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Abstract 
 

Background: The progression of HIV infection to AIDS and then to death can be considered a stochastic 

process. Disease progression can be broken down into a finite number of intermediate states, based on CD4 

counts. The five states of the Markov process of HIV/AIDS progression are commonly defined as: S1: CD4 

count > 500 cells/microliter; S2: 350 < CD4 count ≤ 500 cells/microliter; S3: 200 < CD4 count ≤ 350 

cells/microliter; S4: CD4 count ≤ 200 cells/microliter; and D: Death. 

Objectives: The objective of this study was to model the progression of HIV/AIDS disease of patients under 

ART follow-up in Namibia using homogenous semi-Markov processes, using the data obtained from 

Ministry of Health and Social Services. 

Methods: A retrospective study design was used to obtain data on 2422 patients who were observed 11028 

times. The semi-Markov model was employed to estimate the transition probabilities and transition intensity 
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rate. Time Homogeneous Semi-Markov model was fitted to assess effectiveness of ART by comparing the 

forward transition and reverse transitions. 

Results: As expected the probabilities of transiting from good states to worse states increased with time 

(from state 1 to state 3 and 4 after 6 months is 0.023 and 0.004, after 12 months is 0.059 and 0.010 

respectively). As time increase the probabilities of remaining in the same state is decreasing (probabilities of 

remaining in state 1 after 6, 12 and 18 months is 0.804, 0.698 and 0.633). As expected the intensity indicates 

that the rate of transiting from good states to worst states is decreasing (the intensity of transiting from state 1 

to 3 and 4 is p<0.001).  

The strongest predictor of transition from state 1 to 2 is TDF/3TC/EFV, which has a hazard ratio of 1.338 

(with p value of 0.002). Patients who were prescribed TDF/3TC/EFV, are over 1.338 times more likely to 

transit from state 1 to state 2 than patients who did not receive TDF/3TC/EFV. A hazard ratio of 0.678 for the 

predictor variable female shows that female were less likely to transit from state 2 to 3 than their male 

counterparts. The hazard ratios of females from a bad state to a better state are more than 1, which is an 

indication that females are less likely to respond to treatment compared to males. 

Conclusions: HIV can progress to AIDS without delay if there is no intervention. Early ART initiation is 

crucial to reduce the probabilities of transiting from good states to worse states. 

 

 

Keywords: Transition probabilities; transition intensity; hazard ratio; clinical states; log likelihood ratio.    

 

1 Introduction  
 

HIV/AIDS, is one of the leading causes of death in Namibia and worldwide. HIV/AIDS does not only have an 

enormous economic impact through lost productivity and medical care spending, but is also a major cause of 

disability and human suffering. It is important, therefore, to understand the natural history and etiology of 

HIV/AIDS [1]. Further, since many chronic diseases are caused or made worse by modifiable factors such as 

diet and lifestyle, understanding factors affecting disease progression is critical. For a number of chronic 

diseases, the progression is characterized by visits to clinically relevant and ordered states. Examination of the 

sequence of visited states and duration in each stage can enhance our understanding of the natural progression of 

the disease and how demographic and clinical factors may have an impact on disease progression [1]. 

 

The Human Immunodeficiency Virus (HIV) is a retrovirus that infects bodily fluids in humans and remains in 

the immune cells within these fluids. HIV targets these immune cells in order to replicate by damaging them in 

the process. This immune cells, CD4+ T-cells, play an important role in the body's immune system [2]. The 

CD4+ T-cells are the primary entry point for HIV into the host. The virus attaches itself to the CD4 receptor via 

its own surface protein when exposed to the CD4+ T-cells and makes use of the host cell to replicate itself and 

destroys it, impairing the functionality of the immune system. Within a few weeks of infection; there is a high 

level of replication in the blood that can exceed ten million viral particles per milliliter of blood [3]. 

 

A few weeks after infection with HIV the CD4 count falls. Then the immune system begins to fight back. The 

CD4 count goes back up again, though not to as high as before HIV infection. Without ART, the CD4 count will 

gradually drop usually over several years. CD4+ T-cells provided the first reliable marker of disease progression 

as compared to other possible markers and it is one of the markers most closely correlated with the stage of HIV 

infection [4]. 

 

A vaccine would certainly be ideal for preventing infection by HIV and thus for avoiding AIDS the late stage of 

HIV infection, when immunity is severely impaired. For the immediate future, many scientists are concentrating 

on improving therapy. Few years ago, HIV infection was everyone’s worst nightmare it was almost invariably a 

progressive, lethal disease that completely robbed its victims of dignity.  

 

Although there are many factors that can help to keep a person with HIV infection well for many years, 

ultimately it becomes essential to take antiretroviral drugs in order to prolong a person’s life and slow down the 

progression of HIV/AIDS. The antiretroviral therapy (ART) service has been available in Namibia’s public 

sector since 2003, but its impact on survival and on HIV progression has not been well investigated. Successful 

implementation of such program needs scientific evidence, well studied research and routine hospital data in 

appropriate setting. In the public sector, ART is provided free of charge following a population-based model of 



 
 

 

 
Kashihalwa et al.; Asian J. Prob. Stat., vol. 25, no. 1, pp. 141-151, 2023; Article no.AJPAS.106181 

 

 

 
143 

 

care with one primary first-line regimen and three alternate first-line regimens consisting of two nucleoside 

reverse transcriptase inhibitors (NRTI) combined with a non-nucleoside reverse transcriptase inhibitor (NNRTI) 

[5]. 

 

Markov model is defined as a multi-state model where the multi-state model is defined as a model for a 

stochastic process (𝑋(𝑡), 𝑡𝜖𝑇) with a finite space [6]. 

 

  𝑆 =  {𝑠1, 𝑠2, . . , 𝑠𝑚}.                                                                                                                               (1) 

 

The process starts in one of these states and moves successively from one state to another. Each move is called a 

step. If the process is currently in state (𝑠𝑖),  then it moves to state 𝑠𝑗  at the next step with a probability denoted 

by 𝑝𝑖𝑗 , and this probability does not depend upon which states the chain was in before the current state, therefore 

it only matters where you are and where you want to go. The probabilities 𝑝𝑖𝑗 , are called transition probabilities. 

The process can remain in the state it is in, and this occurs with probability 𝑝𝑖𝑖 . An initial probability 

distribution, defined on S, specifies the starting state. 

 

Continuous-time homogeneous Markov models have been used to model disease progression of HIV/AIDS 

patients. A study on the clinical indicators of the HIV disease progression, a 5-state Markov model was used [7, 

8]. In 2014, a multistate model was used to determine factors associated with the progression between different 

stages of the disease and to model the progression of HIV/AIDS disease of an individual patient under ART 

follow-up using semi-Markov processes [8]. In a study of HIV progression, an illness-death multistate model 

was used to estimate the effects of TB, age, mode of transmission, marital status, gender and ART [9]. In 2017, 

semi-Markov models were applied to HIV/AIDS disease progression and compared two sojourn time 

distributions, in Ethiopia [10]. Furthermore, in 2018, a 7-staged continuous-time Markov model was used to 

assess the disease progression of HIV/AIDS patients receiving ART from a clinic in Bela-Bela, South Africa 

[3].  

 

In this study, a 4-staged continuous-time Markov model was used to assess the disease progression of 

HIV/AIDS patients receiving ART, in Namibia. The 4 stages are based on CD4 cell counts. The transition 

intensities, probabilities and the distribution functions associated with the times are the basic building blocks of 

the Markov processes [11]. For a continuous-time Markov model, transitions can occur at any (real-valued) time 

instant. Models with and without covariates are fitted and compared using the likelihood ratio test. 

 

2 Materials and Methods   
 

2.1 Study area, design and data collection 
 

A retrospective study design was used to obtain data on 2422 patients who were observed 11028 times. This 

retrospective cohort study was conducted in Namibia, from January 2008- January 2012 to December 2017. The 

data was obtained from the Ministry of Health and Social Services. The data included the following variables: 

age, gender, stage of HIV infection at diagnosis, date of HIV infection and duration on ART. All registered 

patients with determined HIV infection and who measured their CD4 count for at least once constituted the 

study, irrespective of age, gender, stage of disease and date of diagnosis. Pre-processing of data was done and 

fields with spelling error, other irregularities and irrelevancies like outliers were corrected or removed.  

 

At treatment commencement (t = 0), 657(27.13%) patients started ART in state 1, 683(28.19%) patients started 

ART in state 2, 677(27.95%) patients started ART in state 3 and 405(16.72%) patients started ART in state 4. 

Fig. 1 shows all the immunological states a HIV infected patient can go into. All the states are inter-related. 

 

2.2 Modelling homogenous semi-markov processes 
 

Markov chains and semi-Markov processes are very important classes of stochastic processes with many 

applications in science, engineering and beyond. A Markov chain is a stochastic process, but it differs from a 

general stochastic process in that a Markov chain must be "memory-less". A Markov chain is a mathematical 

system that experiences transitions from one state to another according to certain probabilistic rules. The 
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defining characteristic of a Markov chain is that the probability of transitioning to any particular state is 

dependent solely on the current state [12]. 

 

 
 

Fig. 1. Immunological state a HIV infected patient can go into 

     

Homogeneous semi-Markov processes (HSMP) were introduced in the 1950s, independently by Levy and 

Smith, with the objective of generalizing Markov processes [13,14]. In a Markov process environment, the 

waiting time distribution functions in each state must be exponential, whereas in a semi Markov process 

environment these distributions can be of any type. This study will deal with semi-Markov stochastic models 

applied in a clinical field.These processes turn out to be a very efficient tool for predicting the dynamic 

evolution of human immunodeficiency virus (HIV) infection. This approach has the following advantages with 

respect to traditional epidemiological models [16]: 

 

• We can consider an arbitrary number of states, linked to the seriousness of the infection; 

• All transitions between states are allowed; 

• We can consider the randomness of the evolution between all states, as well as the stochastic time spent in 

each state before a transition occurs; 

• Model parameters are directly estimated from raw data; 

• All the states are interrelated, therefore any improvements are also considered; 

• A large number of disease states can be considered; 

• Finally, conclusions consist in certain interval transition probabilities obtained by solving the evolution 

equations of the process. 

 

A semi-Markov process is a process that makes transitions from state to state like a Markov process, however 

the amount of time spent in each state before a transition to the next state occurs is an arbitrary random variable 

that depends on the next state the process will enter [17]. In Giuseppe et al., homogenous semi-Markov process 

(HSMP) model was defined as follows [18]: 

 

Let 𝑋𝑛 ∶  Ω → 𝑆 be a stochastic process with state space 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑚} 𝑎𝑛𝑑 𝑇𝑛 ∶ Ω → ℝ be the time of the 

𝑛𝑡ℎ transition, with Ω domain of the process and ℝ set of real numbers. Here the time is a random variable. The 

kernel 𝑄 = [𝑄𝑖𝑗] associated with the process and the transition probability 𝑃𝑖𝑗  of the embedded Markov chain is 

defined as follows: 

 

𝑄𝑖𝑗(𝑡) = 𝑃[𝑇𝑛+1 = 𝑗, 𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡|𝑋𝑛 = 𝑖]                                 (2.3.1) 
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𝑃𝑖𝑗 = lim
𝑡⟶∞

𝑄𝑖𝑗(𝑡)                                                                                  (2.3.2) 

 

Define the probability that the process will leave a state i in a time t as 

 

𝐻𝑖(𝑡) = 𝑃[𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡|𝑋𝑛 = 𝑖] = ∑ 𝑄𝑖𝑗(𝑡)  𝑚
𝑗=1                              (2.3.3) 

 

The distribution of waiting time in each state i, is given that the state j is subsequently occupied is  

 

𝐺𝑖𝑗(𝑡) = 𝑃[𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡|𝑋𝑛 = 𝑖, 𝑋𝑛+1 = 𝑗],                                (2.3.4) 

 

which can be computed as: 

 

𝐺𝑖𝑗(𝑡) = {

𝑄𝑖𝑗(𝑡)

𝑃𝑖𝑗
,    𝑖𝑓𝑃𝑖𝑗 ≠ 0

1,        𝑖𝑓𝑃𝑖𝑗 = 0
                                                                                             (2.3.5) 

 

For any homogenous semi-Markov process {𝑋(𝑡), 𝑡 ≥ 0}, the transition probabilities are given by (2.3.6) for 

which the solution should be obtained using the progression (2.3.7). 

 

∅(𝑖𝑗)(𝑡) = 𝑃[𝑋(𝑡) = 𝑗|𝑋(0) = 𝑖],                                                                                   (2.3.6) 

 

∅𝑖𝑗(𝑡) = (1 − 𝐻𝑖(𝑡))𝛿𝑖𝑗 + ∑ ∫ 𝑄𝑖𝑙
𝑡

0
(𝜏)𝜙𝑙𝑗(𝑡 − 𝜏)𝑚

𝑙=1 𝑑𝜏                                                        (2.3.7) 

 

Here 𝛿𝑖𝑗 represents the kronecker delta 𝛿. 

  

The variables involved are the following: 

 

m= number of states of HSMP, which is 4 in this case. 

T = number of periods to be examined for the transient analysis of HSMP. 

P = matrix of order m of the embedded Markov chain in HSMP. 

𝐺𝑇= square lower-triangular block matrix order T +1 whose blocks are of order m.  

QT = kernel of SMP.  

ΦT = block vector of order T + 1 where the blocks are square matrices of order m.  

DT = block vector of order T + 1 where the blocks are the diagonal square matrix of order m.  

V T = square lower-triangular block matrix order T + 1 whose blocks are of order m.  

 ST = block vector of order T+1 the block which are the diagonal square matrix of order m. The diagonal 

element of each block t are 𝑠𝑖𝑖 = ∑ 𝑄𝑖𝑗(𝑡)𝑚
𝑗=1 . 

 

3 Results and Discussion 
 

3.1 Descriptive statistics  
 

The study used data from MoHSS, with 2422 HIV patients on anti-retroviral therapy (ART) who were observed 

11028 times. 7489 (67.9%) were females and 785 (32.41%) were males , 657(27.13%) patients started ART in 

state 1, 683(28.19%) patients started ART in state 2, 677(27.95%) patients started ART in state 3 and 

405(16.72%) patients started ART in state 4, at treatment commencement (t = 0). Data analysis was done in msm 

(multi-state model) developed by [17], the “R package msm”, contains numerous functions for fitting 

continuous-time Markov to longitudinal data. The msm package provides several numerical outputs such as 

transition intensity and transition probabilities 

 

Table 1 shows that the highest observation were recorded in the age category of 25-49. The highest observed 

prescribed ART regimen in state 1 and 3 is TDF/3TC/NVP, the highest in state 2 is AZT/3TC/EFV and the 

highest in state 4 is AZT/3TC/LPV  
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Table 1. Descriptive statistics (counts and percentage (%)) 

 

Variable State, n=11028(%) Total (n) 

1 2 3 4 

Age   

<25 135 (50.0) 62 (23.0) 41(15.2) 32(11.9) 270 

25-49 3985(40.3) 2928(29.6) 2135(21.6) 837(8.5) 9885 

=>50 253(29.0) 240(27.5) 241(27.6) 139(15.9) 873 

Sex   

Male 887(25.1) 1105(31.2) 1037(29.3) 510(1404) 3539 

Female 3486(46.5) 2125(28.4) 1380(18.4) 498(6.6) 7489 

Prescribed ART regimen   

AZT/3TC/EFV 537(43.2) 316(25.4) 247(19.9) 142(11.4) 1242 

AZT/3TC/LPV 1302(37.8) 1057(30.7) 796(23.1) 290(8.4) 3445 

TDF/3FTC/EFV 545(36.1) 389(25.8) 387(25.7) 187(12.4) 1508 

TDF/FTC/EFV 557(41.7) 381(28.5) 291(21.8) 108(8.1) 1337 

TDF/3TC/NVP 1421(40.9) 1081(31.1) 694(20.0) 279(8.0) 3475 

Others 11(52.4) 6(28.6) 2(9.5) 2(9.5) 21 
Note: n is number of times patients has been observed. TDF=tenofovir, AZT=azidothymidine, FTC=emtricitabine, 

EFV=efavirenz, 3TC=lamivudine, NVP=nevirapine, OTHER=abacavi (ABC) and stavudine (D4T) 

 

3.2 Model formulation 
 

Formulation of the continuous homogeneous semi Markov model is done by considering transition probabilities 

over narrow interval of time ∆t. In this study ∆t = ½ months making it appropriate to assume that transition rates 

over these intervals are constant [3]. These transition rates, also known as transition intensities, are the essential 

concept in continuous semi- Markov processes. They can take values greater than 1, unlike transition 

probabilities.  

 

At any time t + ∆t, the state of an HIV-infected individual is defined based on the CD4 cell count level as 

follow: S1: CD4 count > 500 cells/microliter; S2: 350 < CD4 count ≤ 500 cells/microliter; S3: 200 < CD4 count 

≤ 350 cells/microliter and S4: CD4 count ≤ 200 cells/microliter. Based on these four states, progression of 

HIV/AIDS disease is defined by the state diagram, Fig. 1. The arrows in the diagram show possible transitions 

between the four states defined above. As HIV progresses in an individual’s body, there is a likelihood of an 

individual being in the same state in consecutive visit times. 

 

3.3 Clinical progression of HIV/AIDS disease 
 

This study considered that an infected patient can move among the immunological marker stages related to CD4 

count. Patient who started treatment under any state has a likelihood to reach any other state. If there is an 

improvement on CD4 count, the patient has a recovery from the initial state and can transit to a better state. The 

transition of the patient in different state occurs at any time. Table 2 summarizes transition counts that took 

place for the whole period of the study. 

 

Table 2. Transition counts 

 

From 

 

To 

State 1 State 2 State 3 State 4 

State 1 1 2 3 4 

State 2 2547 616 99 26 

State 3 917 1193 414 35 

State 4 211 666 928 161 

 

Table 2 shows that, transition counts from state i to j are higher for all the values in which i=j. In the followed 

up period, 3288, 2559, 1966 and 793 transitions had already been from state 1, 2, 3, and 4, respectively. Twenty 

six patients transited to state 4 from state 1 while 41 left state 4 to state 1. The time homogeneous model was 
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fitted to the data to assess the effectiveness of the treatment by comparing the forward transition and the reverse 

transitions. 
 

Table 3 shows the estimated transition probability, patient from state 1, 2 and 3 transit to state 4 with probability 

p<0.001, p<0.001 and 0.018, respectively. Patients show improvement from state 4 to; state 3, state2 and state 1 

with probability of 0.060, 0.002 and p<0.001, respectively. Patients show improvement from state 3 to 2, from 

state 3 to 1 and from state 2 to 1 with probability of 0.070, 0.003 and 0.071, respectively. 
 

Table 3. Estimated transition probability matrix 
 

 

The solution of the evolution equation is presented for specific month in Table 4. It represents the probability 

that an HIV positive patient being at time 0 in state i will be after t months, in the state j. Table 4, indicate the 

probability of a patient starting from state i at time zero, will do a transition after month t to state j. The 

conditional probability of a patient starting from state 4 at time zero, and transiting to state 3, 2 and 1 after 2 

years is 0.328, 0.227 and 0.162 respectively. A patient being in state 4 at time zero, stay in same state after 2 

years with probability 0.288. The probabilities of direct transition from state 1 to state 2, state 2 to state 3 and 

state 3 to state 4 after 4 years are estimated to be 0.284, 0.172 and 0.077 respectively. As t increases, the 

probability of the patient transiting to a next worse state is increasing while the probability to remain in the same 

state is decreasing. 
 

Table 4. The solution of the evolution equation for month t 
 

Transition      t=6 t=12 t=18 t=24 t=30 t=36 t=42 t=48 

1→1 0.804 0.698 0.633 0.592 0.563 0.543 0.528 0.518 

1→2 0.168 0.233 0.260 0.273 0.278 0.281 0.283 0.284 

1→3 0.023 0.059 0.089 0.118 0.128 0.139 0.148 0.154 

1→4 0.004 0.010 0.017 0.024 0.030 0.036 0.040 0.044 

2→1 0.292 0.405 0.451 0.471 0.479 0.484 0.486 0.486 

2→2 0.547 0.387 0.328 0.304 0.293 0.289 0.287 0.286 

2→3 0.150 0.183 0.184 0.180 0.177 0.174 0.173 0.172 

2→4 0.011 0.026 0.037 0.045 0.049 0.053 0.054 0.056 

3→1 0.065 0.168 0.254 0.318 0.363 0.396 0.419 0.436 

3→2 0.255 0.309 0.311 0.303 0.295 0.29 0.288 0.286 

3→3 0.606 0.425 0.332 0.279 0.247 0.225 0.211 0.201 

3→4 0.007 0.098 0.103 0.283 0.094 0.088 0.082 0.077 

4→1 0.008 0.045 0.100 0.162 0.220 0.272 0.317 0.353 

4→2 0.054 0.130 0.189 0.227 0.251 0.264 0.272 0.277 

4→3 0.246 0.327 0.341 0.328 0.306 0.283 0.262 0.243 

4→4 0.069 0.497 0.369 0.288 0.222 0.179 0.149 0.127 
 

Table 5 shows the transition intensity matrix. The estimated intensity indicates that the rate of transiting from 

good states to the worst state is decreasing. The elements in each row of the transition intensity matrix (Table 5) 

sum to zero and off diagonal elements non-negative and the elements in diagonal must be negative for all i equal 

to j. This implies that subjects in those states remain in their respective state while the off diagonals are rates at 

which subjects move to other states. 
 

3.4 Hazard ratios of covariates on transition intensities 
 

In this section the hazard ratios for each of the covariates; gender, age and prescribed ART regimen are 

estimated. The results show that the strongest predictor of transition from state 1 to 2 is TDF/3TC/EFV, which 

From 

 

To 

State 1 State 2 State 3 State 4 

State 1 0.958 0.040 p<0.001 p<0.001 

State 2 0.071 0.887 0.041 p<0.001 

State 3 0.003 0.070 0.909 0.018 

State 4 p<0.001 0.002 0.060 0.937 
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has a hazard ratio of 1.338. This means that patients who were prescribed TDF/3TC/EFV, this means that 

patients who received TDF/3TC/EFV were over 1.338 times more likely to transit from state 1 to state 2 than 

patients who did not receive TDF/3TC/EFV. The strongest predictor of immune deterioration from a CD4 level 

between 200 and 350 to a CD4 level less than or equal to 200 (3 to 4) is sex, with a hazard ratio of 2.074. This 

means that sex is the major cause of further immune deterioration when the immune system is too weak. A 

hazard ratio of 0.854 for the predictor variable female shows that female were less likely to transit from state 2 

to 3 than their male counterparts.  

 

Table 5. Transition intensity matrix 

 

 From To 

State 1 State 2 State 3 State 4 

State 1 -0.044 0.044 p<0.001 p<0.001 

State 2 0.076 -0.122 0.045 p<0.001 

State 3 p<0.001 0.078 -0.097 0.019 

State 4 p<0.001 p<0.001 0.064 -0.064 

 

 

The hazard ratios of females from a bad state to a better state are more than 1, which is an indication that 

females are less likely to respond to treatment compared to males. For states which do not have intensity (i.e. 

(1→3)) the underlying model specifies that the patient must have passed through state 2 in between, rather than 

jumping straight from 1 to 3 [19]. Table 6 shows the hazard ratio for covariates.  

 

Table 6. Hazard ratio of covariates 

 

State Hazard ratio 

age Sex: 

Female* vs Male 

Prescribed ART regimen 

AZT/3TC/LPV TDF/3TC/EFV TDF/3TC/NVP TDF/FTC/EFV OTHER 

1→2 1.028 0.62 1.051 0.545 0.998 1.338 0.721 

1→3               

1→4 0.927 0.838 0.841 0.494 1.684 1.002 0.302 

2→1 1.007 1.415 0.726 0.574 0.877 0.999 0.716 

2→3 1.043 0.854 0.935 0.974 0.864 1.089 0.632 

2→4 0.403 0.885 1.277 0.749 1.409 1.063 0.633 

3→1               

3→2 1.007 1.353 1.373 1.397 1.387 1.587 0.948 

3→4 0.983 2.074 0.679 0.417 0.919 0.557 0.919 

4→1               

4→2 0.397 1.511 1.645 0.611 1.684 1.407 0.869 

4→3 0.949 2.065 1.539 0.733 1.302 1.636 0.681 

 

Table 7. Model selection criterion 

 

Model -2 Log likelihood ratio test df p-value 

Sex as a covariate -131.088 9 1.00 

Age as a covariate -1721.034 9 1.00 

Prescribed ART regimen as a covariate 78.106 45 0.002 

All covariates -546.99 63 1.00 

 

3.5 Model comparison 
 

A continuous-time semi-Markov model for the effects of covariates; age, sex and prescribed ART regimen is 

fitted as shown in Table 7. Identification of covariates that have a significant effect is done by entering each 

covariate one after the other and performing the likelihood ratio test in comparison to the model without 

covariates. A Likelihood ratio test is performed to compare the models that were fitted. The fitted time 

homogeneous model with prescribed ART regimen as a covariate has -2xLL = 78.106. The other fitted time 
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homogenous models have likelihoods less than -2 x LL= 78.106. Which represents a weakening of LRT. The 

value of the 𝐿𝑅𝑇 = −2𝑙𝑜𝑔𝑒 = (
𝐿0(𝜃)

𝐿1(𝜃)
) where 𝐿0(𝜃) is the null model (without covariates) and 𝐿1(𝜃) is the general 

model (with covariates). 
 

4 Discussion 
 

This study modeled the progression of HIV infection using longitudinally measured CD4 count for HIV positive 

patients initiated to ART. A continuous-time homogeneous semi-Markov model is fitted with and without 

covariates and comparison of these two models is done using the likelihood ratio test. Results shows that the 

model with prescribed ART regimen is the best model. The probability of a patient transiting from state 1, 2 and 

3 to state 4 after 24 months is 0.024, 0.045 and 0.283 respectively. Patients shows improvement from state 4 to, 

state 1, state 2 and state 3 with probability of 0.162,0.227 and 0.328, this is in agreement with the results of 

Kashihalwa et al. [19]. Similar study conducted in Ethiopia has shown that probability of a patient to enter from 

stage IV to stage III, stage II and stage I in 2 year follow up period was 0.17, 0.9 and 0.2, respectively [20]. 
 

The hazard of covariates; sex, age and prescribed ART regimen are estimated. The results show that the 

strongest predictor of transition from state 1 to 2 is TDF/3TC/EFV, which has a hazard ratio of 1.338. As time 

increases the probability of remaining in the same state is decreasing, this is in agreement with the results of 

Seyoum et al., [21] and that of Goshu and Dessie 7, 8]. 
 

5 Conclusion 
 

This study evaluated the progressions of HIV /AIDS infection using longitudinally measured CD4 count and its 

possible predictors via homogenous semi-Markov processes. Model with and without covariates have been 

compared using the LRT, the model with prescribed ART regimen exhibited the best fit. The study also found 

that the conditional probabilities of transiting to the next worst state as time increases is very small and the 

probabilities of remaining in the same state as time increase is increasing. Finally the evolution of CD4 count 

(HIV infection) is differing by patient’s baseline demographic and clinical characteristics like sex, age, WHO 

stages and prescribed ART regimen. 
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