
ISSN ONLINE (2395-1680) ICTACT JOURNAL ON MICROELECTRONICS, FEBRUARY 2015, VOLUME: 01, ISSUE: 01

1

IMPLEMENTATION OF SOFT PROCESSOR BASED SOC FOR JPEG COMPRESSION

ON FPGA

K.S.V. Swarna
1
 and Y. David Solomon Raju

2

1
School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Australia

E-mail: ssrungar@deakin.edu.au
2
Department of Electronics and Communication Engineering, Holy Mary Institute of Technology and Science, India

E-mail: davidsolomonraju131@gmail.com

Abstract

With the advent of semiconductor process and EDA tools technology,

IC designers can integrate more functions. However, to reduce the

demand of time-to-market and tackle the increasing complexity of

SoC, the need of fast prototyping and testing is growing. Taking

advantage of deep submicron technology, modern FPGAs provide a

fast and low-cost prototyping with large logic resources and high

performance. So the hardware is mapped onto an emulation platform

based on FPGA that mimics the behaviour of SOC. In this paper we

use FPGA as a system on chip which is then used for image

compression by 2-D DCT respectively and proposed SoC for image

compression using soft core Microblaze. The JPEG standard defines

compression techniques for image data. As a consequence, it allows to

store and transfer image data with considerably reduced demand for

storage space and bandwidth. From the four processes provided in the

JPEG standard, only one, the baseline process is widely used.

Proposed SoC for JPEG compression has been implemented on

FPGA Spartan-6 SP605 evaluation board using Xilinx platform

studio, because field programmable gate array have reconfigurable

hardware architecture. Hence the JPEG image with high speed and

reduced size can be obtained at low risk and low power consumption

of about 0.699W. The proposed SoC for image compression is

evaluated at 83.33MHz on Xilinx Spartan-6 FPGA.

Keywords:

Prototype, System-on-Chip, JPEG Compression, Micro Blaze Soft

Core Processor

1. INTRODUCTION

Continuing advances in latest technologies allow the

implementation of ever larger and more complex systems on a

single chip. This concept is referred to as System-on-Chip

(SoC). For this we use FPGA as system on chip because of its

Re-configurable hardware architecture. To explain this concept

we consider JPEG compression. So the SoC for JPEG

compression is built on FPGA Spartan-6 SP605 evaluation board

using Xilinx platform studio. System on chip refers to

integrating all components of an electronic into single

integrating circuits. Application of soc is field of digital, analog,

mixed-signal & various fields. A typical application is in area of

embedded system. Embedded system is a special-purpose

computer system designed to perform one or few dedicated task

with real-time computing constraints for proper, reliable,

controlled, and timely operation some suitable real time

operating system is used. Hence to develop reconfigurable SoC

we use FPGA because of its high programmability and low risk.

A platform FPGA can be defined as a device that in addition to

the field programmable logic cells integrates a predetermined

collection of resources such as embedded CPUs, SRAM,

versatile general purpose IO ports, high speed serial links,

various standard peripherals and others. Collection of these

functionalities that may be implemented as hard or soft IP cores

makes the platform FPGAs extremely flexible reconfigurable

SoC devices where they can be customized to a big variety of

complex applications by adequately configuring and

programming a needed set of available on-chip components. For

our developments we opted for devices from the Xilinx Spartan-

6 FPGA family because their features and evolution path seemed

most adequate for our needs when technology choices had to be

done. So we consider a real time application i.e. JPEG

compression to develop a system on chip platform on FPGA

using Xilinx Platform Studio.

In this paper we use FPGA as a system on chip which is then

used for image compression proposed hardware platform using

Xilinx IP catalogue. For JPEG compression the soft processor

i.e. Microblaze is generated using Xilinx platform studio. Finally

the bit file and elf file are obtained and these are combined into

download.bit file which will then be downloaded to program the

FPGA. This procedure is explained briefly in the following

sections.

Section 1 gives the introduction and section 2 literature

survey and basic concept of soft processor i.e. Microblaze. Here

mainly we discuss about architecture of Microblaze and the

functioning of each block. Then we will discuss the method of

generating hardware platform and software platform for JPEG

compression which is nothing but system on chip for JPEG

compression in section 3. In section 4, we will discuss the

complete information about jpeg compression i.e. origin of

JPEG, block diagram of JPEG compression and the compression

technique. We use discrete cosine transform based compression

technique which is nothing but a lossy compression. In section 5,

we give information about implementation of JPEG compression

on Spartan-6 by considering any BMP image as raw image. In

section 6, the results for this JPEG compression using FPGA as

system on chip is shown, and how the size is reduced and the

time taken for the compression is shown.

2. LITERATURE SURVEY

This section gives an overview of soft processors, different

types of soft processors, the significance of Microblaze soft-core

processor, its features and brief information about its

architecture. A soft microprocessor (also called soft-core

microprocessor or a soft processor) is a microprocessor core that

can be wholly implemented using logic synthesis. It can be

implemented via semiconductor devices containing

programmable logic (e.g., ASIC, FPGA, CPLD), including both

DOI: 10.21917/ijme.2015.0001

mailto:ssrungar@deakin.edu.au
mailto:davidsolomonraju131@gmail.com
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Logic_synthesis
http://en.wikipedia.org/wiki/Semiconductor
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://en.wikipedia.org/wiki/Complex_programmable_logic_device

K S V SWARNA AND Y DAVID SOLOMON RAJU: IMPLEMENTATION OF SOFT PROCESSOR BASED SOC FOR JPEG COMPRESSION ON FPGA

2

high-end and commodity variations. There are different types of

soft core processors, some of which are Nios-II, picoblaze,

Microblaze etc. The details of these soft core processors are

given below.

Nios II is a 32-bit embedded-processor architecture designed

specifically for the Altera family of FPGAs. Nios II incorporates

many enhancements over the original Nios architecture, making

it more suitable for a wider range of embedded computing

applications, from DSP to system-control. Nios II is a successor

to Altera's first configurable 16-bit embedded processor Nios.

Pico Blaze is the designation of a series of three free soft

processor cores from Xilinx for use in their FPGA and CPLD

products. They are based on an 8-bit RISC architecture and can

reach speeds up to 100 MIPS on the Vertex 4 FPGA's family.

The processors have an 8-bit address and data port for access to

a wide range of peripherals. The license of the cores allows their

free use, albeit only on Xilinx devices, and they come with

development tools. All instructions execute in two clock cycles,

making performance of the core instruction set deterministic.

The Microblaze embedded processor soft core is a reduced

instruction set computer (RISC) optimized for implementation in

Xilinx Field Programmable Gate Arrays (FPGAs). Compared to

other general purpose processors, Microblaze is quite flexible

with a few configurable parts and capable of being extended by

customized co-processors. There are a number of on-chip

communication strategies available including a variety of

memory interfaces. The operating frequency of Microblaze on

spartan-6 SP605 kit is 83.33 MHz Hence we use Microblaze

soft-core processor in order to develop hardware platform for

JPEG compression application. The Microblaze soft core

processor is highly configurable, allowing selecting a specific

set of features required by the design. Microblaze is a soft-

processor containing 32-bit RISC architecture. It has 32-bit 32 ×

32 general purpose registers. It is supported in Vertex and

Spartan family devices.

Fig.1. Microblaze soft-core processor architecture

Microblaze processor has an instruction decoding unit, 32 ×

32 bit general purpose register file, arithmetic unit and special

purpose registers. In addition, it has an instruction prefetch

buffer. The arithmetic unit is configurable, as shown in core

block diagram. The Barrel Shift, Multiplier, Divider and FPU

are optional features. Microblaze processor has a three- stage

pipeline: fetch, decode and execute. For most of instructions,

each stage takes one clock cycle. There is no branch prediction

logic. Branch with delay slot is supported to reduce the branch

penalty. Microblaze is a Harvard architecture processor, with

both 32-bit I-bus and D-bus. Cache is also an optional feature.

Three types of buses, FSL, LMB and OPB are available. FSL

bus is a fast co-processor interface. LMB is one-clock-cycle, on-

chip memory bus while OPB is a general bus with arbitration.

Microblaze has an orthogonal instruction set architecture. It has

thirty-two 32-bit general purpose registers and up to eighteen

32-bit special purpose registers, depending on configured

options.

3. SYSTEM ON CHIP FOR JPEG

COMPRESSION

In this section we discuss about the proposed Hardware and

Software platform for JPEG compression. System on chip

implementation for jpeg compression involves three layers in it.

The three layers are hardware platform followed by operating

system (OS) and the required application that is to be carried

out. Pictorially it is shown below.

APPLICATION  JPEG

OPERATING

SYSTEM
 STAND_ALONE

HARDWARE

PLATFORM


MICROBLAZE

BASED

SYSTEM

Fig.2. Layered structure of the SoC

First layer is hardware platform. It is generated using

Microblaze. Microblaze is flexible and can be configurable

customized soft core processor. Here the components required

for the application are configured and the hardware platform for

the platform is generated. Second layer is operating system. We

use standalone OS for our paper. It is involved in the software

part of our paper. On this OS we develop our application i.e.,

JPEG compression. Third and the final layer of our paper is the

application part, where we develop our application in embedded-

C language for system on chip.

3.1 HARDWARE PLATFORM FOR JPEG

COMPRESSION

Hardware platform for the JPEG compression requires

components like, BRAM, ILMB_cntlr, DLMB_cntlr, MDM,

UART, Sys_ACE Compact flash, MCB-DDR3, PLB-Bus. All

these hardware components are configured for JPEG

compression. Its architecture is shown in the below Fig.3.

http://en.wikipedia.org/wiki/Altera
http://en.wikipedia.org/wiki/FPGA
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Nios_embedded_processor
http://en.wikipedia.org/wiki/Xilinx
http://en.wikipedia.org/wiki/FPGA
http://en.wikipedia.org/wiki/CPLD
http://en.wikipedia.org/wiki/RISC
http://en.wikipedia.org/wiki/Million_instructions_per_second
http://en.wikipedia.org/w/index.php?title=Virtex_4&action=edit&redlink=1
http://en.wikipedia.org/wiki/FPGA
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Programming_tool

ISSN ONLINE (2395-1680) ICTACT JOURNAL ON MICROELECTRONICS, FEBRUARY 2015, VOLUME: 01, ISSUE: 01

3

Fig.3. Hardware platform for JPEG compression

The Hardware platform generated in the Xilinx Platform

Studio is exported to SDK i.e., Software Development Kit where

the remaining process of the application is carried out.

3.2 SOFTWARE PLATFORM FOR JPEG

COMPRESSION

Proposed System on Chip is simple embedded system. In-

order to implement application on the designed hardware we

require an operating system. Standalone OS is used to develop

JPEG compression algorithm on proposed hardware platform.

To access compact flash memory Xilinx fatfs library is enabled

in standalone OS. Using the library functions like sysace_fopen,

sysace_fread, sysace_fwrite and sysace_fclose BMP image can

be accessed and processed resulting in JPEG image. In SDK,

source files are not stored under Workspace.

3.3 SDK APPLICATION DEVELOPMENT FLOW

The development flow of the application in Software

Development Kit is shown clearly stage by stage in the below

flow chart.

Fig.4. SDK Development flow

The process involved here is hardware platform is exported

to SDK. Then the software platform is created which is the

standalone board support package. The drivers and libraries

which are included during the generation of software platform

are used during the compiling and linking process. Compiling

refers to transferring high level language i.e., embedded-C

language to machine level language. Further on this software

platform Xilinx c-paper is created for the application. Edit the

application and add the required source files to it. Then compile

and run it. If there are no errors then ELF file i.e., executable file

is generated which can be further downloaded to the Spartan-6

SP605 evaluation board. If there are any errors then those are

debugged and the above process is repeated further. Thereafter

executable file i.e., elf file is generated. The bit file from the

hardware platform and elf file from the software are further

combined and dumped on to the Spartan kit.

4. JPEG COMPRESSION

One of the hottest topics in image compression technology

today is JPEG. The acronym JPEG stands for the Joint

Photographic Experts Group, a standards committee that had its

origins within the International Standard Organization (ISO).

The JPEG specification defines a minimal subset of the standard

called baseline JPEG, which all JPEG-aware applications are

required to support. This baseline uses an encoding scheme

based on the Discrete Cosine Transform (DCT) to achieve

compression. DCT-based algorithms have since made their way

into various compression methods. It gives a lot of flexibility so

as to obtain a desired compression ratio (CR). DCT-based

encoding algorithms are always lossy by nature. DCT algorithms

are capable of achieving a high degree of compression with only

minimal loss of data. This scheme is effective only for

compressing continuous-tone images in which the differences

between adjacent pixels are usually small. As presented in Fig.5,

the base principle of JPEG compression for color images

considers the five main operations:

Fig.5. Base Principle Architecture of JPEG Compression

Color space conversion and down sampling: Here the image

is transformed into an optimal color space and down sample is

applied to chrominance components by averaging groups of

pixels together. DCT-2D: Apply a Discrete Cosine Transform

(DCT) to blocks of pixels, thus removing redundant image data.

BRAM

ILMB

CNTLR
DLMB

CNTLR

MICROBLAZE

MDM

UART

Sys_ACE

compact Flash

MPMC

PLB BUS

SPARTAN 6 KIT

RS-232

COMPACT

FLASH

MCB-DDR3

K S V SWARNA AND Y DAVID SOLOMON RAJU: IMPLEMENTATION OF SOFT PROCESSOR BASED SOC FOR JPEG COMPRESSION ON FPGA

4

Quantization: Quantize each block of DCT coefficients using

weighting functions optimized for the human eye. Zig-Zag

scanning: The zig-zag scanning pattern for run-length coding of

the quantized DCT coefficients was established here. The pattern

is used for luminance and for chrominance. Entropy coding:

Encode the resulting coefficients (image data) using a Huffman

variable word-length algorithm to remove redundancies in the

coefficients.

4.1 COLOR SPACE CONVERSION

The JPEG algorithm is capable of encoding images that use

any type of color space. JPEG itself encodes each component in

a color model separately, and it is completely independent of any

color-space model, such as RGB, HSI, or CMY. The best

compression ratios result if a luminance/chrominance color

space, such as YUV or YCbCr, is used. Most of the visual

information to which human eyes are most sensitive is found in

the high-frequency, gray-scale, luminance component (Y) of the

YCbCr color space. The other two chrominance components (Cb

and Cr) contain high-frequency color information to which the

human eye is less sensitive. Most of this information can

therefore be discarded. Hence it is necessary to convert RGB

color space into YCbCr color space, which is given by,





































































128

128

0

08131.041869.050000.0

50000.033126.016874.0

11400.058700.029900.0

B

G

R

C

C

Y

r

b

In comparison, the RGB, HSI, and CMY color models

spread their useful visual image information evenly across each

of their three color components, making the selective discarding

of information very difficult. All three color components would

need to be encoded at the highest quality, resulting in a poorer

compression ratio. Gray-scale images do not have a color space

as such and therefore do not require transforming.

4.2 DOWN SAMPLING

The simplest way of exploiting the eye's lesser sensitivity to

chrominance information is simply to use fewer pixels for the

chrominance channels. For example, in an image nominally

1000 × 1000 pixels, we might use a full 1000 × 1000 luminance

pixels but only 500 × 500 pixels for each chrominance

component. In this representation, each chrominance pixel

covers the same area as a 2 × 2 block of luminance pixels. We

store a total of six pixel values for each 2 × 2 block (four

luminance values, one each for the two chrominance channels),

rather than the twelve values needed if each component is

represented at full resolution. Remarkably, this 50 percent

reduction in data volume has almost no effect on the perceived

quality of most images. Equivalent savings are not possible with

conventional color models such as RGB, because in RGB each

color channel carries some luminance information and so any

loss of resolution is quite visible. The JPEG standard allows

several different choices for the sampling ratios, or relative sizes,

of the down sampled channels. The luminance channel is always

left at full resolution (1:1 sampling). Typically both

chrominance channels are down sampled 2:1 horizontally and

either 1:1 or 2:1 vertically, meaning that a chrominance pixel

covers the same area as either a 2 × 1 or a 2 × 2 block of

luminance pixels. JPEG refers to these down sampling processes

as 2h1v and 2h2v sampling, respectively. Another notation

commonly used is 4:2:2 sampling for 2h1v and 4:2:0 sampling

for 2h2v; this notation derives from television customs (color

transformation and down sampling have been in use since the

beginning of color TV transmission). 2h1v sampling is fairly

common because it corresponds to National Television

Standards Committee (NTSC) standard TV practice, but it offers

less compression than 2h2v sampling, with hardly any gain in

perceived quality.

4.3 DISCRETE COSINE TRANSFORM-2D

Discrete Cosine Transform (DCT) represents the image as

the sum of sinusoids of varying magnitude and frequencies, the

DCT calculation is fairly complex; in fact, this is the most costly

step in JPEG compression. We can discard high-frequency data

easily without losing low-frequency information. The DCT step

itself is lossless except for round off errors. DCT is used to

produce uncorrelated coefficients, allowing effective

compression as each coefficient can be treated independently

without risk of affecting compression efficiency. The human

visual system is very dependent on spatial frequencies within an

image. In fact it is more sensitive to the lower frequencies than

to the higher ones. Thus we can discard information that is not

perceptible to the human visual system and keep the information

that is important to it. The DCT-2D is computed as follows:

first, the image data is divided into non-overlapped 8 × 8 matrix

blocks; second, all of the 8 × 8 matrix blocks are transformed by

the two dimensional Discrete Cosine Transform, which is given

by the following equation.

       
   








 







 
 

 
16

12
cos

16

12
cos

4

1
7

0

7

0

vyπuxπ
x,yfvCuCu,vF

x y

 










others

w
uC

1

0
2

1

,  










others

w
vC

1

0
2

1

The result of this equation is an 8 × 8 matrix representing the

frequency domain of the pixel values in the original 8 × 8 block.

Most of the image data will be retained in only a portion of the

matrix.

4.4 QUANTIZATION

Quantization is used to allow for a better compression ratio,

the quantization is the operation that introduces information

losses in the JPEG compression process. To discard an

appropriate amount of information, the compressor divides each

DCT output value by a quantization coefficient and rounds the

result to an integer. The larger the quantization coefficient, the

more data is lost, because the actual DCT value is represented

less and less accurately. Each of the 64 positions of the DCT

output block has its own quantization coefficient, with the

higher-order terms being quantized more heavily than the low-

order terms (that is, the higher-order terms have larger

quantization coefficients). Furthermore, separate quantization

tables are employed for luminance and chrominance data, with

the chrominance data being quantized more heavily than the

luminance data. This allows JPEG to exploit further the eye's

differing sensitivity to luminance and chrominance. Hence the

Quantization is defined as division of each DCT coefficient by

ISSN ONLINE (2395-1680) ICTACT JOURNAL ON MICROELECTRONICS, FEBRUARY 2015, VOLUME: 01, ISSUE: 01

5

the corresponding quantization value S(u, v), followed by

rounding to the nearest integer, which is given by equation,

 
 
  











vuS

vuF
RoundvuF

,

,
,

F'(u, v) is also called as the coefficient of DCT, in above

equation, the coefficient of F'(0, 0) is referred as the DC

coefficient, the others are referred as the AC coefficient. The

compressor starts from a built-in table that is appropriate for a

medium-quality setting and increases or decreases the value of

each table entry in inverse proportion to the requested quality.

The complete quantization tables actually used are recorded in

the compressed file so that the decompressor will know how to

(approximately) reconstruct the DCT coefficients. Selection of

an appropriate quantization table is something of a black art.

DCT coefficient is actually multiplied by 5041 which is stored in

the proposed implementation as the corresponding quantization

value and then the least significant 16 bits are discarded by a

shift operation.

4.5 ZIG-ZAG SCANNING AND ENTROPY

CODING

Entropy coding is a special form of lossless data

compression. It involves arranging the image components in a

zigzag order employing run-length encoding (RLE) algorithm

that groups similar frequencies together, inserting length coding

zeros, and then using Huffman coding on what is left. Hence

after quantization is used, the DC coefficient and AC coefficient

of each 8 × 8 block should be read in a Zig-Zag order, as

depicted in Fig.6.

Fig.6. Zig-Zag Scanning

Huffman compression will losslessly remove the

redundancies, resulting in smaller JPEG data. The JPEG

standard provides general-purpose Huffman tables; encoders

may also choose to generate Huffman tables optimized for the

actual frequency distributions in images being encoded. Finally,

all of the DC coefficient and the AC coefficients should be

coded by Huffman code. After this, the JPEG data stream is

ready to be transmitted across a communications channel.

5. IMPLEMENTATION ON SPARTAN-6 SP605

The SP605 board enables hardware and software developers

to create or evaluate designs targeting the Spartan-6

XC6SLX45T-3FGG484 FPGA. The SP605 provides board

features common to many embedded processing systems. Some

commonly used features include: a DDR3 component memory,

sysACE-compact flash, general purpose I/O and a UART,

instruction local memory bus, data local memory bus. Additional

user desired features can be added through mezzanine cards

attached to the onboard high speed VITA-57 FPGA Mezzanine

Connector (FMC) low pin count (LPC) connector. Spartan-6

FPGA delivers an optimal balance of low risk, low cost, and low

power for cost-sensitive applications, now with 42% less power

consumption and 12% increased performance over previous

generation devices. Part of Xilinx’s All Programmable low-end

portfolio, Spartan-6 FPGAs offer advanced power management

technology, up to 150K logic cells, integrated PCI Express

blocks, advanced memory support, 250MHz DSP slices, and

3.2Gbps low-power transceivers. The SP605 is powered from a

12V source that is connected through a 6-pin (2 × 3) right angle

Mini-Fit type connector J18. The AC-to-DC power supply

included in the kit has a mating 6-pin plug.

5.1 INTERFACING SPARTAN-6 WITH PC

The Development takes place on one machine (host) and is

downloaded to the embedded system (target). For this we

connect the Spartan-6 SP605 evaluation kit to the PC using USB

cables and power on the kit. The external memory card which is

of 2GB is inserted at the slot provided on the kit. This external

memory card is used to load the input BMP image into the kit,

and stores the output JPEG image which is a compressed image.

The Fig.7 shows the interfacing of PC with Spartan-6 kit.

Fig.7. Interfacing of Spartan-6 SP605 evaluation kit with PC

After all the connections are made, go to the Xilinx tools in

SDK and click on the program FPGA. Here the elf file and the

system.bit file will be combined into download.bit file which

will then be downloaded to program the FPGA. Prior to

download, the instruction memory (FPGA Block RAM) will be

updated in the bit stream with the executable generated using the

GNU compiler. Fig.8 shows the window appeared when we

click on program FPGA. Here browse the bit stream and BMM

files which are attached and then click program.

Fig.8. Settings for programming the FPGA

http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Zigzag
http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/Huffman_coding
http://www.xilinx.com/products/silicon-devices/low-end-portolio.html
http://www.xilinx.com/products/silicon-devices/low-end-portolio.html

K S V SWARNA AND Y DAVID SOLOMON RAJU: IMPLEMENTATION OF SOFT PROCESSOR BASED SOC FOR JPEG COMPRESSION ON FPGA

6

After the step program FPGA, go to the run in SDK and then

click on run configuration in which studio connection is

selected. Here the configuration settings should be selected as

COM3 and baud rate will be 9600. After this click on apply and

then ok. Finally the message is generated in console about the

size of the BMP image i.e. image height, width, number of rows,

number of columns, JPEG header information, size of JPEG

image and the time taken for the compression of BMP image to

JPEG image. The input BMP image size and output JPEG image

size can be seen by connecting the external memory card to the

PC using the flash card. Hence the output compressed JPEG

image can be obtained.

6. RESULTS

Finally the input BMP image is compressed and the output

JPEG image is obtained using FPGA as system on chip. Here we

analysed the time taken for the compression and reduction in size.

This analysis is done by considering two input images and the

output JPEG images were obtained as the figures shown below.

(a). BMP image-1(364 KB) (b). JPEG image-1(12.5 KB)

(c). BMP image-2(1.37 MB) (d). JPEG image-2(43.4 KB)

Fig.9. Results for the image compression

We also analyzed that, if the cache memory which was

included in the design was disabled then the speed of

compression was also reduced as the image should be fetched

from external memory DDR3 SDRAM 128MB.

6.1 DESIGN UTILISATION SUMMARY

Table.1. Design Summary with Synthesis Report

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 2,549 54,576 4%

Number used as Flip 2,542

Flops

Number used as AND/OR

logics
7

Number of Slice LUTs 3,020 27,288 11%

Number used as logic 2,759 27,288 10%

Number used as Memory 228 6,408 3%

Number used as Dual Port

RAM
136

Number of occupied

Slices
1,354 6,822 19%

Number of LUT Flip Flop

pairs used
3,808

Number with an unused

Flip Flop
1,324 3,808 35%

Number with an unused

LUT
788 3,808 20%

Number of fully used

LUT-FF pairs
1,666 3,808 43%

From this design summary we analysed that the JPEG

compression design occupied a very less space on Spartan-6

FPGA i.e., only 19%. Hence we can implement many other

complex applications by utilizing the remaining space of the

Spartan-6 FPGA.

6.2 POWER ANALYSIS REPORT

Here we can analyse the power utilised by the on-chip

peripherals. They are shown in the below Fig.10 and Fig.11

clearly.

Fig.10. Power utilised by the on-chip peripherals

ISSN ONLINE (2395-1680) ICTACT JOURNAL ON MICROELECTRONICS, FEBRUARY 2015, VOLUME: 01, ISSUE: 01

7

Fig.11. Power utilised by the on-chip peripherals with

temperature

6.3 TIMING REPORT

The timing details of the application are shown in the below

Fig.12 report in detailed.

Fig.12. Timing Details

For the compression of image from BMP to JPEG on

proposed SoC it took 45sec when cache is enabled and when

cache is disabled it took about 240sec. It is operated at 83.33

MHz, consumed very less power of 0.699 watts and occupied

only 19% of available resources on the Spartan-6 SP605

evaluation board.

7. CONCLUSION AND FUTURE SCOPE

In this paper new SoC has been proposed for JPEG

compression using single soft processor i.e., single Microblaze,

implemented on Spartan-6 SP605 evaluation board using Xilinx

Platform Studio. For compression of image from BMP to JPEG

format on proposed SoC required 45sec when cache is enabled

and 240sec when cache is disabled. While compared to dual core

based PC it consumed very less power of 0.699Watts. System on

chip for JPEG occupied only 19% of available resources on the

Spartan-6 SP605 evaluation board and evaluated at a frequency of

83.33 MHz. To improve the system performance, the proposed

SoC can be extended to Multi soft processors and hardware

accelerators like FSL (fast simplex link) and DMA (direct

memory access) controllers can be included. Further, we can

generate up to 4 number of Microblaze on the FPGA based

Spartan-6 SP605 evaluation kit and the entire task can be divided

among all the processors resulting in high computation speed.

Complex applications can be implemented for the efficient

utilization of the remaining space on the Spartan-6 FPGA.

REFERENCES

[1] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The

JPEG2000 still image coding system: an overview”, IEEE

Transactions on Consumer Electronics, Vol. 46, No. 4, pp.

1103-1127, 2000.

[2] H. Anas, S. Belkouch, M. El Aakif, and N. Chabini,

“FPGA implementation of a pipelined 2D-DCT and

simplified quantization for real-time applications”,

International Conference on Multimedia Computing and

Systems, pp. 1-6, 2011.

[3] J. Ahmad, K. Raza, M. Ebrahim and U. Talha, “FPGA

based implementation of baseline JPEG decoder”,

Proceedings of the 7
th

 International Conference on

Frontiers of Information Technology, Article No. 29, pp. 1-

6, 2009.

[4] Joris van Emden, Marcel Lauwerijssen, Sunwei and

Cristina Tena, “JPEG Codec Library base don Microblaze

processor”, Available at: http://www.opencores.org/

projects.cgi/web/mb-jpeg/overview.

[5] N. Ahmed, T. Natarajan and K. R. Rao, “Discrete Cosine

Transform”, IEEE Transactions on Computers, Vol. C-23,

No. 1, pp. 90-93, 1974.

[6] R. Uma, “FPGA Implementation of 2-D DCT for JPEG

Image Compression”, International Journal of Advanced

Engineering Sciences and Technologies, Vol. 7, No. 1, pp.

001-009, 2011.

[7] Sun Wei, “A FPGA-based Soft Multiprocessor System for

JPEG Compression”, Technical University Eindhoven, the

Netherlands, 2006.

[8] V. A. M. Prakash and K. S. Gurumurthy, “A Novel VLSI

Architecture for Digital Image Compression using Discrete

Cosine Transform and Quantisation”, International

Journal of Computer Science and Network Security, Vol.

10, No. 9, pp. 175-182, 2010.

[9] Xilinx Inc., “Platform Studio and EDK”,

http://www.xilinx.com/ise/embedded_design_prod/platfor

m_studio.html

[10] Xilinx Inc., “Microblaze Microcontroller Reference Design

User Guide”, 2005.

http://www.xilinx.com/ise/embedded_design_prod/platform_studio.html
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.html

