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Abstract 
 

The purpose of this paper is to obtain the fuzzy least-squares estimator for the two-parameter 
Pareto distribution and to compare the fuzzy estimator with different types of estimators. The 
trimmed linear moments (TL-moments), linear moments (L-moments) and linear quantile 
moments (LQ-moments) formulas will be obtained for the two-parameter Pareto distribution 
and the TL-moments estimator, L-moments estimator and LQ-moments estimator will be 
derived for the Pareto distribution. Numerical comparisons between the proposed method and 
the existing methods are implemented. According to these comparisons, it is suggested that the 
proposed fuzzy least-squares estimator is preferable all times. 
 

Keywords: Pareto distribution, fuzzy least-squares, TL-moments, L-moments, LQ-moments, 
maximum likelihood, simulations. 

 

1 Introduction 
 
The Pareto family of life distributions has been found to provide good models in many empirical 
studies. The Pareto distribution was first proposed as a model for the distribution of incomes. It is 
also used as a model for the distribution of city populations within a given area. The cumulative 
distribution function of the Pareto distribution is defined by the following: 
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where 0>k  and 0>α are referred to as the scale and shape parameters. The probability density 
function is: 
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The corresponding quantile function of the Pareto distribution as follows: 
 

                                    (1-3) 

 
and the corresponding  rth moment about zero is: 
 

                          (1-4) 

 
The expected value is: 
 

                                        (1-5) 

 
and the variance is: 
 

   (1-6) 

 
Hung and Liu [1] introduced a fuzzy least-squares method to estimate the parameters of the 
Weibull distribution when outliers are present as a robust estimation method. Numerical 
comparisons between this fuzzy least-squares algorithm and existing methods (the least-squares, 
the weighted least-squares, the least absolute deviation and Drapella and Kosznik [2]) are 
implemented. According to these comparisons, they suggested that the proposed fuzzy least-
squares algorithm is preferable when the sample size is large. 
 

( ) 0,,10,1)(
1

><<−= − αα kuukuQ

( )








>>
−

≤∞
=

.0,,

,

kr
r

k

r

rr

α
α
α

α
µ

( )







>>
−

≤∞
=

.0,1,
1

1,
)(

k
kXE

α
α
α

α

( ) ( )








>>
−−

∈∞
=

.0,2,
21

]2,1(,

)(

2

2

k
kXVar

α
αα

α

α



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(14), 2067-2088, 2014 
 
 

2069 
 

Hosking [3] introduced the concept of the linear moments (L-moments) and concluded that L-
moments of a probability distribution to be meaningful, we require only that the distribution has a 
finite mean; for standard errors of L-moments to be finite, we require only that the distribution has 
a finite variance; and L-moments, being linear functions of the data, are less sensitive than are 
classical moments to sampling variability or measurement errors in the extreme data values. 
Elamir and Seheult [4] introduced the trimmed linear moments (TL-moments) and concluded that 
TL-moments are more resistant to outliers, TL-Moments assign zero weight to the extreme 
observations, they are easy to compute and a population TL-Moments may be well defined where 
the corresponding population L-Moments (or central moment) does not exist. 
 
Mudholkar and Hutson [5] introduced the concept of the linear quantile moments (LQ-moments) 
and concluded that LQ-moments are often easier to evaluate and estimate than L-moments, LQ-
moments always exist and unique and their asymptotic distributions are easier to obtain. Abu El-
Magd [6] obtained the TL-moments and LQ-moments estimators of the exponentiated generalized 
extreme value distribution. She introduced a numerical simulation compares TL-moments 
estimators with other estimation methods (L-moments estimators, LQ-moment estimators and the 
method of moment estimators) mainly with respect to their biases and root mean squared errors.  
 
The main aim of this paper is to introduce the fuzzy least-squares method to estimate the 
parameters of the Pareto distribution and introduce the TL-moments and LQ-moments of the 
Pareto distribution. This is a relevant problem because of the usefulness of the Pareto distribution 
in different applications especially in life testing and reliability theory. The fuzzy least-squares 
estimators (FLSEs), the TL-moment estimators (TLMEs), L-moments estimators (LMEs), LQ-
moment estimators (LQMEs) and the maximum likelihood estimators (MLEs) for the Pareto 
distribution will be obtained. A numerical simulation compares these methods of estimation 
mainly with respect to their biases and root mean squared errors (RMSEs) will be obtained. 
 
The remaining sections are as follows. In section two, the maximum likelihood estimator (MLEs), 
the TL-moments and the LQ-moments with different special cases for the Pareto distribution will 
be derived. Also, the TL-moments estimators (TLMEs), L-moment estimators (LMEs) and the 
LQ-moments estimators (LQMEs) will be obtained for the Pareto distribution. In section three, the 
fuzzy least-squares estimators (FLSEs) will be obtained for the Pareto distribution. In section four, 
a numerical simulation to compare the properties of the MLEs, TLMEs, LMEs, LQMEs and the 
FLSEs of the Pareto distribution will be obtained. Finally, the results and conclusion of the 
numerical comparison between different estimators for the Pareto distribution will be introduced.  
 

2 Estimation of Parameters 
 
We are interested in estimating the parameters of the Pareto distribution from which a random 
sample comes. This paper will also consider some other relatively new techniques for estimating 
the required parameters. 
 
2.1 Maximum Likelihood Estimators 
 
The likelihood function, L, for a sample ),...,,( 21 nxxx  of the Pareto distribution has the 

following form:  
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               (2-1) 

 
and taking logarithms, 
 

                       (2-2) 

 
Hence  
 

                                                                    (2-3) 

 
And equating to zero, then the maximum estimator of α  will be as follows: 
 

                                                                                            (2-4) 

 
A maximum likelihood estimate cannot be obtained for k  by differentiating L with respect to k 

since L is unbounded with respect to k . But since k  is lower bound of the random variable x, 

maximize L subject to the constraint i
i

xk min* ≤ . Clearly l  is maximized with respect to k  

subject to the constraint  when: 

 

                                                                                                   (2-5) 

 

which is, therefore, the maximum likelihood estimate for k . 
 
2.2 TL-Moments and L-Moments Estimators 
 
In this section, the trimmed linear moments (TL-moments) of the two-parameter Pareto 
distribution will be obtained. From the TL-moments with generalized trimmed, many special 
cases can be obtained such as the TL-moments with the first trimmed and linear moments (L-
moments) for the Pareto distribution. Also, the use of the TL-moments and L-moments for 
estimating the unknown parameters of the Pareto distribution will be derived. 
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TL-Moments: 
 

Let, be a conceptual random sample (used to define a population quantity) of size 

n from a continuous distribution and let, ):():2():1( ... nnnn XXX ≤≤≤  denote the corresponding 

order statistics. Elamir and Seheult [4] defined the rth TL-moment as follows: 
 

   

(2-6) 
 
where s, t = 0, 1, 2,…. The TL-moments reduce to L-moments (see Hosking [3]) when s = t = 0. 
They considered the symmetric case ( ). Hosking [7]obtained some theoretical results for the 
TL-moments with generalized trimmed for s and t (symmetric case ( ) and asymmetric case (

)) and obtained the TL-moments coefficient of variation TL-CV, the TL-skewness and the 
TL-kurtosis as follows: 
 

              (2-7) 

 
Maillet and Médecin [8] introduced the relation between the rth TL-moments and the first TL-

moments with generalized trimmed for s and t (symmetric case  and asymmetric case

). Indeed, it is sufficient to compute TL-moments of order one to obtain all TL-moments. 

They obtained the following rth TL-moments: 
 
 

 (2-8) 

 
where s, t = 0, 1, 2,…. This relation is very important and helped to enable easier calculations for 
the rth TL-moments with any trimmed and L-moments as particular cases of the rth TL-moments 
with generalized trimmed for s and t. Here, we obtain the rth TL-moments for the Pareto 

distribution for ( ) 11 ≥++ jtα  as follows: 
 

           (2-9) 

 
According to the above relation (2-9), the first four TL-moments with generalized trimmed for s 
and t (s, t = 0, 1, 2, …,) of the Pareto distribution will be: 
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(2-11) 
 

 

(2-12) 
 
and 
 

 

(2-13) 
 

From these results we can obtain the TL- coefficient of variation , TL-skewness and 

TL-kurtosis  for the Pareto distribution. 
 
Special Cases: 
 

a) The TL-Moments with the first trimmed ( 1== ts ): 
 
By substituting , and  in equations (2-10), (2-11), (2-12) and (2-13), the first four TL-
moments with the first trimmed of the Pareto distribution will be: 
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                (2-16) 

 
And 
 

    

(2-17) 
 

From these results we can obtain the TL- coefficient of variation , TL-skewness  and 

TL-kurtosis  with the first trimmed for the Pareto distribution. 
 

b) The L-Moments ( 0== ts ): 
 
By substituting , and  in the rth TL-moments for the Pareto distribution, we can 
obtain the rth L-moments for the Pareto distribution as follows: 

 

      

(2-18) 
 
Also, we can obtain the first four L-moments for the Pareto distribution by substituting , 

and in equations (2-10), (2-11), (2-12) and (2-13), as a special case from the TL-moments 
for the Pareto distribution. The first four L-moments for the Pareto distribution will be:  
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and from the first four L-moments, we can obtain the L-coefficient of variation 12 λλτ = ,  L-

skewness 233 λλτ =  and L-kurtosis 244 λλτ =  for the Pareto distribution.  

 
TL-Moments Estimators: 
 
The TL-moment estimators (TLMEs) for the unknown parameters of the Pareto distribution can 

be obtained by equating the first two population TL-moments (),(
1

tsλ , ),(
2

tsλ ) to the corresponding 

sample TL-moments ( ),(
1

tsl , ),(
2

tsl ) for the Pareto distribution. Hosking [7] obtained the first two 
sample TL-moments to be: 
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and 
 

       (2-24) 

 
Clearly, sample TL-moments reduce to sample L-moments when s = t = 0. Now, we can obtain 

the TL-moment estimators (TLMEs) (α̂ and k̂ ) of the Pareto distribution by solving the 
following two equations: 
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solve (because the beta function is a function of α ). So, these equations will be solved 

numerically. As a special case, by putting s = t = 1, the TLMEs α̂  and k̂  for the TL-moments 
with the first trimmedand for s = t = 0, the L-moments estimates (LMEs) can be obtained for the 
Pareto distribution.  
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L-Moments Estimators: 
 
Now, we will introduce the L-moment estimators (LMEs) for the Pareto distribution. If 

):():2():1( ... nnnn XXX ≤≤≤  denotes the order sample, we have the first and second sample L-

moments as:  
 

                                                                                (2-27) 

 
And 
 

                                                     (2-28) 

 

Equating the first two population L-moments ,  to the corresponding sample L-moments , 

, we will obtain:  
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                     (2-31) 

 

where ,210,210 ≤≤≤≤ pd and 

 

      (2-32) 

 

The linear combination dp,τ  is a 'quick' measure of the location of the sampling distribution of 

the order statistic ):( rjrX − . The candidates for dp,τ  include the function generating the common 

quick estimators by using the median ( 5.0,5.0 == dp ), the trimean ( 41,41 == dp ) 

and the Gastwirth ( 31,3.0 == dp ). They introduced the LQ-skewness and LQ-kurtosis for 

the population by 233 ζζη = and 244 ζζη =  respectively; it may be used for identifying 

the population and estimating the parameters. The LQ-skewness takes the value of zero for 
symmetrical distributions.  
  
The LQ-moments with the three cases (median, trimean and Gastwirth) will be obtained for the 
Pareto distribution as follows: 
 

(1) Using the median ( 5.0,5.0 == dp ), and the quantile function for the Pareto distribution, 

the first four LQ-moments for the Pareto distribution will be: 
 

              (2-33) 
 

            (2-34) 

 

           (2-35) 

 
and 
 

       (2-36) 
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                                (2-37) 
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 (2) Using the trimean ( 41,41 == dp ), the first four LQ-moments for the Pareto 

distribution will be obtained as follows: 
 

                                              (2-38) 

 

                  (2-39) 

 

       (2-40) 

 
and 
 

   

(2-41) 
 

(3) Using the Gastwirth ( 31,3.0 == dp ), the first four LQ-moments for the Pareto 

distribution will be obtained as follows: 
 

              (2-42) 

 

 (2-43) 
 

           (2-44) 
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(2-45) 
 
Then, the LQ-skewness and the LQ-kurtosis for each case (median, trimean and Gastwirth) for the 
Pareto distribution can be obtained by using the results for the first four LQ-moments for the 
Pareto distribution. 
 
LQ-Moments Estimators: 
 
To estimate the unknown parameters α  and k for the Pareto distribution using the LQ-moments, 
the first and the second sample LQ-moments for the Pareto distribution will be obtained by using 
the following definition of the rth sample LQ-moments: 
 

                     (2-46) 

 
where 
 

    (2-47) 

 

)(ˆ ):(, rjrdp X −τ is the quick estimator of the location for the distribution of ):( rjrX −  in a random 

sample of size r, and denotes the linear interpolation estimator of Q(u) given by: 

 

                                        (2-48) 

 

where and ][ un′  denote the integral part of un′ . Then, the first 

two sample LQ-moments will be:  
 

                                                          (2-49) 

 
and 
 

                                         (2-50) 
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distribution, the LQ-moments estimators for the two unknown parameters will be obtained for 
each case. 
 
Now, the unknown parameters α  and k for the Pareto distribution using the LQ-moments with 

the median case (LQMEm) will be estimated. Since, the first sample LQ-moments  is a function 

of α  and k and the second sample LQ-moments is a function also of α  and k , then by 

numerically solving the equations for  and  to obtain the LQ-moments estimates α̂̂  and k
ˆ̂

, 
then: 
 

                                                                              (2-51) 
 
and 
 

                                               (2-52) 

 
where 

                                                                         (2-53) 
 

For the trimean case the LQ-moments estimates (LQMEt) α̂̂  and k
ˆ̂

 will be obtained by solving 
the following two equations: 
 

                                  (2-54) 

 
and 
 

                   (2-55) 

 

and, for the Gastwirth case the LQ-moments estimates (LQMEg) α̂̂  and k
ˆ̂

  will be obtained by 
solving the following two equations: 
 

                                         (2-56) 
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(2-57) 
  

3 Fuzzy Least-Squares Method 
 
In this section, the fuzzy least-squares method will be used to obtain the fuzzy least-squares 
estimators for the two-parameter Pareto distribution. Hung and Liu [1] obtained the fuzzy least-
squares estimators for the two-parameter Weibull distribution when outliers are present as a robust 
estimation method. For that purpose, a cluster-wise fuzzy least-squares algorithm with a noise 
cluster is used. They introduced a numerical comparisons between this fuzzy least-squares 
algorithm and existing methods (the least-squares, the weighted least-squares, the least absolute 
deviation and Drapella and Kosznik [2]). According to these comparisons, they suggested that the 
proposed fuzzy least-squares algorithm is preferable when the sample size is large. 
 
Quandt [9] obtained the estimators for the two-parameter Pareto distribution by using different 
methods of estimation. Also, he introduced a numerical comparison between these different 
estimators for the Pareto distribution. He introduced the least-squares estimators for the two-
parameter Pareto distribution by using equation (1-1), he found the following: 
 

                                 (3-1) 

 
Taking logarithms of both sides he obtained: 
 

                               (3-2) 

 
and  
 

                     (3-3) 

 

Let )()2()1( .... nxxx <<<  be the order observations in a random sample of size n from 

),;( kxF α . Then the equation (3-3) gives: 
 

                                 (3-4) 

 
The parameters α  and k  may be estimated by least squares from sample estimates of 

),;( )( kxF i α , using, as dependent variable, the logarithm of 1 minus the cumulative distribution 

of the sample. The least squares estimator of α  will be: 
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                                                                               (3-5) 

where )(ln ii xt = ,    and  ∑
=

=
n

i
i nyy

1

. 

 

The corresponding least squares estimator of k  may be obtained by substituting into (3-4) the 

arithmetic mean value of the dependent and independent variable along with the estimator α̂  and 
solving for k . The least square estimator k  of will be:  
 

                                                                                       (3-6) 
 

Estimators of the parameters obtained by least squares methods have been shown to be consistent 
(Quandt [9]). 
 
To obtain the fuzzy least-squares estimators of the two-parameter Pareto distribution, the 
dependent variable will be the logarithm of 1 minus the cumulative distribution of the sample 
from equation (3-4). It is common practice of the Pareto plotting technique to use the following 
estimator for the ordinate of the i th empirical point: 
 

                                                                                          (3-7) 
 

where iF̂  is a point estimator of ),;( )( kxF i α . Many estimators can be used, for example, the 

mean rank estimator )1(ˆ += niFi , the median rank estimator )4.0()3.0(ˆ +−= niFi ,    

niFi )21(ˆ −=     and     )41()83(ˆ +−= niFi . In this paper, the mean rank estimator  

)1(ˆ += niFi  will be used to represent iy  to obtain the fuzzy least-squares estimators. 
 
Regression analysis is used into the model-fitting of observations. The heterogeneous problem in 
the regression model is usually difficult to be handled. But the heterogeneity of observations is 
commonly presented in practice. Hung and Liu [1] first clustered the observations and then use 
their class memberships as the weights in the weighted least-squares estimation to overcome the 
heterogeneous problem in the regression model fitting.  
 
Based on this kind of idea, Yang and Ko [10] proposed the cluster-wise fuzzy regression analysis 
which embeds fuzzy clustering into fuzzy regression model fitting at each step in the iterations. 
The fuzzy cluster is used to overcome the heterogeneous problem in the fuzzy regression model. 

Given a data set },...,1),,{( njyx jj = , suppose these observations are heterogeneous and come 

from c  clusters. Of course, if 1=c  then the observations are homogeneous. Now, we want to fit 
a data set to the cluster-wise fuzzy linear regression model: 
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where ia0  and Ra i ∈1  are unknown coefficients. Let the membership function ]1,0[∈ijµ  with 

1
1

=∑ =

c

i ijµ  for all nj ,...,1= . The notation ijµ  is used to represent the membership of the jth 

data point ),( jj yx  belonging to the ith class. After embedding ijµ  to the objective function, one 

has a cluster-wise objective function: 
 

        (3-9) 

 

where ncij ×= )(µµ , ),...,,( 002010 caaaa = , ),...,,( 112111 caaaa =  and 1≥m  is the index of 

fuzziness. Then, the corresponding weighted fuzzy least-squares problem is to minimize the 

objective function. Now, let ),,,( 10 λµ aaL  be the Lagrangian function with: 

                                          (3-10) 

where ),...,,( 21 nλλλλ = . Set the first derivatives of L with respect to all parameters equal to 

zero. The following necessary conditions for a minimizer ),,( 10 aaµ  of J are obtained. That is, 

                                 (3-11) 

 

                                                      (3-12)     

and  
 

                (3-13) 

 

Therefore, a cluster-wise FLS algorithm for computing a minimizer of ),,( 10 aaJ µ  has 

iterations through the necessary conditions (3-11)-(3-13). 

 
A noise cluster is a cluster which contains the noise points or outliers. The concept of a noise 
cluster proposed by Dave [11] is that all of the points have equal prior opportunity of belonging to 
a noise cluster. Dave [11] defined a noise prototype as follows: A point v is called a noise 

prototype if the distance  between the data point jx  and v are all equal to a constant δ  
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, i.e.  δν =),( jxd for nj ,...,1= . Hung and Liu [1] applied the noise cluster concept to the 

cluster-wise FLS. Assuming that the cluster ( )1+c  is a noise cluster. Then the objective function 
becomes: 
 

with ,,...,1,1
1

1

nj
c

i
ij ==∑

+

=

µ                        (3-14) 

and 
 

        (3-15) 

 
Where 
 

                                                                    (3-16) 

 
γ is a constant. Thus, when c=1, the algorithm with a noise cluster is iterated with the necessary 

conditions (3-11) and (3-12) and also with  
 

                                   (3-17) 

 

Thus, when c=1, the algorithm becomes a robust FLS algorithm for cluster-wise fuzzy regression 

modal njxaay jj ,...,1,1101 =+= . This is because outliers will be dumped to a noise cluster 

according to the weight of its membership. This algorithm is used to estimate the Pareto 

parameters as follows. In general, we choose 1=γ  and the index of fuzziness 2=m  (Pal and 

Bezdek [12] suggested that the best choice for m is 2). Now, let  
 

                                           (3-18) 
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Based on these necessary conditions, we can construct the following algorithm to obtain the fuzzy 
least-squares estimators (FLSEs) for the two-parameter Pareto distribution. 
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The suggested algorithm to obtain the FLSEs: 
 

(1) –Take the values 1=γ , 2=m  and 1=c . Choose an initial 
)0(

01â , 
)0(

11â  and 
)0(

1 jµ . 

(2) – Calculate 
)1(

01â  and  
)1(

11â   by using 
)0(

1 jµ  and (3-11) and (3-12). 

(3) – Calculate 
)1(

1 jµ  by using (3-13). 

(4) – Compare 
)0(

1 jµ  to  
)1(

1 jµ , using convenient norm :  

 

                                                (3-20) 

 

If  
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1 jj µµ =  ,  

)0(
01
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01 ˆˆ aa =  , 

)0(
11

)1(
11 ˆˆ aa =  and go to step (2).  

 

4 A Simulation Study of the Pareto Distribution 
 
A simulation study will be introduced to compare between the properties of seven different 
estimators: fuzzy least square estimators (FLSEs), maximum likelihood estimators (MLEs), L-
moment estimators (LMEs), TL-moment estimators (TLMEs) and the three LQ-moment 
estimators {LQMEm (median), LQMEt (trimean), LQMEg (Gastwirth)} for the unknown 
parameters of the Pareto distribution. Comparison will be mainly based on their biases and root 
mean squared errors (RMSEs). The simulation experiments are performed using the Mathcad (14) 
software, different sample sizes 10, 30, 50 and 100, and different values for the shape parameter 

 and 3andfor 3=k . For each combination of the sample size and the shape 

parameters values, the experiment will be repeated 10,000 times. In each experiment, the biases 
and RMSEs for the estimates of  α  and k  will be obtained and listed in Tables 1 and 2. 
 

5 Results and Conclusion 
 
It is observed in Table 1 that the fuzzy least square estimators (FLSEs) are less unbiased and the 
minimum RMSEs for all different values of α  and for n = 10 and 30 are considered here except 
for 3=α . As far as biases are concerned, the LQMEs are less unbiased for 3=α  all times and 

the minimum RMSEs. For n = 50 and 100, the MLEs are the minimum RMSEs for 3,2=α
with the LQMEs are less unbiased, but for 1=α , the FLSEs are less unbiased and the minimum 
RMSEs for all values of n. Also, it is observed in Table 1 that most of the estimators usually 
overestimate α  all times. The RMSEs of the LQMEs and the MLEs are also quite close to the 
FLSEs. 
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Table 1. Biases and RMSEs of the parameter estimators for the MLEs, LMEs TLMEs, LQMEs and FLSEs for different types of 
moments for : 

 
n = 10 MLE LME TLME LQMEm LQMEt LQMEg FLSE 

 
 

1.25639 1.80390 1.44614 1.11681 0.99923 1.05596 0.21639* 
(1.40917) (1.93480) (1.69085) (1.52290) (1.17339) (1.29459) (0.46131)* 

 
 

1.69824 2.07329 1.77426 1.35383 1.07711* 1.21174 1.14096 
(2.04521) (2.39169) (2.29999) (2.21156) (1.50236) (1.76698) (1.41211)* 

 
 

2.73000 2.35011 2.04146 1.59330 1.14684* 1.36914 2.06971 
(2.69599) (2.92424) (2.87359) (2.94183) (1.90082)* (2.28805) (2.39664) 

n = 30 MLE LME TLME LQMEm LQMEt LQMEg FLSE 

 
 

0.92373 1.65697 1.23888 0.98385 1.04914 0.99155 0.24242* 
(0.96261) (1.68817) (1.29095) (1.11457) (1.11125) (1.06885) (0.32333)* 

 
1.19235 1.80554 1.39823 1.13217 1.15157 1.10507* 1.18680 
(1.29152) (1.89369) (1.52438) (1.42957) (1.31376) (1.29780) (1.25968)* 

 
 

1.40836 2.35011 1.55997 1.28297 1.25538 1.22024* 2.13394 
(1.58137) (2.92424) (1.78907) (1.77605) (1.53931)* (1.55726) (2.22695) 

n = 50 MLE LME TLME LQMEm LQMEt LQMEg FLSE 

 
 

0.86567 1.63157 1.21406 0.94606 1.04880 0.98130 0.25485* 
(0.88795) (1.64913) (1.24471) (1.02127) (1.08552) (1.02591) (0.30403)* 

 
1.09488 1.76661 1.34945 1.06907* 1.14764 1.08621 1.21974 
(1.15224)* (1.81790) (1.42408) (1.24609) (1.24283) (1.19951) (1.26756) 

 
 

1.28374 1.89290 1.47652 1.19456 1.25818 1.19275* 2.17119 
(1.38782)* (1.99058) (1.61330) (1.49594) (1.42986) (1.39479) (2.22641) 

n = 100 MLE LME TLME LQMEm LQMEt LQMEg FLSE 

 
 

0.82606 1.61737 1.19815 0.92212 1.03750 0.97259 0.26809* 
(0.83677) (1.62603) (1.21404) (0.95965) (1.05606) (0.99493) (0.29261)* 

 
1.03519 1.72703 1.31055 1.03041* 1.13937 1.07204 1.24461 
(1.06462)* (1.75143) (1.34788) (1.12012) (1.18672) (1.12909) (1.26678) 

 
 

1.20025 1.84174 1.42982 1.14120* 1.23236 1.17313 2.21198 
(1.25260)* (1.88968) (1.49723) (1.29692) (1.32158) (1.27611) (2.23919) 

The root mean squared errors (RMSEs) are reported in brackets in the table. 
*: The least biased value or the least root mean squared errors 
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Table 2. Biases and RMSEs of the parameter estimators for the MLEs, LMEs TLMEs, LQMEs and FLSEs for different types of 
moments for k: 

 
n = 10 MLE LME TLME LQMEm LQMEt LQMEg FLSE 

 
  

-1.80115 -1.70038 -1.73400 -1.73694 -1.74983 -1.73703 -0.24561* 

(1.80398) (1.70775) (1.74714) (1.75638) (1.76045) (1.74986) (0.75647)* 

 -1.85092 -1.82962 -1.84181 -1.84976 -1.85816 -1.84993 -0.15226* 
(1.85161) (1.83147) (1.84518) (1.85529) (1.86113) (1.85344) (0.40352)* 

 
  

-1.86798 -1.86412 -1.87142 -1.87754 -1.88507 -1.87777 -0.09612* 

(1.86828) (1.86494) (1.87319) (1.88021) (1.88645) (1.87945) (0.25977)* 

n = 30 MLE LME TLME LQMEm LQMEt LQMEg FLSE 

 
  

-1.86819 -1.70816 -1.74225 -1.74820 -1.73957 -1.74876 -0.11867* 
(1.86848) (1.71033) (1.74684) (1.75559) (1.74357) (1.75317) (0.41393)* 

 -1.88483 -1.83267 -1.84607 -1.85164 -1.85014 -1.85254 -0.05968* 
(1.88491) (1.83322) (1.84721) (1.85373) (1.85120) (1.85375) (0.20841)* 

 
  

-1.89032 -1.86412 -1.87341 -1.87720 -1.87585 -1.87809 -0.04524* 
(1.89035) (1.86494) (1.87406) (1.87821) (1.87636) (1.87866) (0.14170)* 

n = 50 MLE LME TLME LQMEm LQMEt LQMEg FLSE 

 
  

-1.88162 -1.70764 -1.74114 -1.75085 -1.74208 -1.74815 -0.09463* 
(1.88172) (1.70896) (1.74457) (1.75522) (1.74447) (1.75082) (0.32712)* 

 -1.89133 -1.83241 -1.84607 -1.85221 -1.84877 -1.85142 -0.04702* 
(1.89136) (1.83274) (1.84696) (1.85345) (1.84941) (1.85215) (0.17472)* 

 
  

-1.89480 -1.86630 -1.87437 -1.87727 -1.87569 -1.87700 -0.03429* 
(1.89481) (1.86645) (1.87489) (1.87786) (1.87599) (1.87735) (0.10980)* 

n = 100 MLE LME TLME LQMEm LQMEt LQMEg FLSE 

 
  

-1.89119 -1.70800 -1.74046 -1.75427 -1.74465 -1.75012 -0.06268* 
(1.89122) (1.70866) (1.74260) (1.75654) (1.74587) (1.75149) (0.23357)* 

 -1.89644 -1.83338 -1.84713 -1.85331 -1.84931 -1.85185 -0.03273* 
(1.83354) (1.83354) (1.84782) (1.85395) (1.84964) (1.85222) (0.11546)* 

 
  

-1.89799 -1.86638 -1.87382 -1.87774 -1.87612 -1.87705 -0.02111* 
(1.89799) (1.86645) (1.87413) (1.87805) (1.87627) (1.87723) (0.07626)* 

The root mean squared errors (RMSEs) are reported in brackets in the table. 
*: The least biased value or the least root mean squared errors 
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Comparing all the methods, we conclude that for the parameter α , the FLSEs should be used for 
estimating α  especially for the small sample size. Now consider the estimation of k . In this 
case, it is observed in Table 2 that most of the estimators usually underestimate k  all times. As 
far as biases are concerned, the FLSEs are less unbiased and the minimum RMSEs for all different 
values of α  and n. Comparing all the methods, we conclude that for the parameter k , the FLSEs 
should be used for estimating k . 
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