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Abstract

In this paper, the suborbits and graphs associated with the action of direct product of two Alternating
groups on the Cartesian product of two sets are studied. It is shown that the suborbits are self-paired and
the associated graphs are undirected and regular with girth 3.
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1 Introduction

The idea of suborbital graphs corresponding to non-trivial suborbits of a group acting on a set X was first
investigated by Sims in 1967 on graphs and finite permutation groups, see [1]. He defined a suborbital graph
Gi corresponding to the suborbital Oi ⊆ X × X as a graph whose vertex set is X and edge set E consists of
directed edges from x to y where (x, y) ∈ Oi. Since then, there has been an intensive study on these graphs by
several researchers including; [2], [3], [4], [5],[6], [7],[8], [9],[10],[11],[12],[13],[14],[15], among others.

Suborbital graphs and their properties for ordered triples in An, (n = 5, 6, 7) through rank and subdegree
determination were investigated by [16]. It was shown that if An (n ≥ 5) acts on the ordered pairs, the
suborbital graphs corresponding to the non-trivial suborbits are connected. Further, it was proved that the
suborbital graphs Gi corresponding to the suborbits 4i, i = 1, 2, 5, 6, 7, 14, 15, 22, 23, 24, 28, 32, 33, 34 are un
directed (since the suborbits are self-paired) and the graphs Gjk where j = 3, 8, 9, 10, 11, 16, 17, 25, 26, 29 and
k = 4, 12, 13, 19, 18, 20, 21, 27, 30, 31 are directed for each j and k (since the suborbits4j and4k are respectively
paired).

Gikunju[17] constructed and investigated the suborbital graphs corresponding to the action of direct products
of symmetric groups Sn on a Cartesian product of three sets. It was showed that the suborbital graphs Gi, i =
1, 2, · · · , n corresponding to the non-trivial suborbits Oi, i = 1, 2, · · · , 6 are disconnected but G7 is connected each
with girth 3 for all n > 2. It was further showed that the suborbital graphs are undirected and the graphs Gi, i =
1, 2, · · · , 7 are regular with the respective degrees (n−1), (n−1), (n−1), (n−1)2, (n−1)2, (n−1)3, and (n−1)3

for all n > 2.
This paper investigates the properties of suborbital graphs associated with the action of direct products of

Alternating groups An on Cartesian products of two sets.

1.1 Definitions and Preliminary results

Definition 1.1. [Product Action][18, p.3] Let (G1, X1) and (G2, X2) be permutation groups. The direct product
G1 ×G2 acts on the the Cartesian product X1 ×X2 by the rule

(g1, g2)(x1, x2) = (g1x1, g2x2) ∀ g1 ∈ G1, g2 ∈ G2 and x1 ∈ X1, x2 ∈ X2.

Remark 1.1. Through out this paper, the group action defined is in a similar way as in Definition 1.1 as

(g1, g2, )(x1, x2) = (g1x1, g2x2) ∀ g1, g2 ∈ G and xi ∈ Xi

where G = An ×An and, X1 = {1, 2, · · · , n}, X2 = {n + 1, n + 2, · · · , 2n}.

Definition 1.2. Let 4 be an orbit of Gx on X. Define 4∗ = {gx : g ∈ G, x ∈ g4}, then 4∗ is also an
orbit of Gx and is called the Gx-orbit paired with 4. Wielandt [19] proved that if 4∗ = 4, then 4 is called a
self-paired orbit of Gx.

Definition 1.3. Suppose G is a group acting transitively on a set X and let Gx be the stabilizer in G of a
point x ∈ X . The orbits 40 = {x},41,42, · · ·4k−1 of Gx on X are known as suborbits of G. The rank of G
in this case is k. The sizes ni = |4i| (i = 0, 1, 2, · · · , k− 1) are known as the subdegrees of G. It was proved by
[20] that the rank and subdegrees of the suborbits 4i (i = 0, 1, 2, · · · , k − 1) are independent of the choices of
x ∈ X.

Theorem 1.1. [1] Let G be transitive on X and let suborbit 4i (i = 1, 2, · · · , k − 1) correspond to suborbital
Oi. Then the corresponding suborbital graph Gi is

1. directed if 4i is self-paired and undirected if 4i is not self-paired

2. connected if and only if G is primitive.
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2 Main Results

We recall that for n ≥ 3, the action of An ×An on X1 ×X2 is transitive and imprimitive with 32 suborbitals
for n = 3 and 22 suborbitals for n ≥ 4.

2.1 Suborbital graphs of G = A3 × A3 acting on the X1 ×X2

We notice that the suborbit 40 has only one element (coordinate), and therefore clearly self-paired and the
graph corresponding to this suborbit is a null graph with no interesting properties to study.

Lemma 2.1. The suborbits 41,42, · · · , and 48 of G are self-paired.

Proof. By Definition 1.2, consider for example 42 = {(1, 6)} and let g1, g2 ∈ G. Then (g1, g2)(1, 6) = (1, 4)
implies g1(1) = 1 and g2(6) = 4. Thus (g1, g2) = ((1), (6 4). So, (g1, g2)(1, 4) = (1, 6) ∈ 43. Hence 4∗

3 = 43 i.e.
self-paired. Similarly, 4i : i = 1, 3, 4, · · · , 8 are self-paired

Corollary 2.1. The suborbital graphs Gi, i = 0, 1, 2, · · · , 8 corresponding to suborbits 4i are undirected.

Proof. Since the suborbits, 4i are self-paired, then by Theorem 1.1, we are done.

The suborbital graphs Gi : i = 1, 2, · · · , 8 corresponding to the non-trivial suborbits 4i in the following way.

Let A and B be distinct points in X1 ×X2. Then the suborbital O1 corresponding to the suborbit 41 is given
as;

O1 = {(g1, g2)(1, 4), (g1, g2)(1, 5)|(g1, g2) ∈ G}.

Thus there exists an edge in G1 from A to B if the first coordinates in A and B are identical but the second
coordinates are different.

Remark 1. The graph G2 corresponding to 42 is same as G1 as they both have have edges between points with
similar conditions.

Fig. 1. Suborbital graph G1 corresponding to suborbit 41 of A3 ×A3 acting on X1 ×X2
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The suborbital graphs corresponding to suborbits43, and, 44 are same as they both have edges between points
with similar conditions. For example, suborbital O4 corresponding to the suborbit 44 is given as;

O4 = {(g1, g2)(1, 4), (g1, g2)(3, 4)|(g1, g2) ∈ G}.

Thus there exists an edge in G4 from A to B if the first coordinates in A and B are different but the second
coordinates are identical.

Fig. 2. Suborbital graph G4 corresponding to suborbit 44 of A3 ×A3 acting on X1 ×X2

The suborbital graphs corresponding to suborbits 4i : i = 5, 6, 7, 8 are same as they all have edges between
points with similar conditions. For example, suborbital O8 corresponding to the suborbit 48 is given as;

O7 = {(g1, g2)(1, 4), (g1, g2)(3, 6)|(g1, g2) ∈ G}.

Thus there exists an edge in G4 from A to B if the first and second coordinates in A are different from the first
and second coordinates in B.

2.2 Suborbital graphs of G = A4 × A4 acting on the X1 ×X2

For the four suborbits of this action, self-pairedness is checked for each of the suborbit and the corresponding
suborbital graphs Gi, i = 0, 1, 2, 3 constructed.

Since the suborbit40 has only one element (coordinate), then it is clearly self-paired and the graph corresponding
to this suborbit is a null graph with no interesting properties to study.

Lemma 2.2. The remaining suborbits 41,42, and 43 of G are self-paired.

Proof. By Definition 1.2, consider for example41 = {(1, 6), (1, 7), (1, 8)} and let g1, g2 ∈ G. Then (g1, g2)(1, 6) =
(1, 5) implies g1(1) = 1 and g2(6) = 5. Thus (g1, g2) = ((1), (6 5). So, (g1, g2)(1, 5) = (1, 6) ∈ 41. Hence
4∗

1 = 41 i.e. self-paired. Similarly, 4i : i = 2, 3 are self-paired

Corollary 2.2. The suborbital graphs Gi, i = 0, 1, 2, 3 of corresponding to suborbits 4i are undirected.
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Fig. 3. Suborbital graph G8 corresponding to suborbit 48 of A3 ×A3 acting on X1 ×X2

Proof. By Lemma 2.2, suborbits 4i are self-paired. Now by Theorem 1.1, we are done.

The suborbital graphs Gi : i = 1, 2, 3 corresponding to the non-trivial suborbits 4i in the following way.

Let A and B be distinct points in X1 ×X2. Then the suborbital O1 corresponding to the suborbit 41 is given
as;

O1 = {(g1, g2)(1, 5), (g1, g2)(1, 6)|(g1, g2) ∈ G}.

Thus there exists an edge in G1 from A to B if the first coordinates in A and B are identical but the second
coordinates are different.

Fig. 4. Suborbital graph G1 corresponding to suborbit 41 of A4 ×A4 acting on X1 ×X2

169



Kadedesya et al.; Asian Res. J. Math., vol. 19, no. 11, pp. 165-174, 2023; Article no.ARJOM.104562

The suborbital O2 corresponding to the suborbit 42 is given as;

O2 = {(g1, g2)(1, 5), (g1, g2)(2, 5)|(g1, g2) ∈ G}.

Thus there exists an edge in G2 from A to B if the first coordinates in A and B are different but the second
coordinates are the same.

Fig. 5. Suborbital graph G2 corresponding to suborbit 42 of A4 ×A4 acting on X1 ×X2

Suborbital O3 corresponding to the suborbit 42 is given as;

O3 = {(g1, g2)(1, 5), (g1, g2)(2, 6)|(g1, g2) ∈ G}.

Thus there exists an edge in G3 from A to B if the first and second coordinates in A are different from the first
and second coordinates in B.

2.3 Suborbital graphs of G = A5 × A5 acting on the X1 ×X2

Since there are four suborbits for this action, we again check self-pairedness for each of the suborbit and also
construct the corresponding suborbital graphs Gi, i = 0, 1, 2, 3.

The suborbit40 has only one element (coordinate), and therefore clearly self-paired and the graph corresponding
to this suborbit is a null graph with no interesting properties to study.

Lemma 2.3. The suborbits 41,42, and 43 of G are self-paired.

Proof. By Definition 1.2, consider for example 42 = {(2, 6), (3, 6), (4, 6), (5, 6)} and let g1, g2 ∈ G. Then
(g1, g2)(2, 6) = (1, 6) implies g1(2) = 1 and g2(6) = 6. Thus (g1, g2) = ((2 1), (6). So, (g1, g2)(1, 6) = (2, 6) ∈ 42.
Hence 4∗

2 = 41 i.e. self-paired. Similarly, 41 and 43 are self-paired.

Corollary 2.3. The suborbital graphs Gi, i = 1, 2, 3 of corresponding to suborbits 4i are undirected.

Proof. By Lemma 2.3, 4i are self-paired. So by Theorem 1.1, the proof is complete.
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Fig. 6. Suborbital graph G3 corresponding to suborbit 43 of A4 ×A4 acting on X1 ×X2

The suborbital graphs Gi : i = 1, 2, 3 corresponding to the non-trivial suborbits 4i in the following way.

Let A and B be distinct points in X1 ×X2. Then the suborbital O1 corresponding to the suborbit 41 is given
as;

O1 = {(g1, g2)(1, 6), (g1, g2)(1, 7)|(g1, g2) ∈ G}.

Thus there exists an edge in G1 from A to B if the first coordinates in A and B are identical but the second
coordinates are different.

Fig. 7. Suborbital graph G1 corresponding to suborbit 41 of A5 ×A5 acting on X1 ×X2
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The suborbital O2 corresponding to the suborbit 42 is given as;

O2 = {(g1, g2)(1, 6), (g1, g2)(2, 6)|(g1, g2) ∈ G}.

Thus there exists an edge in G2 from A to B if the first coordinates in A and B are different but the second
coordinates are the same.

Fig. 8. Suborbital graph G2 corresponding to suborbit 42 of A5 ×A5 acting on X1 ×X2

Suborbital O3 corresponding to the suborbit 42 is given as;

O3 = {(g1, g2)(1, 6), (g1, g2)(2, 7)|(g1, g2) ∈ G}.

Thus there exists an edge in G3 from A to B if the first and second coordinates in A are different from the first
and second coordinates in B.

Fig. 9. Suborbital graph G3 corresponding to suborbit 43 of A5 ×A5 acting on X1 ×X2
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2.4 Suborbital graphs of G = An × An acting on the X1 ×X2

In this Subsection, we generalize results from Subsections 2.1,2.2, and 2.3 as follows;

Lemma 2.4. For n > 3, the suborbits 40,41,42,43 of G are self-paired.

Proof. By Definition 1.2, the trivial suborbit40 is clearly self-paired since it has only one element. Now consider
41 = {(1, n+2), (1, n+3), · · · , (1, 2n)} and let g1, g2 ∈ G. Then we have (g1, g2){(1, n+2), (1, n+3), · · · , (1, 2n)}.
Since the first coordinates are constant, we consider; g2{n + 2, n + 3, · · · , 2n} = {1, 2, · · · , n − 1} implying
g2 = {(n + 2 1), (n + 3 2), · · · , (2n, n − 1)}. Thus g2{1, 2, · · · , n − 1} = {n + 2, n + 3, · · · , 2n} ∈ 41. Hence
4∗

1 = 41 i.e. self-paired.

For 42 = {(2, n + 1), (3, n + 1), · · · , (n, n + 1)} if (g1, g2){(2, n + 1), (3, n + 1), · · · , (n, n + 1)}, then since
the second coordinate is constant, we have g1{2, 3, · · · , n} = {1, 2, · · · , n − 1} considered. This implies that
g1 = {(2 1)(3 2), · · · , (n n − 1)} and consequently g1{1, 2, · · · , n − 1} = {2, 3, · · · , n} ∈ 42 i.e., 42 is also
self-paired.

Lastly, for 43 = {(2, n + 2), (3, n + 2), · · · , (n, n + 2), (2, n + 3), (2, n + 4), · · · , (2, 2n), · · · ,
(n, 2n)}. If (g1, g2){(2, n + 2), (3, n + 2), · · · , (n, 2n)}, we consider g1{2, 3, · · · , n} g2{n + 2, n + 3, · · · , 2n} =
{1, 2, · · · , n−1}. But g1 and g2 are already obtained and moreover, (g1, g2){1, 2, · · · , n−1} = {(2, n+2), (3, n+
2), · · · , (n, n + 2), (2, n + 3), (2, n + 4), · · · , (2, 2n), · · · , (n, 2n)} ∈ 43. Hence 43 is self-paired.

Corollary 2.4. For n > 3, the suborbital graphs Gi, i = 0, 1, 2, 3 corresponding to suborbits 4i for the action
An ×An on X1 ×X2 are undirected.

Proof. Since by Lemma 2.4 the suborbits are self-paired, then by Theorem 1.1, the proof is complete.

3 Conclusion

The graph G0 corresponding to trivial suborbit, 40 is a null graph for all n ≥ 3 with no properties to explore.

For n = 3, the graphs G1, and G2 are same and G3, and G4 are the same too with properties; regular of degree
n − 1, girth 3 and disconnected with n − 1 connected components. Also, graphs Gk : k = 5, 6, · · · , 8 are also
same and are regular of degree n + 1 with girth 3.

For n > 3, there is agreement of the subdegrees of the action of An × An on X1 × X2 with regularity of the
graphs: G1, and G2 are regular with degree n− 1, and G3 is regular of degree (n− 1)2 with all graphs having a
girth of 3.
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