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Abstract

The purpose of this paper is to obtain the fuzzy least-eguestimator for the two-parameter
Pareto distribution and to compare the fuzzy estimator diffrent types of estimators. The
trimmed linear moments (TL-moments), linear moments (L-nds)eand linear quantile
moments (LQ-moments) formulas will be obtained for the-parameter Pareto distribution
and the TL-moments estimator, L-moments estimator andmb@ents estimator will be
derived for the Pareto distribution. Numerical comparidogisveen the proposed method and
the existing methods are implemented. According to tbesgarisons, it is suggested that the
proposed fuzzy least-squares estimator is preferabtienalé.

Keywords: Pareto distribution, fuzzy least-squares, Tlmmas, L-moments, LQ-moments,
maximum likelihoodsimulations.

1 Introduction

The Pareto family of life distributions has been found twige good models in many empirical
studies. The Pareto distribution was first proposed as a rfardible distribution of incomes. It is

also used as a model for the distribution of city poputatiwithin a given area. The cumulative
distribution function of the Pareto distribution is defirtmdthe following:

Ej , k< x<om

i
F(x;a,k) = X

0, - < X<k,

(1-1)
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wherek >0 and @ > Qare referred to as the scale and shape parameters. Thbiliobansity
function is:

aka
o k< x<oo

f(xa,k)=<X (1-2)
0, —o< x<k.

The corresponding quantile function of the Pareto distobugis follows:

Q(u)=k(1—u)‘§, O<u<l k,a>0 (1-3)

and the corresponding” moment about zero is:

=1 g (1-4)

The expected value is:

0, a<l
=00 (aafl)' a>1 k>0. o
and the variance is:
o, al@ 2]
Var(X) = (a_lc),l((;_z)’ 452 k>0 (1-6)

Hung and Liu [1] introduced a fuzzy least-squares method timaie the parameters of the
Weibull distribution when outliers are present as a robwimation method. Numerical
comparisons between this fuzzy least-squares algoritiureaisting methods (the least-squares,
the weighted least-squares, the least absolute deviationDrapella and Kosznik [2]) are
implemented. According to these comparisons, they suggéis&dthe proposed fuzzy least-
squares algorithm is preferable when the sample slaegs.
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Hosking [3] introduced the concept of the linear momentsn@iments) and concluded that L-

moments of a probability distribution to be meaningful, require only that the distribution has a

finite mean; for standard errors of L-moments to be finite require only that the distribution has

a finite variance; and L-moments, being linear functiohthe data, are less sensitive than are
classical moments to sampling variability or measurenserdrs in the extreme data values.
Elamir and Seheult [4] introduced the trimmed linear momgrritsmoments) and concluded that

TL-moments are more resistant to outliers, TL-Momeasign zero weight to the extreme
observations, they are easy to compute and a populatidontents may be well defined where

the corresponding population L-Moments (or central mormawme} not exist.

Mudholkar and Hutson [5] introduced the concept of the lineantje moments (LQ-moments)
and concluded that LQ-moments are often easier to deaduml estimate than L-moments, LQ-
moments always exist and unique and their asymptotic distitsutire easier to obtain. Abu El-
Magd [6] obtained the TL-moments and LQ-moments estimafaise exponentiated generalized
extreme value distribution. She introduced a numerical laibn compares TL-moments
estimators with other estimation methods (L-momentsnestirs, LQ-moment estimators and the
method of moment estimators) mainly with respect to thieses and root mean squared errors.

The main aim of this paper is to introduce the fuzzstesquares method to estimate the
parameters of the Pareto distribution and introduce thendinents and LQ-moments of the
Pareto distribution. This is a relevant problem becauskeofisefulness of the Pareto distribution
in different applications especially in life testing amdiability theory. The fuzzy least-squares
estimators (FLSEs), the TL-moment estimators (TLMHBsmoments estimators (LMEs), LQ-

moment estimators (LQMEs) and the maximum likelihostineators (MLEs) for the Pareto

distribution will be obtained. A numerical simulation camgs these methods of estimation
mainly with respect to their biases and root mean squarets (RMSESs) will be obtained.

The remaining sections are as follows. In section thentaximum likelihood estimator (MLES),

the TL-moments and the LQ-moments with different specis¢sdor the Pareto distribution will

be derived. Also, the TL-moments estimators (TLMES), L-raomestimators (LMEs) and the
LQ-moments estimators (LQMES) will be obtained for tlageffo distribution. In section three, the
fuzzy least-squares estimators (FLSESs) will be obtaioethe Pareto distribution. In section four,
a numerical simulation to compare the properties of the MO0EMEs, LMEs, LQMEs and the

FLSEs of the Pareto distribution will be obtained. Finathe results and conclusion of the
numerical comparison between different estimators foP#reto distribution will be introduced.

2 Estimation of Parameters

We are interested in estimating the parameters of #netd distribution from which a random
sample comes. This paper will also consider some othaivedy new techniques for estimating
the required parameters.

2.1 Maximum Likelihood Estimators

The likelihood function, L, for a sampléxl,xz,...,xn) of the Pareto distribution has the
following form:
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n a,ka ankan
I(k,a) = = —1 k<x<oo, k,a>0 (2-1)
G
X
1=1
and taking logarithms,
L =logl(k,a) =nloga + nalogk - (a +1)Z|og>g (2-2)
i=1
Hence
oL _n L
— =—+nlogk - logx 2-3
55 =g g > logx (2-3)

i=1
And equating to zero, then the maximum estimatogrofvill be as follows:

* n
a=— (2-4)

y X
iZﬂﬂog o

A maximum likelihood estimate cannot be obtained Koby differentiating L with respect to k
since L is unbounded with respect ka But sincek is lower bound of the random variable x,

maximize L subject to the constraikt < minx . Clearly| is maximized with respect th
I

subject to the constraid < minx  when:
I
k" =minx %p-
!

which is, therefore, the maximum likelihood estimate Kar
2.2 TL-Moments and L-Moments Estimators

In this section, the trimmed linear moments (TL-momerd§)the two-parameter Pareto
distribution will be obtained. From the TL-moments with gatieed trimmed, many special
cases can be obtained such as the TL-moments with thdrifinshed and linear moments (L-
moments) for the Pareto distribution. Also, the usehef TL-moments and L-moments for
estimating the unknown parameters of the Pareto distributilbbe derived.
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TL-Moments:

Let, X;, X,,..., X, be a conceptual random sample (used to define a poputptémtity) of size

n from a continuous distribution and,le ;) < X,y <...< X, denote the corresponding

order statistics. Elamir and Seheult [4] defined {*hmr-moment/l(rs“) as follows:

lrz_l(_l)j(r '_lJE(X(r+S—jIr+S+t))’ r:l 2, 3, " S, tzo’ :L 2’ 3’ “’

(st) —
A =
Iri=o J

(2-6)

where s, t =0, 1, 2,.... The TL-moments reduce to L-mom@ets Hosking [3]) when s =t = 0.

They considered the symmetric caseX t ). Hosking [7]obthsome theoretical results for the
TL-moments with generalized trimmed for s and t (symimetise € =t ) and asymmetric case (
S # 1)) and obtained the TL-moments coefficient of variationQ¥, the TL-skewness and the

TL-kurtosis as follows:

T(s,t) =A(zs,t)//1§s,t) ' Tés,t) =A(3$'t)//1(25't) ' and Té(ls,t) =/1515't)/A(28't). (2-7)

Maillet and Médecin [8] introduced the relation between th&L-moments and the first TL-
moments with generalized trimmed for s and t (symmetsise (S=t) and asymmetric case

(S#1)). Indeed, it is sufficient to compute TL-moments of ordee to obtain all TL-moments.
They obtained the followind"rTL-moments:

r-1 . r_l . .
A :%Z(—l)( j JAg”S"'l””, r=123., st=0123.,@28)
i=0

where s, t =0, 1, 2,.... This relation is very impottand helped to enable easier calculations for
the f" TL-moments with any trimmed and L-moments as particudaes of the't TL-moments
with generalized trimmed for s and t. Here, we obtaia th TL-moments for the Pareto

distribution fora’(t + ] +1) 21 as follows:

kS, nfr-1 (r +s+t)! L
ASY == —11[ _ J _ —B(r+s-j,t+j+1-Ya),
Z( ) jo)(r+s—j-Dit+j)! ( Y ) (2-9)

r=1,23., s5t=0123., ,ka>0 aft+j+1)=21

r

According to the above relation (2-9), the first four Mloments with generalized trimmed for s
andt(s,t=0,1, 2, ...,) of the Pareto distributior!
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ot S+t +1)! 1
Ai'):kWB(Sﬂ t+1—5j,a(t+1)21 (2-10)

S0 :k{(s+t+2)!8(s+ 2, t+1—1)—(5+t+2)!8(s+l t+2—1ﬂ,a(t+2)21
2| (s+1)!(1)! a) (9it+1)! a

(2-11)

3 [—(S+t+3)!8(s+3, t+1—£j—2—(3+t+3)! B(s+ 2, t+2—1j
3| (s+2)!(1)! a (s+D)!(t +1)! a

+w3(s+l t+3—lﬂ,a(t+3)21

0 - K

(9)!(t +2)! a
(2-12)

and

o :E{—(S+t+4)!8(s+4, t+1—1j—3—(3+t+4)! B(s+3, t+2—1j
4| (s+3)!(t)! a (s+2)!(t +1)! a

yg (SHUHA) B[s+ 2 t+3—1j——(s+t+4)!8(s+1 t+4—lﬂ,
(s+D)!(t+2)! a) (9)(t+3)! a

alt+4)=1
(2-13)

From these results we can obtain the TL- coefficiefnﬂamiationr(s’t) , TL-skewnesEés’t) and

TL-kurtosis Tff't) for the Pareto distribution.
Special Cases:
a) The TL-Moments with the first trimme8 £t = 1):

By substitutingS=1 , and =1 in equations (2-10), (2-11), (2-12) &ti3), the first four TL-
moments with the first trimmed of the Pareto distribuitivill be:

AW = 6kB( 2,2—1} 2a =1 (2-14)
! a
W _ 1 1
AY =6k B| 32-=|-B| 23-=||, 3a=1 (2-15)
a a
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A9 = &{B( 42— lj - 35( 33- lj + B( 24— lﬂ da 21 (2-16)
3 a a a
And
AD = %{3(5’2_EJ _63(4,3—1j + 68(3,4—1j - B(Z,S-lﬂ, oa =1
2 a a a a
(2-17)

From these results we can obtain the TL- coefficient oiatian 7Y

1)

, TL-skewnesSs(ll) and

TL-kurtosis Tf’ with the first trimmed for the Paretaidibution.

b) The L-Moments$ =t =0):

By substitutings=0 , andt =0 in the"rTL-moments for the Pareto distribution, we can
obtain the  L-moments for the Pareto distribution as follows:

kG -y o _ |
P 1)£ j J(r—j—l)!(j)!B(r ji+1-ya) =12 .. a(j+1)>1
(2-18)

Also, we can obtain the first four L-moments for thed®ardistribution by substituting = 0

andt =0 in equations (2-10), (2-11), (2-12) and (2-13), ageaial case from the TL-moments
for the Pareto distribution. The first four L-momefiasthe Pareto distribution will be:

/llsz(l,l—lj, az=1 (2-19)
a
e(2-7)-ele-7)
A, =kl Bl 21-—|-B|12-— ||, 2a=1 (2-20)
a a
A3:k{B(B,l—lj—m(z,z—lj+B(13—1H, a=1 (2-21)
a a a
and
)I4:k[8(4,1—1j—9B[3,2—lj+98[2,3—£j—B[l4—lﬂ, da=1 (2-22)
a a a a
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and from the first four L-moments, we can obtain the L-coeffit of variation7 = A,/A,, L-
skewnesg, = A, /A, and L-kurtosist, = A, /A, for the Pareto distribution.

TL-Moments Estimators:

The TL-moment estimators (TLMES) for the unknown pararseté the Pareto distribution can
be obtained by equating the first two population TL-momeVIﬁ§’tt,A(ZS‘t)) to the corresponding

sample TL-momentsIfS’t), Iés‘t)) for the Pareto distribution. Hosking [7] obtained thist ftwo
sample TL-moments to be:

1 &(i-1yn-]
|59 = . 2-23
S 0 U T

s+t+1

RPN VB S R

S+t+2

and

Clearly, sample TL-moments reduce to sample L-moments whet = 0. Now, we can obtain

the TL-moment estimators (TLMEs)Q and k ) of the Pareto distribution by solving the
following two equations:

.MMB( . 1_3) _
' (s)!(t)! st t+ G/ (2-25)
and

k 2{(Sﬂ)!(t)!B St e T oy ST 2T )| @29

The equations (2-25) and (2-26) are valid for any trichmeand t and. To solve these equations,
determine the value of trimmed or the value of s afditthe resulting equations are difficult to
solve (because the beta function is a functiona). So, these equations will be solved

numerically. As a special case, by putting s = t =h&, TLMEs @ and k for the TL-moments
with the first trimmedand for s = t = 0, the L-momeessimates (LMEs) can be obtained for the
Pareto distribution.

2074



British Journal of Mathematics & Computer Scien&43, 2067-2088, 2014

L-Moments Estimators:

Now, we will introduce the L-moment estimators (LMES) fthe Pareto distribution. If
X(In) < X(z:n) <. X ) denotes the order sample, we have the first and secondeshmpl

(nin
moments as:
18
Il = Z Xy » (2-27)
n=
And
=2 Zn:(i ~ DXy ~ 1. (2-28)
2 n(n _1) = i:n) 1

Equating the first two population L-moments A,  to the esponding sample L-momentts
[, , we will obtain:

l, = k**B(l,l— L J (2-29)
a

l, = k“[B( 21- 1 j - B(LZ— 1 ﬂ (2-30)
a a

Then, the LMEs ofd and k , saya'** and k**, respectively, can be obtained by solving the
equations for (2-29) and (2-30).

and

2.3 LQ-Moments Estimators

In this section, the linear quantile moments (LQ-momenfs)the two-parameter Pareto
distribution will be obtained with three different case®(ian, trimean and Gastwirth). Also, the
use of the LQ-moments with three different cases famesing the unknown parameters of the
Pareto distribution will be derived.

LO-Moments:

Let, X;, X,,...,X, be a random sample from a continuous distribution fun&tifX) with

quantile function Qy (U) = Fy"(U) and letX gy < X gy ... Xy denote the order
statistics. Mudholkar and Hutson [5] defined tfe population linear quantile moments (LQ-
moments){, of X, as:
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_18, Tl _
Zr _on(_l) J Tp,d(x(r—j:r))l r _11 2! 31 (2'31)
j=

where0<d <1/2, 0< p<Y/2,and

Toa(X-jn) = PQy, , (A)+@-2p)Q,  (1/2)+pQ,  (@-d). (2-32)

r=jr) r=jr)

The linear combinatiorT,  is a 'quick’ measure of the location of the samplingibligton of

the order statisticX y- The candidates for , ; include the function generating the common

(r=jir
quick estimators by using the mediap € 0.5, d = 05), the trimean p=1/4, d =1/4)
and the Gastwirth p= 0.3, d =1/3). They introduced the LQ-skewness and LQ-kurtosis for

the population by/7; = ZS/ZZ and ], = 54/52 respectively; it may be used for identifying

the population and estimating the parameters. The LQ-skaswakes the value of zero for
symmetrical distributions.

The LQ-moments with the three cases (median, trimearGastwirth) will be obtained for the
Pareto distribution as follows:

(1) Using the median (p = 0.5, d = 0.5), and the quantile function for the Pareto distribution,
the first four LQ-moments for the Pareto distributionl Wé:

& =kQ (05)] (2-33)
&= 51Q 0709 -Q (0293] (239
£,=51Q 0799-2Q (05)+Q (0209 (2.3
and
£,=4Q (0849 -3 (0614 +3Q 0389 -Q (0159} (239
where

Qu)=(1- u)%, O<u<l a>0. (2-37)
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(2) Using the trimean ( p:]/4, d :1/4), the first four LQ-moments for the Pareto
distribution will be obtained as follows:

&= 029+2Q (09+Q (©075] @38
&= %[Qo (0.866) +2Q, (0.707) - 2Q (0.293 -Q (0.134)] (2-39)

3= L[Qo (0.909 +2Q, (0.794 - 2Q, (0.674 +Q, (0.630 - 4Q. (05)
12 (2-40)

+Q (0.370-2Q (0.326) + 2Q, (0.206) + Q. (0.091),

and

&, = l—kG [QO (0.931 +2Q, (0.841) —3Q, (0.757) +Q, (0.707) - 6Q, (0.614) + 3Q, (0.544)

—~3Q (0.456) +6Q, (0.386)- Q, (0.293 +3Q (0.243 - 2Q (0.159 - Q, (0.069)]
(2-41)

(3) Using the Gastwirth ( p= 0.3, d =1/3), the first four LQ-moments for the Pareto
distribution will be obtained as follows:

g = 1_kc [3Q. (0:333 +4Q. (05) +3Q. (0.667)] (2-42)

& = % [3Q. (0.816) +4Q, (0.707) +3Q. (0.577) - 3Q, (0.423 - 4Q, (0.293 - 3Q, (0.184)],
(2-43)

& = 3_k0 [3Q. (0.874) +4Q, (0.794 +3Q, (0.693 - 6Q. (0.613 —8Q, (05)

(2-44)
~6Q,(0.387) +3Q (0.307) +4Q. (0.206) +3Q, (0.126)]

and
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&, = 47"0 [3Q, (0.904 +4Q, (0.841) +3Q, (0.760) - 9Q, (0.709 —12Q (0.614) +9Q, (0514

~9Q (0.486) +12Q, (0.386)+9Q (0.297) - 3Q (0.240) -4Q (0.159 —3Q, (0.096)]
(2-45)

Then, the LQ-skewness and the LQ-kurtosis for each(caseian, trimean and Gastwirth) for the
Pareto distribution can be obtained by using the res$oitshe first four LQ-moments for the
Pareto distribution.

L O-Moments Estimators:

To estimate the unknown parametérsand k for the Pareto distribution using the LQ-moments,
the first and the second sample LQ-moments for the Pargtibdiion will be obtained by using
the following definition of the"t sample LQ-moments:

R r-1 (r=1)_
¢ =r_12(‘1)]( ] er’d(x(r-kr))v r=12,.. (2-46)
j=0
where

Foa(Xoojny) = PQy_, (d)+@A-2p)Q,  W2)+pQy_ (A-d). (2-47)

Tod (X(r_m) is the quick estimator of the location for the distribuX, _;., in a random

sample of sizer, anfiiX (.) denotes the linear interpolation estimaQ(u) given by:
Qx (U) = = &) Xjrupn + EX s, (2-48)

whereg = n'u—[n'u], N'=n+1 andN'u] denote the integral part ¢f'u. Then, the first
two sample LQ-moments will be:

G=t,0(X ), (2-49)

and

s 1. -
Zz = E [Tp,d (X (2:2)) - Tp,d (X 12) )] (2-50)

By equating the first two population LQ-moments for the thdiierent cases (median, trimean,
and Gastwirth) with the first two sample LQ-moments @2-4nd (2-50) for the Pareto
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distribution, the LQ-moments estimators for the two umkm@arameters will be obtained for
each case.

Now, the unknown paramete@ and kK for the Pareto distribution using the LQ-moments with
the median case (LQMEm) will be estimated. Sincefitskesample LQ-momem‘él is a function

of @ andk and the second sample LQ-momerift§ is a function als@ eind k , then by

numerically solving the equations faf, ~adj  to obtain tQerhoments estimate§ and K,
then:

£=K3 ©05) (2-51)
and

. Rl R

&= 1@ 0707-G 0293) @5
where

Q.(u) = (1- U)i (2-53)

For the trimean case the LQ-moments estimates (LQMiEt;ndIz will be obtained by solving
the following two equations:

& = ;[Q, (025)+2Q, (05) +Q, (0.75)], (2-54)
and
&, = g[éo (0.866) + 2Q. (0.707) - 2Q, (0.293 - Q, (0.134)], (2-55)

and, for the Gastwirth case the LQ-moments estimat@$/IEg) a andlz will be obtained by
solving the following two equations:

3 =1—kc 39 (0333 + 40, (05) +39 (0667)] (2-56)

and
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& = % [3Q (0.816) +4Q (0.707) + 30, (0.577) - 3Q, (0.423 - 4Q, (0.293 - 3Q (0.184)
(2-57)

3 Fuzzy Least-Squares M ethod

In this section, the fuzzy least-squares method will be tisegbtain the fuzzy least-squares
estimators for the two-parameter Pareto distribution. Hamgy Liu [1] obtained the fuzzy least-
squares estimators for the two-parameter Weibull digioh when outliers are present as a robust
estimation method. For that purpose, a cluster-wise fleast-squares algorithm with a noise
cluster is used. They introduced a numerical comparisetaebn this fuzzy least-squares
algorithm and existing methods (the least-squares, thehteeideast-squares, the least absolute
deviation and Drapella and Kosznik [2]). According tesl comparisons, they suggested that the
proposed fuzzy least-squares algorithm is preferable wreesample size is large.

Quandt [9] obtained the estimators for the two-paramteeto distribution by using different

methods of estimation. Also, he introduced a numericahpesison between these different
estimators for the Pareto distribution. He introducesl last-squares estimators for the two-
parameter Pareto distribution by using equation (1-1jotned the following:

1—F(x;a,k)=(5j , k<x<o, k,a>0 (3-1)
X

Taking logarithms of both sides he obtained:
k
In(l-F(xa.k))=aln| = |, k<x<o, k,a>0 (3-2)
X
and
In(l-F(xa,k))=alnk-alnx, k<x<w, ka>0 (3-3)

Let Xg <X <....<X; be the order observations in a random sample of sizeom fr

F(X;a,K). Then the equation (3-3) gives:

In(l— F(x(i);a,k))=alnk—aln Xy, 1=12,..n (3-4)
The parameters@ and K may be estimated by least squares from sample estinuite

F(X(i);a’, k), using, as dependent variable, the logarithm of 1 ntimsumulative distribution
of the sample. The least squares estimatda® olill be:
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il(t. -0, - (3-5)
> -0?

wheret; =InX;, £=3%"t,/n and y=Yy/n’
i=1 i=1

jS}Y

The corresponding least squares estimatok ahay be obtained by substituting into (3-4) the
arithmetic mean value of the dependent and independent esaiabig with the estimata? and

solving for k . The least square estimatir of will be:

k = explf +y/a) (3-6)
Estimators of the parameters obtained by least squatsods have been shown to be consistent
(Quandt [9]).

To obtain the fuzzy least-squares estimators of the pavameter Pareto distribution, the
dependent variable will be the logarithm of 1 minus ¢benulative distribution of the sample
from equation (3-4). It is common practice of the Ramgotting technique to use the following
estimator for the ordinate of thf& empirical point:

y, =Infl-F) 37

wherelfi is a point estimator oF(X(i);a, K) . Many estimators can be used, for example, the
mean rank estimatorlfi =i/(n+1), the median rank estimato|£i =(-03)/(n+04),
F=(-12/n and F =(i-3/8)/(n+1/4). In this paper, the mean rank estimator
Ifi = i/(n +1) will be used to represer¥; to obtain the fuzzy least-squares estimators.
Regression analysis is used into the model-fitting of mlasi®ns. The heterogeneous problem in
the regression model is usually difficult to be handled. tBatheterogeneity of observations is
commonly presented in practice. Hung and Liu [1] firsstgdted the observations and then use

their class memberships as the weights in the weighteddgaates estimation to overcome the
heterogeneous problem in the regression model fitting.

Based on this kind of idea, Yang and Ko [10] proposed the cluéte fuzzy regression analysis
which embeds fuzzy clustering into fuzzy regression modehdittit each step in the iterations.
The fuzzy cluster is used to overcome the heterogeneobtepr in the fuzzy regression model.

Given a data sdf{ X;, ¥;), ] =1,...,n} , suppose these observations are heterogeneous and come

from C clusters. Of course, i€ =1 then the observations are homogeneous. Now, we waitt to f
a data set to the cluster-wise fuzzy linear regressionImode

Y =ag ta; X, i=1..c j=1..,n (3-8)
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whered,; and &; [IR are unknown coefficients. Let the membership funciign[][01] with

Ziczl,uij =1forall j=1...,n. The notation/s; is used to represent the membership of the j

data point(Xj ) yj) belonging to thel class. After embedding/; to the objective function, one
has a cluster-wise objective function:

I(u,ag,) =) > w'd* (3, +ayX, y;) = 2 D (Y, —ay —aX)?  (3-9)

i=L j=1 i=1 j=1

where 1 = (£ )+ 3o = (3gy, gps-180c) + & = (4, @5,.,8) and M= 1 is the index of
fuzziness. Then, the corresponding weighted fuzzy leastegjyazioblem is to minimize the
objective function. Now, leL.(1/,a,,a,,4) be the Lagrangian function with:

Lty 22 = It 2) + 3 A, (34 D, (3-10)

where A = (A, 4,,...,4,). Set the first derivatives of L with respect to allgraeters equal to

zero. The following necessary conditions for a minimigg; a,,a,) of J are obtained. That is,

DUHTX DY -Zlﬂi}“x,- y,-Zlui}"
i i= i=

= - (3-11)
a, == - ! 7 . - ,i=1...c
(ZMTXJ — DM X
j=1 =1 j=1
;M}"yi -aﬁ;ﬂi}"xj - (3.12)
a,; = - ,i=1...C
Z,Uijm
j=1
and
1
c d2 44 Ly (m-1)
iuij :[z ( - (aOI a1|XJ yJ) = , i:l...,C;, j:l---,n- (3-13)
= (0(ay, +a,%,.v;)

Therefore, a cluster-wise FLS algorithm for computiagminimizer of J(,8,,8,) has

iterations through the necessary conditions (3-11)-(3-13).

A noise cluster is a cluster which contains the ngisiats or outliers. The concept of a noise
cluster proposed by Dave [11] is that all of the pointsheyual prior opportunity of belonging to
a noise cluster. Dave [11] defined a noise prototypeollews: A pointv is called a noise

prototype if the distancel(X;,V)  between the data painandv are all equal to a constadk
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,ie. d(x;,V)=0dfor J =1...,n. Hung and Liu [1] applied the noise cluster condepthe

cluster-wise FLS. Assuming that the clus(er+ 1) is a noise cluster. Then the objective function
becomes:

c+l n c+l
3°(u,8,8,) = ZZu”’dvachuu 1L j=1 (3-14)
i=1 j=1
and
02 = d(as +a,%.y,)=(y, 2y —a,x, f. i =Lec j=1..n, (3.15)
r Ji=c+L j=1..n,
Where

(3-16)

yis a constant. Thus, when c=1, the algorithm witibee cluster is iterated with the necessary
conditions (3-11) and (3-12) and also with

ea (g2 )
s (a2)

- , 1=1...c+L, j=1...n (3-17)
p=t (dij)” (ml) J

Thus, when c=1, the algorithm becomes a robust F§&ithm for cluster-wise fuzzy regression
modal Y; = a,, +ay,X;, J =1...,n. This is because outliers will be dumped to aaaisister

according to the weight of its membership. Thisodtgm is used to estimate the Pareto
parameters as follows. In general, we chog6& 1 and the index of fuzzinessn=2 (Pal and
Bezdek [12] suggested that the best choice for 2).i8low, let

=In(1— Ifi), X; =Int(j), j=1...n (3-18)

In the cluster-wise fuzzy regression modgl = a,, +a,,X;, j =1...,n. then the fuzzy least-

squares estimates f and k will be:

G =-da,andk = exp[ am] (3-19)
a

Based on these necessary conditions, we can conteufollowing algorithm to obtain the fuzzy

least-squares estimators (FLSES) for the two-patemiareto distribution.
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The suggested algorithm to obtain the FLSES:

(1) —Take the valuey’ =1, m= 2 andc =1. Choose an initiaf,,” , 4, and ,Ulj(o) :
(2) - Calculated,,” and én(l) by using 44 © and (3-11) and (3-12).
3) — Calculateys, by using (3-13).

/ulj

4 - Compare,ulj(o) to ,ulj(l) , using convenient norm :

NI

“’ulj Y- Hy © “ = (Zn: (,Ul,- ©- My © )ZJ 28)

If ,ulj(l) is sufficient close tqulj(o) , i.e. H,ulj(l) — (O)H <107, then stop, otherwise set

=, 8" =8, 8, 28,7 andgotostep @)
4 A Simulation Study of the Pareto Distribution

A simulation study will be introduced to comparetvibgen the properties of seven different
estimators: fuzzy least square estimators (FLSEs)imum likelihood estimators (MLEs), L-
moment estimators (LMEs), TL-moment estimators (H3$)Yl and the three LQ-moment
estimators {LQMEm (median), LQMEt (trimean), LQME(Gastwirth)} for the unknown
parameters of the Pareto distribution. Comparisdhbg mainly based on their biases and root
mean squared errors (RMSEs). The simulation exgarisnare performed using the Mathcad (14)
software, different sample sizes 10, 30, 50 and 46d different values for the shape parameter
a =1, 2 and 3andfor k =3. For each combination of the sample size and thapes

parameters values, the experiment will be reped@@00 times. In each experiment, the biases
and RMSEs for the estimates @f and k will be obtained and listed in Tables 1 and 2.

5 Resaults and Conclusion

It is observed in Table 1 that the fuzzy least sgestimators (FLSES) are less unbiased and the
minimum RMSEs for all different values @ and for n = 10 and 30 are considered here except

for o = 3. As far as biases are concerned, the LQMEs aseuldlsiased forr = 3 all times and
the minimum RMSEs. For n = 50 and 100, the MLEsthee minimum RMSEs fora = 2, 3

with the LQMES are less unbiased, but for=1, the FLSEs are less unbiased and the minimum
RMSEs for all values of n. Also, it is observedTiable 1 that most of the estimators usually

overestimate@ all times. The RMSEs of the LQMEs and the MLEs als quite close to the
FLSEs.
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Table 1. Biases and RM SEs of the parameter estimatorsfor the MLEs, LMESTLMEs, LQMEsand FL SEsfor different types of
momentsfor @ :

n=10 MLE LME TLME LQMEm LQMEt LQMEg FLSE
a-=1 1.2563¢ 1.8039 1.4461: 1.1168 0.9992: 1.0559( 0.21639
(1.40917) (1.93480) (1.69085) (1.52290) (1.17339) 1.24459) (0.46131)*
a=2 1.6982: 2.0732¢ 1.7742( 1.3538: 1.07711 1.2117: 1.1400
(2.04521 (2.39169 (2.29999 (2.21156 (1.50236 (1.76698 (1.41211y
a=3 2.7300! 2.3501 2.0414 1.5933( 1.14684 1.3691¢ 2.0697:
(2.69599 (2.92424 (2.87359 (2.94183 (1.90082) (2.28805 (2.39664
n=30 MLE LME TLME LQMEm LQMEt LQMEg FLSE
a=1 0.9237: 1.6569" 1.2388t 0.9838! 1.0491¢ 0.9915! 0.24242
(0.96261 (1.68817 (1.29095 (1.11457 (1.11125 (1.06885 (0.32333)
a=2 1.1923! 1.8055: 1.3982: 1.1321 1.1515 1.10507: 1.1868(
(1.29152 (1.89369 (1.52438 (1.42957 (1.31376 (1.29780 (1.25968)
a=3 1.4083 2.3501 1.5599" 1.2829° 1.2553 1.22024 2.1339.
(1.58137 (2.92424 (1.78907 (1.77605 (1.53931) (1.55726 (2.22695
n=50 MLE LME TLME LQMEm LQMEt LQMEg FLSE
a=1 0.8656" 1.6315 1.2140( 0.9460€ 1.0488( 0.9813( 0.25485
(0.88795 (1.64913 (1.24471 (1.02127 (1.08552 (1.02501 (0.30403)
a=2 1.0948¢ 1.7666: 1.3494! 1.06907 1.1476: 1.0862: 1.2197:
(1.15224y (1.81790 (1.42408 (1.24609 (1.24283 (1.19951 (1.26756
a=3 1.2837: 1.8929( 1.4765; 1.1945( 1.25811 1.19275 2.1711¢
(1.38782) (1.99058 (1.61330 (1.49594 (1.42986 (1.39479 (2.22641
n =100 MLE LME TLME LQMEm LQMEt LQMEg FLSE
a=1 0.8260 1.6173 1.1981! 0.9221; 1.0375( 0.9725¢ 0.26809
(0.83677 (1.62603 (1.21404 (0.€5965 (1.05606 (0.99493 (0.29261Y
a=2 1.03519 1.72703 1.31055 1.03041* 1.13937 1.07204 24481
(1.06462) (1.75143 (1.34788 (1.12012 (1.18672 (1.12909 (1.26678
a=3 1.2002! 1.8417 1.4298; 1.14120 1.2323( 1.1731 2.2119
(1.25260) (1.88968 (1.49723 (1.29692 (1.32158 (1.27611 (2.23919

The root mean squared errors (RMSEs) are reporndatackets in the table.
*: The least biased value or the least root meauased errors
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Table 2. Biases and RM SEs of the parameter estimatorsfor the MLEs, LMESTLMEs, LQMEsand FL SEsfor different types of
moments for k:

n=10 MLE LME TLME LQMEm LQMEt LQMEg FLSE
a=1 -1.80115 -1.70038 -1.73400 -1.73694 -1.74983 0337 -0.24561*
(1.80398) (1.70775) (1.74714) (1.75638) (1.76045) 1.74986) (0.75647)*
a=2 -1.85092 -1.82962 -1.84181 -1.84976 -1.85816 -19849 -0.15226*
(1.85161) (1.83147) (1.84518) (1.85529) (1.86113) 1.85344) (0.40352)
a=3 -1.86798 -1.86412 -1.87142 -1.87754 -1.88507 -7877 -0.09612*
(1.86828) (1.86494) (1.87319) (1.88021) (1.88645) 1.87945) (0.25977)*
n=30 MLE LME TLME LOMEm LOMEt LOMEq FLSE
a=1 -1.8681¢ -1.7081¢ -1.7422¢ -1.7482( -1.7395 -1.7487( -0.11867:
(1.86848) (1.71033) (1.74684) (1.75559) (1.74357) 1.7%317) (0.41393)
=2 -1.88483 -1.83267 -1.84607 -1.85164 -1.85014 -15852 -0.05968*
(1.88491 (1.83322 (1.84721 (1.85373 (1.85120 (1.85375 (0.20841)
a=3 -1.89032 -1.86412 -1.87341 -1.87720 -1.87585 -0878 -0.04524*
(1.89035 (1.86494 (1.87406 (1.87821 (1.87636 (1.87866 (0.14170)
n =50 MLE LME TLME LQMEm LQMEt LQMEg FLSE
a=1 -1.8816; -1.7076: -1.7411. -1.7508! -1.7420¢ -1.7481! -0.09463
(1.88172) (1.70896) (1.74457) (1.75522) (1.74447) 1.75082) (0.32712)
a=2 -1.8913; -1.8324; -1.8460 -1.8522; -1.8487 -1.8514; -0.04702:
(1.89136) (1.83274) (1.84696) (1.85345) (1.84941) 1.85215) (0.17472)*
a=3 -1.8948( -1.8663( -1.8743 -1.8772 -1.8756 -1.8770( -0.03429
(1.89481) (1.86645) (1.87489) (1.87786) (1.87599) 1.87735) (0.10980)*
n =100 MLE LME TLME LOMEm LOMEt LOMEg FLSE
a=1 -1.8911¢ -1.7080( -1.7404¢ -1.7542 -1.7446! -1.7501 -0.06268
(1.89122) (1.70866) (1.74260) (1.75654) (1.74587) 1.75149) (0.23357)
a=2 -1.89644 -1.83338 -1.84713 -1.85331 -1.84931 -18851 -0.03273*
(1.83354 (1.83354 (1.84782 (1.85395 (1.84964 (1.85222 (0.11546)
a=3 -1.89799 -1.86638 -1.87382 -1.87774 -1.87612 0877 -0.02111*
(1.89799 (1.86645 (1.87413 (1.87805 (1.87627 (1.87723 (0.07626)

The root mean squared errors (RMSEs) are reporndarackets in the table.
*: The least biased value or the least root meauased errors
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Comparing all the methods, we conclude that forplw@ameterd , the FLSEs should be used for
estimating & especially for the small sample size. Now consither estimation ofk . In this
case, it is observed in Table 2 that most of thEnasors usually underestimate all times. As
far as biases are concerned, the FLSEs are legssadiand the minimum RMSEs for all different
values of@ and n. Comparing all the methods, we concludefthahe parametek , the FLSEs
should be used for estimatirlg.
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