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ABSTRACT 
 

We used GAMOS software to simulate the interaction of electrons in liquid water. In our work, the 
chosen parameter, the Linear Energy Transfer (LET), is studied in an energy range from 2.5 eV to 
100 MeV. The results obtained were analyzed and compared with experimental data and literature. 
A very good agreement emerged. 
Also the analysis of the LET curve of the medium crossed presents a maximum of 37.0626 
MeV/mm corresponding to an electron energy of 102.447 eV.  For energies below this value, the 
energy loss is greater. On the other hand, for energies higher than this value, there is less energy 
loss. 
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1. INTRODUCTION 
 
Many scientific researches are often expensive 
or the conditions of their realizations remain 
inaccessible. They are however necessary to 
improve our knowledge and achieve progress. 
However, to overcome these limitations or 
difficulties (obstacles), simulations could be 
carried out [1,2]. This is how the second half of 
the 20th century saw the development of 
modeling and simulation tools. The Monte Carlo 
method has seen increasing use, aided by the 
growing availability of computers and other 
means of calculation. Nowadays these 
simulations find a lot of application in various 
fields of research and development [3-5]. 
 
In particular, many Monte Carlo codes are 
dedicated specifically to the transport and study 
of particle interactions. Simulation makes it 
possible to save time and to study accidental 
situations or uses in hostile mode inaccessible to 
experience [6,7]. This is why we use the Monte 
Carlo simulation software based on the Geant4 
toolbox [8,9], with the acronym GAMOS which 
stands for “Geant4-based Architecture for 
Medicine-Oriented Simulations”. This software 
has the advantage of being in free access (Open 
Access) to simulate the interactions of electrons 
in liquid water and offers a certain user-
friendliness [10]. 
 
In the present article, we chose to study the 
interactions of electrons with water molecules 
considering the importance and abundance of 
water in the biological cell in order to better 
elucidate the consequences. This study was 
conducted using the GAMOS software which 
made it possible to carry out the simulations. The 
results obtained will be presented and discussed. 
 

2. MATERIALS AND METHODS 
 

2.1 Materials 
 
A GAMOS platform [10], based on the Geant4 
Monte Carlo technique [8], was used to simulate 
the impact of electrons with liquid water 
molecules. 
 

As part of our work, we simulated, with the 
GAMOS software, the water molecules 
(‘‘G4_WATER’’, density 1.0 gcm-3) contained in 
a rectangular parallelepiped of dimension 4*cm 
4*cm*0.5cm; We also simulated the primary 
electron beam of 100 MeV located in a 10 

degree cone and at -10cm from the position of 
the water molecules along the z axis. The whole 
is placed in a volume called “world” represented 
by a box of dimension 10*cm 10*cm 20*cm filled 
with air (see Fig. 1). 
 

2.1.1 Physics 
 

The ionization is modeled by the Moller-Bhabha 
formulation [Physics Reference Manual Release 
10.5, 2019]. 
 

The GEANT4 collaboration [11] defines a 
process as a C++ class that describes how and 
when a type of physical interaction occurs along 
a particle's trajectory. A wide range of physical 
processes can be simulated with GEANT4. 
These processes are grouped into seven (7) 
categories: electromagnetic, hadronic, decay, 
optical, photolepton-hadron, parameterization 
and transportation. In this simulation the 
electromagnetic processes and the transport 
process have been taken into account. 
 

In our simulation, we adopted the 
parameterizations of the electromagnetic 
interactions optimized (GmEMExtendedPhysics 
physics package), in which all the 
electromagnetic processes for incoming photons 
(Rayleigh and Compton scattering, photoelectric 
effect, pair production) and charged particles 
(elastic and multiple scattering, ionization, 
bremsstrahlung emission, annihilation) are taken 
into account, as described in the GAMOS user 
guide and in the GEANT4 Physics reference 
manual [Physics Reference Manual Release 
10.5, 2019] 
 

These GEANT4 processes inherit from the 
G4VProcess class and are implemented 
generically. Each process must be able to 
simulate at least one of these actions: continuous 
(AlongStep), discrete (PostStep) or stopped 
(AtRest). For each action, the 
GetPhysicalInteractionLength (GPIL) method 
determines where the interaction takes place and 
the DoIt method generates the final state of the 
particle. The G4eIonization class provides the 
calculation of continuous or discrete energy loss 
due to ionization in a material [Physics 
Reference Manual Release 10.5, 2019]. 
 

2.2 Methods 
 

Considering ionization as the dominant process 
that contributes to electron energy loss for 
energies above 10 eV. For this purpose, two 
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Fig. 1. Geometry without electron beam in GAMOS 
 
semi-empirical formulas of the cross sections for 
the ionization of liquid water molecules by 
electron impact are used. These are the Rudd 
model [12] for electrons with energies between 1 
eV and 50 keV and the Seltzer equation for 
energies above 50 keV [13,14]. Ionization leads 
to the loss of continuous and discrete energy in a 
material. Below a given energy threshold, the 
energy loss is continuous and above it, the 
energy loss is accompanied by secondary 
particles. 
 
In our work, the chosen parameter is represented 
over an energy range extending from 2.5 eV to 
100 MeV. 
 

3. RESULTS AND DISCUSSION 
 
Monte-Carlo simulations of electron traces have 
been carried out. The transport algorithm, which 
includes several aspects such as the angular 
deviation of the incident and ejected electron 
after ionization and the delocalization of the 
energy loss, is described in Cobut [15]. The 
simulation on GAMOS allowed us to determine 
the Linear Energy Transfer (LET). 
 
The GAMOS software is based on the Geant4 
toolkit [8,9]. 
 
Any energy loss process in GEANT4 must 
calculate the continuous and discrete energy loss 
in a material. Below a given energy threshold, 
the energy loss is continuous and above this, the 
energy loss is simulated by the explicit 

production of secondary particles such us  
electrons. 

Either 
( , , )d Z E T

dT


                          (1)   

 
the differential cross section per atom (atomic 

number 𝑍) for the ejection of a secondary particle 

with kinetic energy 𝑇 by an incident particle of 

total energy 𝐸 moving in a material of density 𝜌. 
The value of the cut-off or kinetic energy 

production threshold is denoted 
cutT . Below this 

threshold, the ejected secondary electrons are 
simulated as continuous energy loss of the 
incident particle and, above it, it is explicitly 
generated. The average energy rate is defined 
by: 

                                                                                                                       

0

( , ) ( , , )
. cutTsoft cut

at

dE E T d Z E T
n TdT

dx dT


 

    

(2)    

 

where 𝑛𝑎𝑡 is the number of atoms per                    
volume in the material. and 𝑇𝑚𝑎𝑥 is the maximum 
energy transferable to the secondary            
particle. 
 
The G4eIonisation class provides the continuous 
and discrete energy losses of electrons                 
due to ionisation in a material according to the 
approach described in Mean Energy Loss. The 
value of the maximum energy transferable to a 

free electron maxT  is given by the following 

relation: 
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where 
2mc   is the electron mass 

 
Above a given threshold energy, the energy loss 
is simulated by the explicit production of delta 
rays by Möller scattering, or Bhabha scattering. 
Below the threshold the soft electrons ejected 

are simulated as continuous energy loss by the 
incident electron.  
 
By integrating the relation  (2), we obtain: 
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Where  
 

1

1
y





 

 
These values are pre-calculated during the 
initialization phase of GEANT4 and stored in the 

table      
dE

dx
.Using this table, particle ranges in 

given materials are calculated and stored in the 
Range table. The Range table is then inverted to 
provide the InverseRange table. At runtime, the 
values of continuous energy loss and particle 
range are obtained using these tables. 
 
We simulated, with the GAMOS software, 
through a script, the water molecules 
(‘‘G4_WATER’’, density 1.0 gcm-3) contained in 
a rectangular parallelepiped of dimension 4*cm 
4*cm*0.5cm; (see Fig. 1). 
 
The whole is placed in a volume called “world” 
represented by a box of dimension 10*cm 10*cm 
20*cm filled with air (see Fig. 1). 
 
Fig. 1 shows the image of the simulation of the 
geometry of the system in the absence of the 
electron beam. 
 
We also simulated the primary electron beam of 
100 MeV located in a 10 degrees cone and at -
10cm from the position of the water molecules 
along the z axis. 
 

The following Fig. 2 shows the trajectories 
(traces) of the electrons given by the simulation 
for the incident electron beam of 100 MeV after 
the impact of electron collision on liquid water 
molecules 
 

3.1 Linear Energy Transfer (LET) 
 

A charged particle penetrating a given medium 
interacts with the atoms of the medium and 
undergoes a slowing down. Throughout its 
journey, the particle is subjected to a series of 
interactions during which it transfers part of its 
energy to the material until it comes to a 
complete stop in it (thermalization). One of the 
concrete ways to quantify this energy transfer is 
given by a physical quantity called the Linear 
Energy Transfer (LET). LET represents energy 
average transferred to the material per unit 
length of particle trajectory and is often 
expressed in MeV/cm. The LET is therefore 

equal to 
dE

dx
and depends on several 

characteristics of the particle (its energy, its mass 
number, its atomic number) or even on the 
medium it passes through. 
 

The values of the LET, of the simulation by 
impact of electrons on the liquid water molecules, 
which we obtained are represented on the  
Graph 1. The LET representation of the impact of 
electrons on water molecules as a function of 
incident electron energies that we made using 
the root software. 

 
 

Fig. 2. Geometry, side view, following the impact of the electron beam in GAMOS 
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Graph 1. Linear Energy Transfer (LET) representation curve as a function of incident electron 
energy 

 
This curve was plotted using the LET data that 
we obtained with the GAMOS software; it 
reaches its maximum around 37.0626 MeV/mm 
for an energy of 102.447 eV of the incident 
electrons corresponding to an average free path, 
in liquid water, of 2.764 nm. It decreases 
gradually to reach an average value of 0.161744 
MeV/mm around 100 MeV corresponding to an 
average free path of 6.18 cm. 
 

The LET and the mean free path in water being 
inversely proportional; the lower is the TEL that 
means the mean free path increases. The value 
of 6.18cm may correspond to the path of 
electrons outside the volume of liquid water 
corresponding to the path of high energy 
electrons and therefore there was less interaction 
with liquid water. 
 

It can be seen that the values of the LET are 
much greater at low energies (less than 1 MeV). 
 
Thus for low-energy and therefore low-speed 
electrons, they lose much more energy as they 
travel through the water liquid, so the TEL 
becomes important. 
 

On the other hand, the LET becomes weak and 
tends towards an asymptotic value at high 
energies (beyond 1 MeV). 
 

So high-energy and therefore high-speed 
electrons lose less energy in their journey 
through matter. 

This curve therefore increases between                        
2.5 eV and 102.447 eV corresponding to                          
a range of increased energy losses of                    
electrons in favor of the medium crossed 
because of the low energies of the incident 
electrons. Then this curve decreases from 
102.447 eV to 1 MeV corresponding to a               
gradual decrease in energy loss of the incident 
electron. 

 
Thus, the greater the energy of the incident 
electrons, the less there is loss of this         
energy. 

 
Finally, this curve becomes practically constant 
beyond 1 MeV corresponding to the high energy 
range of the incident electrons. 

 
NOTICED 
 
 The greater the energy of the incident 

electrons, the less there is loss of this 
energy and vice-versa. 

 
This tendency is observed in the calculation 
made by Gümü [16]; Paretzke [17]; The same is 
true for the stopping power data in the CRC 
manual [18]; Watt et al. [19]; ICRU 37 [20]; ICRU 
16 [21]; and AIEA [IAEA, 1995]; the TEL 
calculated by RETRACKS with the formulas of 
Rudd and Seltzer, with and without 
Bremsstrahlung [22]. 
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Graph 2. Overlay and comparison of our graph and those of other TEL graphs 
 
For most of these data, the plotted curves                 
all have a maximum around 37.0626 MeV/mm 
for an incident electron energy of around 102.447 
eV. They decrease between 102.447 eV               
and 1 MeV. This corresponds exactly to the 
behavior of the curve drawn from our simulation 
data. 
 

The curve resulting from our data is above the 
other curves for electron energy values lower 
than 1 MeV. Moreover, it is below all the other 
curves for electron energy values greater than 1 
MeV 
 

A certain divergence appears beyond 1 MeV 
between our results and the other data except for 
the case of the Rudd formula whose data have 
the same trend as our data. 
 

There are significant differences between the 
simulated curves and other literature. These 
differences can be due to the fact that our 
simulation overestimates the result for low 
energies and underestimates the results for high 
energies. 
 

4. CONCLUSION 
 
During this simulation, we analyzed the behavior 
of the LET as a function of the energies of the 
incident electrons and we compared the results 
obtained with experimental data and those in the 
literature. It appears that there is an excellent 
agreement of our simulation with these existing 
data. 
 

The greater the energy of the incident electrons, 
the less there is loss of this energy and vice 

versa the loss of energy is greater when the 
energy of the incident electrons is low. 
 
This study allowed us to confirm the hypothesis 
that the greater the energy of the incident 
particles, the less there is loss of this energy and 
vice versa the loss of energy is greater when the 
energy of the incident particles is low. 
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