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ABSTRACT

This paper covers not linear differential equations (LDE) with variable coefficients but
respective Riccati type equations which play a similar role to a characteristic equation
during integration of LDE with constant coefficients. We have established a certain analogy
of problems of integration of LDE in quadratures with a problem of solution to algebraic
equations with radicals [5,6,7,8]. Necessary and sufficient condition for existence of an
xe form solution to an LDE of the n-th order with variable coefficients has been found. At

the end of this paper we give specific examples. The solutions of this method can be used
in the studies of properties of thermal conductivity, hydrophobicity of composite materials,
development of new technologies multilayer asphalt and three-layer wall panel of
heterogeneous materials.
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1. INTRODUCTION

The (n  1)-th order Riccati type characteristic equation

(1)

Here )()]([ xrxrp k  means the consistent application of the operator k

times )]([ xrp  to the     function r (x).

Contains an unknown function r(x) in the n-th degree, then it has exactly n ‘roots’,
i.e. solutions, which, of course, may contain constants as particular cases. That is to say

LDE with variable coefficients has a solution of xe form [8]. It is necessary to develop
methods of finding constant roots of a characteristic equation of Riccati type.

The invariant subspace method is refined to present more unity and more diversity of exact
solutions to evolution equations. The key idea is to take subspaces of solutions to linear
ordinary differential equations as invariant subspaces that evolution equations admit. A two-
component nonlinear system of dissipative equations is analyzed to shed light on the
resulting theory, and two concrete examples are given to find invariant subspaces
associated with 2nd-order and 3rd-order linear ordinary differential equations and their
corresponding exact solutions with generalized separated variables [1,2].

Each step asks for a particular solution of a Riccati differential equation. These Riccati
equations appear to be the generalization of the classical characteristic equation for linear
time-invariant systems. As linear time-varying (LTV) systems are concerned, characteristic
equations can be obtained using the as is well known, the variational equations of nonlinear
dynamic systems are linear time-varying (LTV) by nature. In the modal solutions for these
LTV equations, the earlier introduced dynamic eigenvalues play a key role. They are closely
related to the Lyapunov- and Floquet-exponents of the corresponding nonlinear systems. In
this contribution, we present some simple examples for which analytic solutions exist. It is
also demonstrated by example how the classical linear time-invariant (LTI) solutions are
related to the equilibrium points of the general LTV solutions [3,4].

2. RESEARCH

Indeed, linear differential equations with variable coefficients
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are common and they have one (or several) solution(s) of xe form. In this case, one
particular solution to the (n  1)-th order Riccati type characteristic equation is a constant

.)(1 constxr  
Constant  can be complex. We have proved the following theorem related to the allocated
equations
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Theorem 1: For the linear differential equation (2) to have a solution of xe form, it is
necessary and sufficient if number  satisfies characteristic equation (1), meanwhile
equation (2) reduces to:
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Proof Necessity: Let’s assume that a particular solution to equation (2) is xey  , i.е.

substituting xe in (2) and dividing it by an exponent yields
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n

n  (4)
this proves the theorem.

Sufficiency: Suppose that condition (4) is satisfied and let’s multiply it term wise by xe .
As we know a formula for the k-th derivative of an exponent we see that the function satisfies

the equation xey  (2).

And now let’s find new coefficients of an equation reduced by one order, i.e. let’s transform
differential equation (2) to a form which must be proved (3). For this purpose instead

of )(0 xb in equation (2) we substitute its value from (4)
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Adding and subtracting expression
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Annihilating members yxb )(1 we export  as a sign of the first sum, then group
the second and the third sums and transform the equation to the following:
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Annihilating terms yxb )(2 we export  as a sign of the first sum, then group the second
and the third sums, we bring to a derivative sign and transform the equation to the following
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This operation is performed (n  1) times in the above-mentioned manner and yields
equation (3).

Consequence 1: For the equation (2) to have a solution of
xe form, it is necessary to

have such nonzero number as ,,...,, 121 n so that the following condition is met

.0)(...)()( 11110   constxbxbxb nn (5)

The proof is obvious. This condition is remarkable because by means of coefficients of a

differential equation it can be easily determined if it has a particular solution of
xe form.
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Consequence 2: If an algebraic equation of the n-th order

0... 01
2

2
1

1  



 brbrbrbr n

n
n

n
n

has a root , it is represented as follows

.0)]...(
)...(

...)()()[(

12
3

2
2

1
1

23
4

2
3

1
2

3
21

22
1

1






























bbbb
rbbbb
rbbrbrr

n
n

n
n

n

n
n

n
n

n

n
nn

n
n

n






(6)

It is being proved similarly to the theorem by adding and subtracting expressions, where

the degree kr is taken instead of derivative )()( xy k .

Theorem 2: If characteristic equation
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has (n  1) constant roots ,,...,, 121 n and functional root (t). Then linear differential
equation (2) becomes a non-homogeneous equation with constant coefficients
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It is quite difficult to solve functional algebraic equation (7) and especially to transform and to
extract constant roots which existence is assumed. It is therefore necessary to simplify the
process of finding roots. We assume existence of solution to LDE with variable coefficients in
xe  form. Equation (7) is true for  x(a,b).

In order to find its constant roots it is necessary to consider algebraic equation yielded from
(1), where x x1(a,b), i.e.
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which in turn has n roots and the equation itself (7) has less constant roots because of a
variability of coefficients of differential equation (2). If we want to determine a solution to
algebraic functional equation (7) from a set of constant roots it is necessary to take n
points of the interval (a, b). In fact, let’s write down equation (7) at various points for
solution 1:
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The resultant system of n equations with respect to n numbers
п
1 ,

1
1
п ,…, 1, has an

unambiguous solution if a system determinant is different from zero.

First method: If we want to determine particular solutions to LDE (2), it is necessary to find
constant roots of equation (7) after it is written down in point х1 (eg, b0 (х1) = 0 or b0 (х1) =
b1 (х1) = … = bk(х1) = 0, k = 0, 1, 2,…, n-1) suitable for calculation. From constant roots it is
necessary to choose the j which satisfies the functional equation (7), then solutions will be

functions
x

j
jey  .

Second method: First let’s write down functional algebraic equation (7) at n points x(a,b)
,  = 1,2,…,n and find roots of these equations. If a set of these numbers includes numbers
simultaneously being roots of all equations, they can be solutions to functional equation (7),

i.e. functions
x

j
jexy )( are particular solutions to LDE with variable coefficients (2).

Cases when constants rk = const exist among variable roots rj(x) of an algebraic functional
equation are indirectly covered by studies [8].

1. , 1 = b.

2. , 1=1.

3. 3. , 1= 0,5

4. .

5. , =1, =-1.

6.

=1, =-2, .
7. .

8.

.
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9.

.

3. CONCLUSION

In this way we have developed and substantiated the algebraic method for integration of one
class of LDE of the n – th order with variable coefficients in the presence of constant roots of
the (n-1)-th order Riccati characteristic equation. We have demonstrated a method of finding
constant roots of the above-mentioned equation which can be transformed to an
algebraic functional equation coefficients of which can be taken at any point or at different
point’s .Examples have been given for illustration.
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