

International Journal of Environment and Climate Change

Volume 13, Issue 10, Page 4051-4065, 2023; Article no.IJECC.106152 ISSN: 2581-8627 (Past name: British Journal of Environment & Climate Change, Past ISSN: 2231–4784)

New Germplasms for Resistant Sources against Turcicum Leaf Blight Disease in Maize (*Zea mays* L.)

A. Vijaya Bhaskar ^{a*}, Usharani G. ^b and Sravani D. ^b

^a Department of Plant Pathology and Agricultural Research Station, PJTSAU, Karimnagar, India. ^b Department of Genetics and Plant Breeding, Agricultural Research Station, PJTSAU, Karimnagar, India.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJECC/2023/v13i103082

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/106152

Original Research Article

Received: 15/07/2023 Accepted: 19/09/2023 Published: 26/09/2023

ABSTRACT

The present studies were aimed to evaluate 490 maize entries for resistance against turcicum leaf blight (TLB) disease in randomized block design using a check at Agricultural Research Station, Karimnagar, Telangana State, India during *rabi* (November,2021 to Febrauary,2022) and *kharif* (July,2022 to October,2022). Out of 213 lines during *rabi* 2021–2022,16 promising entries viz.,KML-21,KML-24,KML-33,KMH-388,KMH-275,KMH-373,KMH-478,KMH-370,KMH-257,KMH-393,KMH-340,KMH-131,KMH-41,KMH-36, SAMRAT and KMH- 64 were identified as resistant ,157 lines were recorded as moderately resistant,38 lines were recorded as moderately susceptible and CM-202 entry was recorded 80.42 per cent disease index (PDI).Out of 277 lines during *kharif* 2022,3 lines viz.,KMH-804,KMH-751 and KML-86 were identified as resistant lines to turcicum leaf blight disease,132 lines were moderately resistant,one line CM-202 was noticed with high 81.42 per cent disease index and severely affected by turcicum leaf blight and rated as susceptible during *kharif*, 2022.

^{*}Corresponding author: E-mail: apvijayabhaskar@gmail.com;

Int. J. Environ. Clim. Change, vol. 13, no. 10, pp. 4051-4065, 2023

Keywords: Screening; germplasms; resistant; turcicum leaf blight disease; maize.

1. INTRODUCTION

"Maize (Zea mays L.,) is a staple food crop in World. manv parts of the Maize is monocotyledonous plant that belongs to grass family (Poaceae). Maize (Zea mays L.) is the most versatile crop adapted to different agroecological and climatic conditions. Maize the third most important cereal crops in the world's agricultural economy. Maize had highest genetic yield potential and is commonly called as queen of cereals. One of the main deterrents to high grain yield in maize is its susceptibility to several diseases" [1]. "It is the third most important cereal crop next to rice and wheat in India. It is one of the potential crop of Telangana State which has come up on large areas in different districts under rain fed areas and under irrigated command areas of Karimnagar, Nizambad, Siddipeta, Warangal, Khammam, Bhadradi kottagudemamu and Kamareddy etc.. Maize is being affected by many diseases. Diseases in maize are decreasing the yield from 28% to 91%. Maize has a notable productive potential among the cereals" [1].

"In India, Maize is grown in an area of 10.04 million hectares with a production of 333.62 million tonnes and productivity of 3349kg/ha or 3.349 t/ha. In Telangana state, maize occupies an area of 0.41 million hectares with a production of 2.13 million tonnes and productivity of 5178 Kg/ha" [2]. Out of which,0.12 lakh hectares was the Maize area in Karimnagar (erstwhile) district.

"For existing biotic and abiotic stresses, the sustainability of the maize production to meet the future demand is debatable. Maize is affected by more than sixty diseases. Sixteen are major diseases among them. Maize is attacked by many diseases in kharif and rabi seasons causing severe reduction in yield. Among all the foliar diseases which are affecting the maize, Turcicum leaf blight caused by Exserohilum turcicum (syn. Heliminthosporium turcicum Pass.), is considered a serious disease where climatic conditions are cool with high relative humidity. Maize grain yield loss varies from 25% to 90% in different parts of India depending upon the severity of turcicum leaf blight epiphytotics" [3,4]. "Yield losses are about 50% when the disease is severe at 2-3 weeks after pollination" [5]. "Turcicum leaf blight is considered a serious disease under agro

ecologies of Telangana. Turcicum leaf blight affects the maize crop from the seedling stage to maturity. The symptoms first appear as grayish green small elliptical spots on the leaves with water soaked lesions parallel to leaf margins and finally attain a spindle shape with long elliptical grayish or tan lesions. If the disease starts at an early stage, it causes the premature death of blighted leaves. As a result, the crop losses its nutritive value as fodder, have reduced germination capacity, vigor, grain yield and total sugar content [6], has restricted starch formation, chaffy kernels and infected plants are liable to infection with stalk rots" [7].

Genetic resistance of crop plants against pathogen is economical and eco-friendly disease management strategy. The resistant varieties are not only environmental friendly but also suitable to adopt at farmers level. There is a need to identify new sources of resistance through artificial epiphytotics to cater the resistance breeding programs. The objective of this study was to assess the maize inbred lines and their hybrids for resistance to turcicum leaf blight disease under field conditions. Keeping in view the above points, the present study was carried out to screen the four hundred and ninety maize entries for identification of resistant sources against turcicum leaf blight disease.

2. MATERIALS AND METHODS

Evaluated 490 maize entries for resistance against turcicum leaf blight (TLB) disease in Telangana State. The diseased leaf samples of affected maize plants showina typical symptoms of turcicum leaf blight having necrotic lesions were collected in paper poly bags from different maize growing areas of Research station, Karimnagar and Telangana districts.The Agricultural Research Station, Karimnagar is situated at 18o 30'N latitude, 79o 15'E longitude and 259.15 m above mean sea level. Two hundred thirteen entries for rabi season 2021-2022 and two hundred seventy six entries for kharif season 2022. The pathogen Exserohilum turcicum was isolated from infected leaves using single spore isolation technique [8].

Layout of Maize Trial for Field Screening: For the identification of source of resistance to *Exserohilum turcicum*, a set of four hundred and

Disease scale	Percent diseased leaf area	Percent Disease Index (PDI)
1.0	Nil to very slight infection (≤10%).	11.11
2.0	Slight infection, a few lesions scattered on two lower leaves (10.1-20%)	22.22
3.0	Light infection, moderate number of lesions scattered on four lower leaves (20.1-30%).	33.33
4.0	Light infection, moderate number of lesions scattered on lower leaves, a few lesions scattered on middle leaves below the cob (30.1-40%).	44.44
5.0	Moderate infection, abundant number of lesions scattered on lower leaves, moderate number of lesions scattered on middle leaves below the cob (40.1-50%).	55.55
6.0	Heavy infection, abundant number of lesions scattered on lower leaves, moderate infection on middle leaves and a few lesions on two leaves above the cob (50.1-60%)	66.66
7.0	Heavy infection, abundant number of lesions scattered on lower and middle leaves and moderate number of lesions on two to four leaves above the cob (60.1-70%).	77.77
8.0	Very heavy infection, lesions abundant scattered on lower and middle leaves and spreading up to the flag leaf (70.1- 80%).	88.88
9.0	Very heavy infection, lesions abundant scattered on almost all the leaves, plant prematurely dried and killed (>80%).	99.99

Table 1. Rating scale for maize turcicum leaf blight disease (9 and 10)

ninety maize entries were evaluated in a randomized block design (RBD) along with a check CM-202 at Agricultural Research Station, Karimnagar field conditions using 1 to 9 disease rating scale [9]. The test genotypes were planted in 2 rows of 3m length each with a plant spacing of 60×20 cm2.

2.1 Inoculum Preparation and Inoculation

Spore suspension of the *Exserohilum turcicum* from twenty days old cultures was prepared by washing the conidia with distilled water. Equal volume of spore suspension was mixed and sprayed in evening hours by using atomizer at three to four leaf stages of maize plants and humidity was maintained by spraying water. Check plants were also treated similarly with spore suspension.

Disease reaction was recorded by using 1 to 9 scale (9 and 10) at 35 to 45 days after inoculation and assessed per cent disease index (PDI) of TLB disease. The genotypes showing disease score /scale from 1.0 to 3.0 were considered as resistant (R), 4–5 as moderately resistant (MR), 6–7 as moderately susceptible (MS) and 8-9 as susceptible (S) (Table 1).

3. RESULTS AND DISCUSSION

Disease score of maize entries to turcicum leaf blight disease and artificially inoculated under field conditions during *rabi* 2021–2022 and *kharif* 2022 was observed. The performance of 490 germplasms along with susceptible check on the basis of disease reaction and 1-9 disease scale was classified into four groups (Tables 2 and 3).

3.1 Disease Reaction During Rabi 2021-2022

Out of the two hundred and thirteen entries, one entry KMH-388 was identified with disease score 2, 15 entries viz.,KML-21,KML-24,KML-33, KMH-275.KMH-373. KMH-478. KMH-370,KMH-257,KMH-393 ,KMH- 340, KMH- 131, KMH-41, KMH-36, SAMRAT and KMH- 64 with a score 3. Entries with disease scores 1. 2 and 3 were categorized as resistant. The PDI for KMH-388 was 21.83. Eighty two entries with disease score 4 (33.34 to 44.44 PDI) and Seventy five entries with disease score 5 (44.45 to 55.55 PDI) are moderately resistant. Thirty eight lines were moderately susceptible with a

disease score 6 and 7. CM-202 recorded 80.42 per cent disease index, severely affected by

turcicum leaf blight and rated as susceptible (Table 2) [10].

Table 2. Per cent disease index of different maize germplasms to turcicum leaf blight (TLB) rabi- 2021-2022

SI no.	Germplasms	Per cent disease index of Score TLB (Mean value)				
1	KML-1	53.33	5	MR		
2	KML-2	39.99	4	MR		
3	JCY-2-7	34.44	4	MR		
4	KML-4	48.88	5	MR		
5	KML-6	41.11	4	MR		
6	KML-7	35.55	4	MR		
7	KML-8	44.44	4	MR		
8	KML-9	72.21	7	MS		
9	KML-10	51.10	5	MR		
10	KML-11	53.35	5	MR		
11	KML-13	56.16	6	MS		
12	KML-14	52.21	6 5	MR		
13	KML-15	35.55	4	MR		
14	KML-17	43.33	4	MR		
14	KML-21	24.44	3	R		
16	KML-22	56.65	6	MS		
17	KML-22 KML-24		3	R		
		33.33	3 4	MR		
18	KML-25	35.55				
19	KML-26	43.32	4	MR		
20	KML-28	65.55	6	MS		
21	KML-29	48.88	5	MR		
22	KML-31	62.20	6	MS		
23	KML-32	54.42	5	MR		
24	KML-33	27.77	3	R		
25	KML-70	35.35	4	MR		
26	KML-71	62.21	6	MS		
27	KML-72	60.00	6	MS		
28	KML-74	44.43	4	MR		
29	KML-75	34.44	4	MR		
30	KML-76	43.33	4	MR		
31	KML-77	59.99	6	MS		
32	KML-78	39.99	4	MR		
33	KML-79	38.88	5	MR		
34	KML-80	34.44	4	MR		
35	KML-81	57.77		MS		
36	KML-82	45.55	6 5	MR		
37	KML-83	54.44	5	MR		
38	KML-85	46.66	5	MR		
39	KML-86	41.49	4	MR		
40	KML-87	43.33	4	MR		
41	KML-88	43.33	4	MR		
42	KML-18	43.32	4	MR		
43	KML-19	44.42	4	MR		
44	KML-30	47.77	5	MR		
45	KML-66	54.44	5	MR		
45 46	KML-6	61.11	6	MS		
40 47	KML-225	42.22	0 4	MR		
48 49	PFSR-3 KML-69	39.99 53.33	4 5	MR MR		

SI no.	Germplasms	Per cent disease index of TLB (Mean value)	Score	Reaction
50	KML-16	40.00	4	MR
51	KNMH-4211	44.34	4	MR
52	KNMH-4181	57.77	6	MS
53	KNMH-4191	51.10	5	MR
54	KNMH-4192	61.11	6	MS
55	KNMH-141	48.88	5	MR
56	KNMH-131	48.88	5	MR
57	KMH-396	51.10	5	MR
58	KMH-393	43.32	4	MR
59	KMH-793	37.77	4	MR
60	KMH-770	43.33	4	MR
61	KMH-275	29.99	3	R
62	KMH-400	34.44	4	MR
63	KMH-242	56.66	6	MS
64	KMH-247	52.22	5	MR
65	KMH-240	40.95	4	MR
66	KMH-246	49.99	5	MR
67	KMH-394	46.65	6	MS
68	KMH-498	44.44	4	MR
69	KMH-489	34.44	4	MR
70	KMH-506	39.72	4	MR
71	KMH-496	40.80	4	MR
72	KMH-493	45.55	5	MR
73	KMH-388	21.83	2	R
74	KMH-387	34.44	4	MR
75	KMH-403	36.66	4	MR
76	KMH-373	31.11	3	R
77	KMH-501	33.27	3	R
78	KMH-500	51.10	5	MR
79	KMH-499	43.33	4	MR
80	KMH-505	55.55	5	MR
81	KMH-276	53.33	5	MR
82	KMH-271	46.66	5	MR
83	KMH-286	43.33	4	MR
84	KMH-275	55.55	5	MR
85	KMH-281	63.32	6	MS
86	KMH-318	66.66	6	MS
87	KMH-322	54.44	5 6	MR
88	K8322	59.95	6	MS
89	P3546	58.88	6	MS
90	NK6240	45.55	5 5	MR
91	GK3128	46.66	5	MR
92	PAC751	48.35	5 5	MR
93	LG-3603	49.99	5	MR
94	S-6668	42.10	4	MR
95	K-50	64.44	6	MS
96	KMH-253	57.77	6	MS
97	KMH-262	50.00	5	MR
98	KMH-258	38.88	4	MR
99	KMH-268	44.44	4	MR
100	KMH-256	56.66	6	MS
101	KMH-415	53.33	5	MR
102	KMH-414	57.77	5	MR
103	KMH-307	43.32	4	MR
104	KMH-308	63.65	6	MS

SI no.	Germplasms	Per cent disease index of TLB (Mean value)	Score	Reaction
105	KMH-311	41.41	4	MR
106	KMH-314	39.77	4	MR
107	KMH-306	44.22	4	MR
108	KMH-245	38.64	4	MR
109	KMH-235	46.66	5	MR
110	KMH-238	46.66	5	MR
111	KMH-237	48.88	5	MR
112	KMH-236	42.22	4	MR
113	KMH-243	55.35	5	MR
114	KMH-242	40.88	4	MR
115	KMH-18	41.10	4	MR
116	KMH-20	46.66	5	MR
117	KMH-777	49.99	5 5 5	MR
118	KMH-762	51.11	5	MR
119	KMH-768	58.88	6	MS
120	KMH-433	47.44	5	MR
120	KMH-431	53.32	5	MR
121	KMH-25	55.55	5	MR
122	KMH-336	59.99	6	MS
123	KMH-335	62.21	6	MS
124			3	R
	KMH-340	31.00	5 F	
126	KMH-343	54.44	5 5	MR
127	KMH-341	45.53		MR
128	KMH-332	42.21	4	MR
129	KMH-331	44.44	4	MR
130	KMH-337	34.44	4	MR
131	KMH-339	44.44	4	MR
132	KMH-471	47.77	5	MR
133	KMH-470	44.44	4	MR
134	KMH-469	35.55	4	MR
135	KMH-586	45.55	5	MR
136	KMH-472	57.77	6	MS
137	KMH-363	49.99	5 5	MR
138	KMH-357	52.00	5	MR
139	KMH-358	60.77	6	MS
140	KMH-367	46.45	5	MR
141	KMH-359	37.77	4	MR
142	KMH-482	58.88	6	MS
143	KMH-542	59.99	6	MS
144	KMH-544	48.88	5	MR
145	KMH-543	46.66	5	MR
146	KMH-919	41.10	4	MR
147	KMH-131	28.88	3	R
148	KMH-128	38.88	4	MR
149	KMH-916	39.99	4	MR
150	KMH-249	39.95	4	MR
151	KMH-266	39.77	4	MR
152	KMH-407	39.99	4	MR
153	KMH-479	44.34	4	MR
154	KMH-480	58.80	6	MS
155	KMH-459	62.22	6	MS
155	KMH-478	27.99	3	R
150	KMH-475	37.95	4	MR
157	KMH-475 KMH-483	41.10	4	MR
159	KMH-457	57.17	6	MS

SI no.	Germplasms	Per cent disease index of	Score	Reaction
160	KMH-370	TLB (Mean value) 24.38	3	R
161	KMH-367	45.55	5	MR
162	KMH-369	48.88	5	MR
163			5	MR
	KMH-363	46.66		
164	KMH-382	36.55	4	MR
165	KMH-408	57.77	6	MS
166	KMH-588	57.77	6	MS
167	KMH-466	34.44	4	MR
168	KMH-467	37.77	4	MR
169	KMH-257	31.88	3	R
170	KMH-385	49.99	5	MR
171	KMH-106	53.33	5 5 5	MR
172	KMH-107	52.22	5	MR
173	KMH-367	44.44	4	MR
174	KMH-393	33.33	3	R
175	KMH-400	36.66	4	MR
176	KMH-377	47.75	5	MR
177	KMH-365	46.66	5	MR
178	KMH-364	49.99	5	MR
179	KMH-420	38.88	4	MR
180	KMH-387	39.99	4	MR
181	KMH-151	54.22	5	MR
182	KMH-327	48.88	5	MR
183	KMH-388	34.44	4	MR
184	KMH-574	55.55	4 5	MR
185		42.20	4	MR
	KMH-573		4	
186	KMH-392	34.44		MR
187	KMH-456	43.33	4	MR
188	KMH-450	46.66	5	MR
189	KMH-449	57.77	6	MS
190	KMH-461	49.99	5	MR
191	KMH-458	44.44	4	MR
192	KMH-457	42.21	4	MR
193	KMH-460	35.55	4	MR
194	KMH-459	36.77	4	MR
195	KMH-41	25.55	3	R
196	KMH-36	33.32	3	R
197	KMH-545	61.11	6	MS
198	KMH-540	48.85	6 5	MR
199	KMH-546	37.77	4	MR
200	KMH-194	39.78	4	MR
200	KMH-77	38.88	4	MR
202	KMH-64	29.99	3	R
202	KMH-565	42.32	4	MR
203	DHM-121	46.66		MR
204 205	SAMRATH	40.00 32.22	3	R
			5 3 6 5 5	
206	HT-5402	63.33	р Б	MS
207	P-3401	48.88	5	MR
208	NK-6514	48.88	5	MR
209	DHM-117	65.35	6	MS
210	BIO-9544	53.33	6 5 5	MR
211	HT5106	55.25	5	MR
213	NK6802	47.77	5	MR
	CM-202(Check)	80.42	8	S

3.2 Disease Reaction During Kharif-2022

277 genotypes were screened against turcicum leaf blight disease. Out of them, three genotypes viz., KMH-804, KMH-751 and KM-86 were identified as disease score 3, which were categorized as resistant. Thirty lines viz., KMH-875. KMH-917. KMH-918. KMH-26. KMH-18. KMH-915, KMH-40, KMH-788, KMH-813, KMH-722, KMH-854, KMH-815, KMH-761, KMH-731, KMH-726,KMH-904,S-6668,NMH-4144,KNMH-4191,SAMARTH,KML-5,KML-21,KML-24,KML-57,KML-65,KML-70,KML-74,KML-76, KML-83, PFSR-3 and KML-87 with disease score 4 and one hundred and one lines with disease score 5 were moderately resistant. One hundred and thirty lines were moderately susceptible with a disease scores 6 and 7. In CM-202, the per cent disease index was 81.42, which was also severely affected by turcicum leaf blight and rated as susceptible (Table 3).

Similar results were reported by scientists: [11] Shikari and Zaffar reported that inbred NAI-147 and composite Girija expressed reisitance to Turcicum leaf blight. [12]. Identified twenty inbred lines as sources of resistance against Turcicum leaf blight of maize [13]. Screened the temperate maize lines against northern corn leaf blight and found five inbreds resistant to disease [14]. lidentified 56 moderately resistant genotypes and two inbreds (NAI-125, NAI-137) showed moderate resistant reaction [15]. Carried out a disease reaction studies against turcicum leaf blight with two crosses viz., 15C (A) x I-318 (R) and I-401(A)×I-318(R) for all six generations with P1, P2, F1, F2, BC1 and BC2 . Results revealed that significant variability has been exhibited by fungus to infect different generations of a particular cross. In I-15C (A) × I- 318(R) cross, F1 was

moderately resistant to turcicum leaf blight but F1 of I-401(A)×I-318(R) cross was moderately susceptible to the disease. [9]. Results revealed that the variety BH660 was highly resistant with the incidence of 13.7% and variety BH543 was susceptible with the incidence of 52.3%. [16] results showed that out of 26 maize genotypes, 8 genotypes viz., PS 39, CML 451, CML 470, CML 472, VL1030, VL 1018140, VL1018527 and SMI178-1 were found resistant and eight genotypes viz., PS45, CML165, CML459, VL1249, VL0536, SMC-5, SMC-3 and KDL211 were found moderately resistant against E. turcicum with disease grade ranged from 2.1-2.5 [17]. Tested one hundred inbred lines each of early maturing (EM) and extra-early maturing (EEM) against TLB disease and recorded average disease severity values ranging from 1.9-5.8 and 2.9-5.7 for the EM and EEM inbred lines respectively [18]. Screened 135 genotypes. Out of them, 34 genotypes expressed moderately resistant reaction, 73 showed moderately susceptible reaction and 29 genotypes exhibited susceptibility reaction to TLB disease. [19] recorded per cent disease severity in two inbred lines, viz., NAI-112 and NAI-147 and one hybrid, HQPM-1 was found to be resistant to turcicum leaf blight disease [20]. evaluated twenty six maize hybrids along with check hybrids against turcicum leaf blig disease resistance and two hybrids viz., AH4158 and AH4142 were found to be resistant to turcicum leaf blight disease [21]. Evaluated 237 entries. Out of them, 41 inbred lines were found resistant (disease incidence <3.0), 181 inbred lines were moderately resistant (disease incidence 3.1-5.0) and 15 inbred lines were moderately susceptible (disease incidence 5.1-7.0).

Table 3. Per cent disease index of different maize entries to turcicum leaf blight (TLB) <i>kharif</i> -
2022

SI no.	Hybrids	Per cent disease index of TLB (Mean value)	Score	Reaction
1	KMH-886	58.99	6	MS
2	KMH-890	57.77	6	MS
3	KMH-881	63.33	6	MS
4	KMH-882	61.66	6	MS
5	KMH-885	52.21	5	MR
6	KMH-868	72.22	7	MS
7	KMH-871	67.77	7	MS
8	KMH-867	63.33	6	MS
9	KMH-869	56.66	6	MS
10	KMH-872	63.64	6	MS

SI no.	no. Hybrids Per cent disease index of TLB (Mean value)		Score	Reaction
11	KMH-876	58.88	6	MS
12	KMH-875	35.55	4	MR
13	KMH-127	86.66	8	S
14	KMH-610	47.77	5	MR
15	KMH-917	44.44	4	MR
16	KMH-924	53.33	5	MR
17	KMH-918	34.44	4	MR
18	KMH-26	44.44	4	MR
19	KMH-18	42.22	4	MR
20	KMH-921	52.21	5	MR
21	KMH-922	42.21	4	MR
22	KMH-915	42.21	4	MR
23	KMH-916	53.32	5	MR
24	KMH-926	68.88	7	MS
25	KMH-111	63.22	6	MS
26	KMH-138	58.88	6	MS
20	KMH-125	47.77	5	MR
28	KMH-107	53.33	5	MR
28 29	KMH-107 KMH-136	82.66	5 8	S
29 30	KMH-132	64.44	6 6	MS
30 31	KMH-109	47.77	5	MR
32		63.33	5 6	MS
	KMH-139		0	
33	KMH-152	46.66	5 7	MR
34	KMH-169	71.10		MS
35	KMH-935	46.66	5	MR
36	KMH-40	42.22	4	MR
37	KMH-22	51.10	5	MR
38	KMH-94	53.33	5	MR
39	KMH-91	46.66	5	MR
40	KMH-69	72.22	7	MS
41	KMH-842	74.44	7	MS
42	KMH-156	65.55	6	MS
43	KMH-101	48.88	5	MR
44	KMH-839	58.88	6	MS
45	KMH-163	61.11	6	MS
46	KMH-766	62.22	6	MS
47	KMH-151	61.10	6	MS
48	KMH-160	64.44	6	MS
49	KMH-157	74.44	7	MS
50	KMH-162	74.44	7	MS
51	KMH-71	55.55	5	MR
52	KMH-161	58.88	6	MS
53	KMH-843	74.44	7	MS
54	KMH-195	61.10	6	MS
55	KMH-767	62.22	6	MS
56	KMH-773	48.88	5	MR
57	KMH-102	63.33	6	MS
58	KMH-743	58.88	6	MS
59	KMH-775	63.33	6	MS
60	KMH-769	60.00	6	MS
61	KMH-846	58.88	6	MS
62	KMH-838	56.66	6	MS
63	KMH-766	61.10	6	MS
64	KMH-103	58.88	6	MS
65	KMH-765	62.21	6	MS
00		VL.L I	U	1010

IS IR IR IR IR IR IR IS IS IS IS IS IS IS IS IS IS IS IS IS
IR INS INS INS INS INS INS INS INS INS INS
IS IAR IAR IAR IAR IAR IAR IAR IAR IAR IAR
IR IR IR IS IR IS IS IS IS IS IS IS
IR IR IR IS IR IS IS IS IS IS IS IS
IR INS INS INS INS INS INS INS INS INS INS
IS IR IR IS IS IS IS IS IS IS IS IS
AR AR AR AS AS AS AR AS AR AS AS AS AS
AR AR AS AS AS AR AS AR AS AS AS AS
1R 1S 3 1S 1S 1R 1S 1R 1R 1S 1S 1S 1S
1S 5 1S 1S 1S 1S 1S 1S 1S 1S 1S
5 18 18 18 18 18 18 18 18 18 18 18
IS IS IR IS IR IR IR IS IS IS
1S 1R 1S 1S 1R 1R 1S 1S 1S 1S
1R 1S 1S 1R 1R 1R 1S 1S 1S
1S 1S 1R 1R 1S 1S 1S 1S
1S 1R 1R 1R 1S 1S 1S 1S
1R 1R 1R 1S 1S 1S 1S
1R 1R 1S 1S 1S 1S
1R 1S 1S 1S 1S
1S 1S 1S 1S
1S 1S 1S
1S 1S
IS
19
10
/IR
R
5
1S
/IR
1S
1R
1S
IS
1S
1S
/IR
IS
1R
IS
1R
1R
5
/IR
/IR
/IR
/IR
1S
/R
, /R
1S
18 IS
18 IS

Vijaya Bhaskar et al.; Int. J. Environ. Clim. Change, vol. 13, no. 10, pp. 4051-4065, 2023; Article no.IJECC.10615.	Viiava Bhask	ar et al.: Int. J. Enviro	n. Clim. Change.	vol. 13. no. 10. i	pp. 4051-4065, 2023;	Article no.IJECC.106152
---	--------------	---------------------------	------------------	--------------------	----------------------	-------------------------

SI no.	•		Score	Reaction	
4.04		of TLB (Mean value)	~	MD	
121	KMH-793	51.10	5 7	MR MS	
122	KMH-752	74.44	5		
123	KMH-787	53.33		MR	
124	KMH-753	86.66	8	S	
125	KMH-746	57.77	6	MS	
126	KMH-754	47.79	5	MR	
127	KMH-755	77.77	7	MS	
128	KMH-756	73.33	7	MS	
129	KMH-757	68.88	7	MS	
130	KMH-747	61.10	6	MS	
131	KMH-758	82.22	8	S	
132	KMH-759	65.55	6	MS	
133	KMH-760	45.55	5	MR	
134	KMH-750	71.10	7	MS	
135	KMH-748	71.10	7	MS	
136	KMH-763	48.88	5	MR	
137	KMH-745	57.77	6	MS	
138	KMH-744	48.88	5	MR	
139	KMH-761	42.22	5	MR	
140	KMH-749	65.55	6	MS	
141	KMH-751	23.33	3	R	
142	KMH-725	56.66	6	MS	
143	KMH-722	49.99	5	MR	
144	KMH-729	62.22	6	MS	
145	KMH-730	78.88	7	MS	
145	KMH-723	59.99	6	MS	
140	KMH-723 KMH-731	41.10	4	MR	
147	KMH-732	46.66	4 5	MR	
		52.22			
149	KMH-733		5	MR	
150	KMH-734	51.10	5	MR	
151	KMH-726	44.44	4	MR	
152	KMH-728	46.66	5	MR	
153	KMH-741	48.88	5	MR	
154	KMH-163	58.88	6	MS	
155	KMH-740	54.44	5 5	MR	
156	KMH-739	49.99	5	MR	
157	KMH-738	68.88	7	MS	
158	KMH-737	55.55	5	MR	
159	KMH-904	44.44	4	MR	
160	KMH-724	54.44	5	MR	
161	KMH-735	56.66	6	MS	
162	KMH-742	51.10	5	MR	
163	KMH-736	54.44	5	MR	
164	S-6668	43.33	4	MR	
165	PAC-751	52.22	5	MR	
166	NK-30	54.44	5	MR	
167	B-9144	63.33	6	MS	
168	NK-6802	59.99	6	MS	
169	DKC-9198	49.99	5	MR	
170	DKC-9173	54.44	5	MR	
170	P-3302	55.55	5	MR	
172	P-3401	51.11	5	MR	
172	NK-6240	54.44	5	MR	
173	K-EKKA	54.44 71.11	5 7	MS	
174	R-ERRA IQ-8319	76.66	7 7	MS	
175	12-0313	10.00	1	IVIO	

VIIAVA DHASKAI ELAL. INL. J. ENVION. CIIM. CHANGE. VOI. 13. NO. 10. DD. 4001-4000. 2023. ANICH NO.IJECC. 1001	J. Environ. Clim. Change, vol. 13, no. 10, pp. 4051-4065, 2023; Artic	le no.IJECC.106152
---	---	--------------------

SI no.	Hybrids	Per cent disease index of TLB (Mean value)	Score	Reaction
176	IQ-8220	56.66	6	MS
177	8227-C	51.11	5	MR
178	Bond-(NMH-007)	53.33	5	MR
179	NMH-1258	51.10	5	MR
180	NMH-4144	44.44	4	MR
181	K NMH-131	66.66	6	MS
182	KNMH-141	68.88	7	MS
183	KNMH-4191	40.00	4	MR
184	NK-6514	60.00	6	MS
185	B-8135	51.10	5	MR
186	B-9544	47.74	5	MR
187	SAMARTH	35.55	4	MR
188	PAC-751 elite	63.33	4 6	MS
189	K-50	56.66	6	MS
190	HT-5109	49.99	5	MR
191	HT-5402	58.88	6	MS
192	DKC-7074	64.44	6	MS
193	DHM-182	49.99	5	MR
194	DHM-117	56.60	6	MS
195	DHM-121	54.44	5	MR
196	PAC-741	79.99	8	S
1	KML-1	58.88	6	MS
2	KML-2	83.33	8	S
3	KML-4	63.33	6	MS
4	KML-5	38.88	4	MR
5	KML-6	57.77	6	MS
6	KML-7	60.00	6	MS
7	KML-8	56.66	6	MS
8	KML-9	49.99	5	MR
9	KML-10	53.33	5	MR
10	KML-11	61.11	6	MS
11	KML-12	63.33	6	MS
12	KML-13	60.00	6	MS
13	KML-14	63.33	6	MS
13	KML-15	47.77	5	MR
			5 5	MR
15	KML-16	48.88		
16	KML-17	64.44	6	MS
17	KML-19	76.66	7	MS
18	KML-20	55.55	5	MR
19	KML-21	38.88	4	MR
20	KML-22	53.33	5	MR
21	KML-24	44.44	4	MR
22	KML-25	47.77	5	MR
23	KML-26	49.99	5	MR
24	KML-27	73.33	7	MS
25	KML-28	53.33	5	MR
26	KML-29	51.10	5 5	MR
27	KML-30	48.88	5	MR
28	KML-31	69.98	6	MS
29	KML-32	56.77	6	MS
30	KML-33	51.10	5	MR
31	KML-34	59.99	5 6	MS
32	KML-36	69.99	7	MS
33	KML-37	58.88	6	MS
33 34	KML-41	60.00	6	MS

SI no.	Hybrids	Per cent disease index of TLB (Mean value)	Score	Reaction
35	KML-43	61.11	6	MS
36	KML-44	53.33	5	MR
37	KML-45	57.77	5 6	MS
38	KML-46	60.00	6	MS
39	KML-47	62.22	6	MS
40	KML-48	61.11	6	MS
41	KML-49	53.33	5	MR
42	KML-50	62.22	6	MS
43	KML-51	53.33	5	MR
44	KML-52	60.00	6	MS
45	KML-53	64.44	6	MS
46	KML-54	53.33	5	MR
47	KML-55	56.66	5 6	MS
48	KML-56	74.44	7	MS
49	KML-57	37.77	4	MR
50	KML-58	54.44	5	MR
51	KML-59	57.77	6	MS
52	KML-60	63.33	6	MS
53	KML-61	52.21	5	MR
54	KML-62	49.99	5	MR
55	KML-63	46.66	5	MR
56	KML-64	51.10	5	MR
57	KML-65	34.44	4	MR
58	KML-66	59.99		MS
59	KML-67	54.44	6 5 5	MR
60	KML-69	46.66	5	MR
61	KML-70	40.00	4	MR
62	KML-71	55.55	4 5	MR
63	KML-72	46.66	5	MR
64	KML-72 KML-73	52.21	5	MR
65 66	KML-74	42.22	4 5	MR
66 67	KML-75	55.55	5	MR
67	KML-76	44.44	4 5	MR
68	KML-77	45.55	5	MR
69 70	KML-78	57.77	6 5	MS
70	KML-79	54.66		MR
71	KML-80	52.22	5	MR
72	KML-81	58.88	6 6	MS
73	KML-82	57.77	6	MS
74	KML-83	40.00	4	MR
75	KML-85	53.33	5	MR
76	KML-86	23.10	3	R
77	KML-87	44.44	4	MR
78	KML-88	61.10	6	MS
79	KML-225	65.55	6	MS
80	PFSR-3	42.21	4	MR
	CM-202(Check)	81.42	8	S

4. CONCLUSION

During *rabi* 2021–2022, one entry KMH-388 was resistant,15 promising entries viz., KML-21,KML-24,KML-33,KMH-275, KMH- 373, KMH- 478, KMH-370, KMH-257, KMH-393, KMH- 340, KMH- 131, KMH-41, KMH-36, SAMRAT and KMH- 64 were identified as resistant with disease score 3 and CM-202 (check) entry was recorded 80.42 per cent disease index (PDI) out of 213 lines.

In *kharif* 2022, 3 lines viz.,KMH-804, KMH-751 and KML-86 were identified as resistant lines to

turcicum leaf blight disease (score 3), remaining recorded disease score from 4–8 and one line CM-202 (check) was noticed with high 81.42 per cent disease index and severely affected by turcicum leaf blight disease and rated as susceptible out of 277 lines. Breeders have to use these identified resistant lines in crossing program to develop high yield turcicum leaf blight disease resistant hybrids.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Madhavi M, Reddy NP, Manohar K, Aruna Kumar, AC Effect of fungicides and herbicides against *Rhizoctonia solani f. sp.* sasakii exner causing banded leaf and sheath blight in maize (*Zea mays* L.). International Journal of Bio-resource and Stress Management. 2018;9(1):42–153.
- Anonymous A. Agricultural statistics at a Glance 2022, Government of India Ministry of Agriculture & Farmers Welfare Department of Agriculture & Farmers Welfare Economics & Statistics Division. 2022;38:39-78.
- Chenulu VV, Hora TS. Studies on losses due to *Helminthosporium* blight of maize. Indian Phytopathology.1962;15:235–237.
- Jha MM. Assessment of losses due to maize diseases in widely grown maize cultivars at Dholi, 18th Annual Progress Report on Rabi Maize, AICMIP, Indian Agricultural Research Institute, New Delhi. 1993;138.
- 5. Dey U, Harlapur SI, Dhutraj DN, Das A. Screening of inbred lines and hybrids/composites against common rust under field conditions. of maize International Journal of Bio-resource and Stress Management. 2017:8(4): 548-552.
- 6. Ferguson LM, Carson ML. Spatial diversity of *Setosphaeria turcica* sampled from the Eastern United States. Phytopathology. 2004;94:892–900.
- 7. Cuq FS, Herrmanngolrline, Klaebe S, Rossignol M. Monocerin in *Exserohilum turcicum*. Phytochemistry.1993;34:1265– 1270.
- 8. Tuite J. Plant pathological Methods, Fungi and Bacteria. Burges Publishing

Company, USA; 1969.

- 9. Mitiku M, Eshte Y, Shiferaw W. Evaluation of maize variety for northern leaf blight (*Trichometashaeria turcica*) in south Omo zone. World Journal of Agricultural Research. 2014;2(5):237–239.
- 10. Anonymous A. Indian institute of maize research. Annexure. 2014;1:1001–1010.
- 11. Shikari AB, Zaffar, G. Evaluation and identification of maize for turcicum leaf blight resistance under cold temperate conditions. Maize Genetics Cooperation News letter. 2009;83.
- Kumar S, Pandurangegowda KT, Pant SK, Shekhar M, Kumar B, Kaur B, Chchi KH,Singh ON, Parsanna BH. Sources of resistance to *Exserohilum turcicum* (Pass.) and *Puccinia polysora* (Underw.) incitant of Turcicum leaf blight and polysora rust of maize. Archives of Phytopathology and Plant Protection. 2011;44(6):528–536.
- 13. Babita C, Mani VP. Screening for resistance against northern corn leaf blight (*Exserohilum turcicum* (Pass.) KJ Leonard and Suggs) in temperate maize lines. Indian Journal of Plant Genetic Resources. 2011;24(3):343–345.
- 14. Shankara K, Gowda KTP. Evaluation of maize inbreds for resistance to Turcicum leaf blight.Mysore Journal Agriculture Science. 2011;45(3):699–700.
- Ishfaq A, Dar ZA, Lone AA, Ali G, Gazal A, Hamid B. Disease reaction studies of maize (*Zea mays* L.) against turcicum leaf blight involving indigenously identified cytosterilesource. African Journal of Microbiology Research. 2014;8(27):2592–2597.
- Ahangar AM, Bhat ZA, Sheikh, FA, Dar ZA, LoneAA, Hooda KS,Reyaz M.Pathogenic variability in *Exserohilum turcicum* and identification of Resistant sources to turcicum leaf blight of maize (*Zea mays* L.). Journal of Applied and Natural Science. 2016;8(3): 1523–1529.
- Baffour BA, Faith AB, Babatope SA, Morakinyo ABF, Richard OA, Abidemi OT, Bandyopadhyay R, Alejandro OB. Identification of early and extra-early maturing tropical maize inbred lines resistant to *Exserohilum turcicum* in sub-Saharan Africa. Crop Protection. 2021;139.
- Mallikarjuna N, Puttaramanaik N, Kumar K, Raveendra HR, Sanath Kumar VB. Evaluation of maize germplasm for

resistance to turcicum leaf blight. International Journal of Pure Applied and Bioscience. 2018;6(2):1601–1605.

- Wani TA, Bhat, GN, Mushtaq A, Anwar A, Gul Z. Screening of maize germplasm for turcicum leaf blight resistance. Journal of Applied and Natural Science. 2018;10(1):98–101.
- 20. Meghashri S, Patil, Motagi BN, Evaluation of maize (*Zea mays* L.) hybrids for drought tolerance, disease (Turcicum leaf blight and maydis leaf

blight) resistance and productivity traits in northern dry tract of Karnataka. Journal of Farm Science. 2020;33(1): 25–29.

 Singh SB, Karjagi CG, Hooda KS, Mallikarjuna N, Harlapur SI, Rajashekara H, Devlash R, Kumar S, Kasana RK, Kumar S, Singh SG. Rakshit S. Identification of resistant sources against turcicum leaf blight of maize (*Zea* mays L.). Maize Journal. 2018;7(2): 64–71.

© 2023 Vijaya Bhaskar et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

> Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/106152