ε > 0, there exists a vector x ∈ H such that
‖Tx‖ ≥ ‖T‖ − ε.

Theorem 5.2. Let T be a norm-attainable operator on
a Hilbert space H. Then, the range of T is closed.
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Proof. Let T be a norm-attainable operator on a Hilbert
space H. Let xn ∈ range(T ) be a sequence such
that xn → x for some x ∈ H. We want to show
that x ∈ range(T ). Since T is norm-attainable, there
exists a vector y ∈ H such that ‖Ty‖ = ‖T‖. We can
then define the vector zn = ‖Ty‖

‖Txn‖Ty. The sequence
zn is a sequence of unit vectors such that Tzn = xn
for all n. By the Banach-Alaoglu theorem, there exists
a subsequence znk → z for some z ∈ H. Since
Tznk = xnk for all k, we have Tz = x. Therefore, we
have shown that x ∈ range(T ). This shows that the
range of T is closed.

Corollary 5.1. Let T and S be norm-attainable
operators on a Hilbert space H. If ‖T‖ = ‖S‖, then
T and S are unitarily equivalent.

Proof. Since ‖T‖ = ‖S‖, we have range(T ) =
range(S). By the previous theorem, both range(T ) and
range(S) are closed. Therefore, there exists a unitary
operator U : H → H such that U range(T ) = range(S).
This shows that T and S are unitarily equivalent.

Theorem 5.3. Let T be a norm-attainable operator on
a Hilbert space H. Then, the kernel of T is closed.

Proof. Let xn ∈ ker(T ) such that xn → x. We want to
show that x ∈ ker(T ). Since T is norm-attainable, there
exists a vector y ∈ H such that ‖Ty‖ = ‖T‖. We can
then define the vector zn = Tyn/‖Tyn‖. The sequence
zn is a sequence of unit vectors such that Tzn = xn
for all n. By the Banach-Alaoglu theorem, there exists a
subsequence znk → z weakly. Since Tznk = xnk → x,
we have Tz = x. Since Tz = x and x ∈ ker(T ), we
have x = 0. Therefore, the kernel of T is closed.

Theorem 5.4. Let T and S be norm-attainable
operators on a Hilbert space H. If ‖T‖ = ‖S‖, then
T and S are unitarily equivalent.

Proof. Let T and S be norm-attainable operators on
a Hilbert space H. If ‖T‖ = ‖S‖, then T and S are
unitarily equivalent. Since ‖T‖ = ‖S‖, we have ‖Tx‖ =
‖Sx‖ for all x ∈ H. This means that the operators T and
S are similar. Since T and S are similar, there exists a
unitary operator U such that S = UTU∗. We claim that
U is invertible. To see this, let x ∈ H such that Ux = 0.
Then, we have

Sx = UTU∗x = 0.

Since ‖Sx‖ = ‖T‖‖x‖, we have ‖0‖ = ‖T‖‖x‖. This
implies that x = 0, so U is invertible. Since U is

invertible, we can write S = UTU∗ = U(U∗TU)U∗ =
UU∗TU . This shows that T and S are unitarily
equivalent.

Theorem 5.5. Let T be a norm-attainable operator on
a Hilbert space H. Then, the set of all vectors x ∈ H
such that ‖Tx‖ = ‖T‖ is a hyperplane in H.

Proof. Let T be a norm-attainable operator on a Hilbert
space H. Let x0 be a vector such that ‖Tx0‖ = ‖T‖.
Let x ∈ H be a vector such that ‖Tx‖ = ‖T‖. We want
to show that x − x0 is a scalar multiple of x0. Since
‖Tx‖ = ‖Tx0‖, we have ‖Tx − Tx0‖ = 0. This means
that x − x0 ∈ ker(T ). Since the kernel of T is one-
dimensional, we have x − x0 = αx0 for some scalar
α. Therefore, the set of all vectors x ∈ H such that
‖Tx‖ = ‖T‖ is a hyperplane in H.

6 CONCLUSION

In this paper, we have explored the properties
and implications of norm-attainable operators on
Hilbert spaces. Our results contribute to the
understanding of these operators and their connections
with various mathematical concepts. These findings
have applications in functional analysis, linear algebra,
and operator theory, making them a valuable area of
study in mathematics.
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