

British Journal of Applied Science & Technology 4(8): 1273-1284, 2014

SCIENCEDOMAIN *international www.sciencedomain.org*

Evaluation of Antibacterial Activity and Strength of A Novel Dental Resin Composite

Leah Howard¹ , Yiming Weng¹ , Ruijie Huang¹ , Yuan Zhou¹ and Dong Xie1*

¹Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University at Indianapolis, USA.

Authors' contributions

This work was carried out in collaboration among all authors. Author DX designed the study, supervised the students and wrote the manuscript. Authors LH, RH and YZ performed mechanical testing and antibacterial study. Author YW performed synthesis, material preparation and statistical analysis. All authors read and approved the final manuscript.

Original Research Article

Article………… Article

Received 27th November 2013 Accepted 9 th January 2014 Published 18th January 2014

ABSTRACT

Aims: The objective of this study was to study the antibacterial activity and the compressive strength of a modified dental resin composite, with a new furan one derivative.

Materials and Methods: A novel antibacterial derivative was synthesized and used to formulate a resin composite, with addition of 5 to 70 wt%. Compressive strength (CS) and *Streptococcus mutans* (S. *mutans*) viability were used to evaluate the mechanical strength and antibacterial activity of the modified composites.

Results: The modified resin composites showed a significant antibacterial activity without substantially decreasing the mechanical strengths. With 5 to 30% addition of the antibacterial derivative, the composite kept its original CS unchanged but showed a significant antibacterial activity with up to 68% reduction in the S. *mutans* viability. The modified composite also showed a similar antibacterial function in both minimum inhibitory concentration and cell viability percentage to lactobacillus. The bromine containing derivative-modified composite was lower in CS than its chlorine counterpart but showed a similar antibacterial function. Furthermore, the antibacterial function of the modified composite was not affected by human saliva. The aging study indicates that the composite may have a long-lasting antibacterial function.

__

^{}Corresponding author: E-mail: dxie@iupui.edu;*

Conclusion: Within the limitations of this study, it appears that this experimental antibacterial resin composite may potentially be developed into a clinically attractive dental restorative because it has a strength that is similar to the unaltered composite in addition to the antibacterial function.

Keywords: Dihalomalealdehydic acid derivative; antibacterial; resin composite; S. mutans viability; compressive strength.

ABBREVIATIONS

List of the abbreviations commonly shown in the paper: CS –compressive strength; QAS – quaternary ammonium salt; PQAS – poly(quaternary ammonium salt); AC –acryloyl chloride; BisGMA - bisphenol A glycerolate dimethacrylate; BisEMA - bisphenol A ethoxylate dimethacrylate; UDMA - urethane dimethacrylate; DCA – 2, 3-dichloromalealdehydic acid; DBA - 2,3-dibromomalealdehydic acid; ADCC - 5-acryloyloxy-3,4-dichlorocrotonolactone; ADBC - 5-acryloyloxy-3,4-dibromocrotonolactone; MIC - minimal inhibitory concentration.

1. INTRODUCTION

Restoratives with antibacterial functions are very important to restorative dentistry. Longlasting restoratives and restoration are clinically attractive because they can reduce patients' pain and expense as well as the number of their visits to dental offices [1-4]. In dentistry, both restorative materials and oral bacteria are believed to be responsible for the restoration failure [2]. Secondary caries is found to be the main reason to the restoration failure of dental restoratives including resin composites and glass-ionomer cements [1-4]. Secondary caries that often occurs at the interface between the restoration and the cavity preparation is primarily caused by demineralization of tooth structure due to invasion of plaque bacteria (acid-producing bacteria) such as *Streptococcus mutans* (*S. mutans*) and lactobacilli in the presence of fermentable carbohydrates [4]. Although numerous efforts have been made on improving antibacterial activities of dental restoratives, most of them have been focused on release or slow-release of various incorporated low molecular weight antibacterial agents such as antibiotics, zinc ions, silver ions, iodine and chlorhexidine [5-9]. Yet release or slowrelease can lead to a reduction of mechanical properties of the restoratives over time, shortterm effectiveness, and possible toxicity to surrounding tissues if the dose of release is not properly controlled [5-9]. Materials containing quaternary ammonium salt (QAS) or phosphonium salt groups have been studied extensively as an important antimicrobial material and used for a variety of applications due to their potent antimicrobial activities [10- 14]. These materials are found to be capable of killing bacteria that are resistant to other types of cationic antibacterials [15]. The examples of the QAS-containing materials as antibacterials for dental restoratives include incorporation of a methacryloyloxydodecyl pyridinium bromide as an antibacterial monomer into resin composites [12], use of methacryloxylethyl cetyl ammonium chloride as a component for antibacterial bonding agents [16,17] and incorporation of quaternary ammonium polyethylenimine nanoparticles into resin composites [18,19]. All these studies found that the QAS-containing materials did exhibit significant antibacterial activities. However, our recent study found that incorporation of QAS into dental resin composites can significantly decrease mechanical strengths due to its strong hydrophilic characteristics, if the amount added is beyond a certain limit [20]. In addition, it has been reported that human saliva can significantly reduce the antibacterial activity of the QAS-containing restoratives, probably due to electrostatic interactions between QAS and proteins in saliva [21-22]. Recently furan one derivatives have been found to have strong antitumor [23] and antibacterial functions [24]. In the study, we would like to explore them in dental applications. The objective of this study was to study the antibacterial activity and the compressive strength of a modified dental resin composite, with a new furan one derivative.

2. MATERIALS AND METHODS

2.1 Materials

Bisphenol a glycerolate dimethacrylate (BisGMA), Bisphenol a ethoxylate dimethacrylate (BisEMA), urethane dimethacrylate (UDMA), dl-camphoroquinone, 2-(dimethylamino)ethyl methacrylate, toluene, acryloyl chloride (AC), 2,3-dichloromalealdehydic acid (DCA), 2, 3 dibromomalealdehydic acid (DBA), ethyl acetate and sodium bicarbonate were used as received from Sigma-Aldrich Co. (Milwaukee, WI) without further purifications. The untreated glass fillers from Herculite XRV (0.7 microns) were used as received from Sybron Dental Specialties (Newport Beach, CA).

2.2 Synthesis and Characterization

The new monomer, 5-acryloyloxy-3, 4-dichlorocrotonolactone (ADCC), was prepared from the reaction of DCA with AC in the presence of toluene at 90-100ºC for 3-4 h. After toluene was removed, the residue was washed with sodium bicarbonate and distilled water, followed by extracting with ethyl acetate. ADCC was purified by completely removing ethyl acetate. The monomer, 5-acryloyloxy-3, 4-dibromocrotonolactone (ADBC), was synthesized similarly. The synthesis scheme is shown in Fig. 1. The chemical structure of the synthesized ADCC and starting chemicals was characterized by Fourier transform-infrared (FT-IR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. The proton NMR (1) HNMR) spectra were obtained on a 500 MHz Bruker NMR spectrometer (Bruker Avance II, Bruker BioSpin Corporation, Billerica, MA) using deuterated dimethyl sulfoxide and chloroform as solvents and FT-IR spectra were obtained on a FT-IR spectrometer (Mattson Research Series FT/IR 1000, Madison, WI).

Fig. 1. Schematic diagram for the structures of the oligomers used in the study and synthesis of ADCC or ADBC from the reaction of DCA or DBA with AC

2.3 Preparation of Specimens

The antibacterial resin composite was prepared as described previously [20]. Briefly, the composite was formulated with a two-component system (liquid and powder). The liquid was formulated with dl-camphoroquinone (photo-initiator, 1% by weight), 2-(dimethylamino) ethyl methacrylate (activator, 2%), ADCC, BisGMA, UDMA and BisEMA, where ADCC/a mixture (BisGMA/UDMA/BisEMA = 1:1:1, by weight) = 0, 5, 10, 20, 30, 40, 50 and 70% (by weight). The schematic structures of BisGMA, BisEMA and UDMA are shown in Fig. 1. The untreated glass powders (Herculite XRV, 0.7 microns) were used as fillers and treated with γ- (trimethoxysilyl) propyl methacrylate as described elsewhere [20]. A filler level at 75% (by weight) was used throughout the study. After mixing, the composite was filled into glass tubing to form a cylindrical specimen (4 mm in diameter by 8 mm in length) for CS and a disk-shape specimen (4 mm in diameter by 2 mm in depth) for antibacterial tests. Specimens were exposed to blue light (EXAKT 520 Blue Light Polymerization Unit, EXACT Technologies and Oklahoma City, OK, USA) for 2 min [20].

2.4 Strength Measurement

The CS test was performed on a screw-driven mechanical tester (Q Test QT/10, MTS Systems Corporation, Eden Prairie, MN, USA) with a crosshead speed of 1 mm/min [20]. The sample sizes were n = 6 for each formulation. CS was calculated using an equation of CS = $P/\pi r^2$, where P = the load at fracture and r = the radius of the cylinder.

2.5 MIC Test for Synthesized Antibacterial Monomers

The minimal inhibitory concentration (MIC) of the synthesized antibacterial monomers was determined following the published protocol [25]. Briefly, colonies of S. mutans (UA159) were suspended in 5 ml of Tryptic soy Broth (TSB) prior to MIC testing. Two-fold serial dilutions of the synthesized monomer were prepared in TSB, followed by placing in 96-well flat-bottom micro titer plates with a volume of 250 μl per well. The final concentration of the monomer ranged from 1.563 to 75µg/ml. The micro titer plate was then inoculated with S. mutans suspension (cell concentration = 5×10^5 CFU/mI) and incubated at 37°C for 48 h prior to MIC testing. The absorbance was measured at 595 nm via a micro plate reader (Spectra Max 190, Molecular Devices and CA) to assess the cell growth. Chlorhexidine was used as control [25]. Triple replica was used to obtain a mean value for each material. The MIC test against lactobacilli was determined similarly.

2.6 Antibacterial Test

The antibacterial test was conducted following the published procedures [20]. *S. mutans* was used to evaluate the antibacterial activity of the studied composites. Briefly, colonies of *S. mutans* were suspended in 5 ml of tryptic soy broth (TSB), supplemented with 1% sucrose, to make a suspension with 10⁸ CFU/ml of *S. mutans*, after 24 h incubation. Specimens pretreated with ethanol (10 s) were incubated with *S. mutans* in TSB at 37ºC for 48 h under 5% CO2. After equal volumes of the red and the green dyes (LIVE/DEAD BacLight bacterial viability kit L7007, Molecular Probes, Inc., Eugene, OR, USA) were combined in a microfuge tube and mixed thoroughly for 1 min, 3 μl of the dye mixture was added to 1 ml of the bacteria suspension, mixed by vortexing for 10 s, sonicating for 10 s as well as vortexing for another 10 s, and kept in dark for about 15 min, prior to analysis. Then 20 μl of the stained bacterial suspension was analyzed using a fluorescent microscope (Nikon Microphot-FXA,

Melville, NY, USA). Triple replica was used to obtain a mean value for each material. The antibacterial test against lactobacilli was determined similarly. For evaluation of the saliva effect, human saliva (obtained from a healthy volunteer) was centrifuged for 15 min at 12,000g to remove debris [21]. After the supernatant was filtered with a 0.45-μm sterile filter, the filtrate was stored in a freezer (-20ºC) prior to testing. The sterilized composite specimen was incubated in a small tube containing 1 ml of saliva at 37°C for 2 h [21], followed by placing in 5 ml TSB supplemented with 1% sucrose. The rest of the procedures were the same as above.

2.7 Aging of the Specimens

The specimens for both CS and antibacterial activity aging tests were conditioned in distilled water at 37ºC for 1, 3, 7, 14 and 30 days, followed by direct testing for CS (see 2.4) and incubating with S. mutans for 48 h for antibacterial testing (see 2.6).

2.8 Statistical Analysis

One-way analysis of variance (ANOVA) with the post hoc Tukey-Kramer multiple-range test was used to determine significant differences of both CS and antibacterial tests among the materials in each group. A level of α = 0.05 was used for statistical significance.

3. RESULTS AND DISCUSSION

Furan one-containing materials are reported to have a broad range of biological and physiological properties including antitumor, antibiotic, hemorrhagic and insecticidal activity [23,24,26]. The biological mechanism of these derivatives is still under investigation [24]. To explore the application of these compounds in dental research, a photo curable furan one derivative has been synthesized and added to dental resin composites.

Fig. 2 shows the FT-IR spectra for DCA, AC and ADCC. The characteristic peaks (cm⁻¹) are listed below: (a) DCA: 3362 (O-H stretching on -OH), 1766 (C=O stretching on carbonyl group), 1644 (C=C stretching on internal C=C), 1332, 1237 and 949 (C-O-C stretching on pseudo ester), 1451, 1026 and 778 (O-H deformation on pseudo –OH), 1279, 1118, 889 and 602 (C-O stretching on pseudo C-OH), 746 (C-Cl stretching); (b) AC: 1758 (C=O stretching on carbonyl group), 1610 (C=C stretching), 1395 and 1145 (C-H deformation on –C=C group), 1284, 1074, 935 and 606 (C-O stretching on carbonyl group), 971 and 755 (C-H out of plane vibration on $-C=C$), 705 (C-Cl stretching); (c) ADCC: 1807 and 1764 (C=O stretching on carbonyl groups of both pseudo ester and acryl ate), 1639 (C=C stretching on acryl ate and internal C=C), 1500 (C-O-C deformation on newly formed ester), 1407 and 1137 (C-H deformation on C=C from acryl ate), 1330 and 1232 (C-O-C stretching on pseudo ester), 1295, 1068, 934 and 608 (C-O stretching on carbonyl group), 985 (C-H out of plane vibration on –C=C), 889 (C-O stretching on newly formed ester), 804 and 670 (C-H vibration on newly formed C=C group), 745 (C-Cl stretching on Cl-C=C group). The disappearance of the peak at 3362 for pseudo hydroxyl group on DCA and appearance of the new peaks at 1807, 1764, 1500, 804 and 670 for both carbonyl and C=C groups on acryl ate confirmed the formation of ADCC.

Fig. 3 shows the ¹HNMR spectra for DCA, AC and ADCC. The chemical shifts (ppm) are shown below: (a) DCA: 6.25 (-CH) and 3.45 (-OH); (b) AC: 6.21 , 6.05 and 5.82 (H₂C=CH-); (c) ADCC: 7.20 (-CH), 6.55, 6.30 and 6.15 (H₂C=CH-). The chemical shift at 2.50 shown in all the spectra was for solvent d-DMSO. The disappearance of the chemical shift at 3.45 (- OH) and all the chemical shifts towards a high field confirmed the formation of ADCC.

Fig. 4 shows the effect of the chlorine-containing antibacterial derivative or ADCC content on CS and S. mutans viability of the experimental composite. For CS, the ADCC addition did not change the CS of the composite until reaching 40%. From 40% to 70%, CS decreased 11-27% of its original value. For the S. mutans viability, increasing the ADCC content significantly decreased the S. mutans viability. The mean viability values were from 82 to 1% with 5 to 70% ADCC addition, where all the values were significantly different from each other (p<0.05). The result indicates that this new furanone derivative has potent antibacterial activity. In addition, if we incorporate it within 30-40%, the CS of the resin composite can be kept nearly unchanged. The result suggests that we may incorporate the new furanone derivative up to 30% to maximize the antibacterial activity without reducing mechanical strengths, which is clinically favorable.

Table 1 shows the MIC values of ADCC, bromine-containing derivative (ADBC) and chlorhexidine against S. mutans and lactobacillus as well as bacterial viability of these two oral bacteria after culturing with ADCC and ADBC-modified composites. The MIC values against S. mutans and lactobacillus were 6.25 and 18.7, 9.36 and 37.4 and 1.56 and 6.25, respectively, for ADCC, ADBC and chlorhexidine. The viability values of both oral bacteria after culturing with ADCC and ADBC ranged from 31.6 to 36.4, among which there were no significant differences, although lactobacillus showed higher values than S. mutans and ADBC showed higher values than ADCC. The results from MIC and viability data suggest that both ADCC and ADBC are good antibacterial derivatives and capable of killing S. mutans and lactobacillus.

Combound ¹	S. mutans	Lactobacillus	
MIC value ² (μ g/ml)			
ADCC	6.25	18.7	
ADBC	9.36	37.4	
Chlorhexidine	1.56	6.25	
Viability ³ $(\%)$			
ADCC	31.6(9.0)	35.3(4.8)	
ADBC	34.2(2.4)	36.4(3.7)	

Table 1. MIC of the materials and bacterial viability

¹ADCC and ADBC are the abbreviations of antibacterial furanone derivatives, which can be found *under Materials and Methods; ²MIC values were measured as shown under Materials and Methods. ³The composite formulation was the same as those described in Fig. 4, except for ADCC or ADBC content = 30%; ³Entries are mean values with standard deviations in parentheses. Specimens were conditioned in distilled water at 37ºC for 24 h, followed by incubating with S. mutans or lactobacillus for*

48 h for antibacterial testing

Table 2 shows the effect of both ADCC and ADBC on CS and S. mutans viability of the resin composites. Like those ADCC in Fig. 4, increasing the loading of ADBC decreased the CS values of the composite and S. mutans viability. By comparison, it is clear that at the same loading the ADBC-modified composites showed statistically lower CS values than the ADCC-composites, although both were not statistically significant different from each other in antibacterial activity. Due to the smaller size of chlorine, we hypothesized that the ADCC modified composites might favor the mechanical strength as compared to the ADBC composites, although we did not know if their antibacterial activity would be different. The

result in Table 2 shows that the ADCC-modified composites were statistically significantly higher in CS than the ADBC-modified composites, indicating that our hypothesis was correct, i.e., smaller chlorine favors CS. However, no significant differences in antibacterial activity were found between two modified composites. The result suggests that the ADCC modified composites might be a better choice for composite formulation on behalf of CS and antibacterial tests.

Table 2. Effect of ADCC and ADBC on CS and S. mutans viability of the resin composites¹

¹The formulations were the same as those described in Fig. 4, except that ADCC contains chlorine and ADBC contains bromine; ²Antibacterials = ADCC or ADBC (%, by weight); ³Entries are mean values with standard deviations in parentheses and the mean values with the same superscript letter in each column were not significantly different (p>0.05). Specimens were conditioned in distilled water at 37ºC for 24 h, followed by direct testing for CS or/and incubating with S. mutans for 48 h before antibacterial testing

Fig. 5 shows the effect of human saliva on the S. mutans viability after culturing with the modified composite. No statistically significant differences in the S. mutans viability were found between the composites with and without human saliva treatment. It was reported that saliva can significantly reduce the antibacterial activity of the QAS or PQAS-containing materials based on the mechanism of contact inhibition [21,22]. Due to saliva coating or protein film formation on the antibacterial surface of the material, the antibacterial capability became less effective [21,22]. The reduction was attributed to the interaction between positive charges on QAS or PQAS and amphiphilic protein macromolecules in saliva. Unlike QAS or PQAS, ADCC does not carry any charges. That may be why the ADCC-modified resin composite did not show any reduction in antibacterial activity after treating with saliva.

Fig. 6 shows the effect of the modified composite aging in water on CS and S. mutans viability. After 30-day aging in water, all the composite specimens with ADCC addition showed no statistically significant differences in either CS or S. mutans viability from one another (p>0.05). It is known that dental resin composites show a certain degree of degradation due to water sorption caused by two hydroxyl groups pendent on BisGMA and three -CH₂CH₂O- units on triethylene glycol dimethacrylate [27]. The absorbed water can hydrolyze the silane bond that is used to couple resin with fillers, de-bond the resin-filler interface and thus reduce the mechanical strengths with time [27]. Our previous study found that using QAS to modify the resin composite could significantly decrease CS probably due to strong hydrophilic nature of the QAS incorporated [20]. The ionic charges on QAS or PQAS can accelerate the interfacial de-bonding [20]. However, the furanone derivative modified resin composite did not show any statistically noticeable change in CS, indicating that the newly synthesized antibacterial furan one derivative seems more suitable to formulating resin composites than antibacterial QAS [20], probably due to the hydrophobicity of the former. The result might also imply that the ADCC-modified resin composite can have a long-lasting antibacterial function, because otherwise the composite would lose its CS if ADCC was leachable.

Our future studies will include evaluation of other mechanical and physical properties and biocompatibility of the experimental composite.

Fig. 2. FT-IR spectra for DCA, AC and ADCC: (a) DCA; (b) AC and (c) ADCC

Fig. 3. ¹HNMR spectra for DCA, AC and ADCC: (a) DCA; (b) AC and (c) ADCC

Fig. 4. Effect of the ADCC content on CS and *S. mutans* **viability of the experimental composites: ADCC content (%, by weight) = ADCC/ (ADCC/BisGMA/UDMA/BisEMA), where BisGMA/UDMA/BisEMA = 1:1:1; The filler/resin ratio = 3.0 or 75% (by weight). For CS, specimens were directly used for the testing. For the** *S. mutans* **viability, specimens were incubated with** *S. mutans* **for 48 h before antibacterial testing**

Fig. 5. Effect of human saliva on the *S. mutans* **viability after culturing with the composites: The formulations were the same as those described in Fig. 4. Specimens were soaked in human saliva at 37ºC for 2 h, followed by incubating with** *S. mutans* **for 48 h before antibacterial testing**

Fig. 6. Effect of aging on CS and the *S. mutans* **viability of the experimental composite: The formulation was the same as those described in Fig. 4, except for ADCC content = 30%. Specimens were conditioned in distilled water at 37ºC for 1, 3, 7, 14 and 30 days, followed by direct testing for CS or/and incubating with** *S. mutans* **for 48 h before antibacterial testing.**

4. CONCLUSIONS

Within the limits of the present study, the novel antibacterial dental resin composite seems to show adequate mechanical strength and long-lasting antibacterial function. Addition of 30% furan one derivative gave the modified composite a strong antibacterial function without compromising the mechanical strength.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- 1. Mjor IA, Dahl JE, Moorhead JE. Placement and replacement of restorations in primary teeth. Acta Odontol Scand. 2002;60: 25-28.
- 2. Forss H, Widstrom E. Reasons for restorative therapy and longevity of restorations in adults. Acta Odontol Scand. 2004;62:82-86.
- 3. Manhart J, Garcia-Godoy F, Hickel R. Direct posterior restorations: clinical results and new developments. Dent Clin North Am. 2002;46:303-39.
- 4. Deligeorgi V, Mjor IA, Wilson NH. An overview of reasons for the placement and replacement of restorations. Prim Dent Care. 2001;8:5-11.
- 5. Craig RG, Power JM. Restorative Dental Materials. 11th ed. St Louis, MO: Mosby- Year Book, Inc. 2002;614-618.
- 6. Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials Fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater. 2007;23:343–362.
- 7. Osinaga PW, Grande RH, Ballester RY, Simionato MR, Delgado Rodrigues CR, Muench A. Zinc sulfate addition to glass-ionomer-based cements: influence on physical and antibacterial properties, zinc and fluoride release. Dent Mater. 2003;19: 212-217.
- 8. Takahashi Y, Imazato S, Kaneshiro AV, Ebisu S, Frencken JE, Tay FR. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent Mater. 2006;22:467-452.
- 9. Yamamoto K, Ohashi S, Aono M, Kokubo T, Yamada I, Yamauchi J. Antibacterial activity of silver ions implanted in SiO2 filler on oral streptococci. Dent Mater. 1996;12: 227-229.
- 10. Syafiuddin T, Hisamitsu H, Toko T, Igarashi T, Goto N, Fujishima A, Miyazaki T. In vitro inhibition of caries around a resin composite restoration containing antibacterial filler. Biomaterials. 1997;18:1051-1057.
- 11. Gottenbos B, Van Der Mei HC, Klatter F, Nieuwenhuis P, Busscher HJ. *In vitro* and *In vivo* antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials. 2002;23:1417-1423.
- 12. Thebault P, Taffin de Givenchy E, Levy R, Vandenberghe Y, Guittard F, Geribaldi S. Preparation and antimicrobial behavior of quaternary ammonium thiol derivatives able to be grafted on metal surfaces. Eur J Med Chem. 2009;44:717-724.
- 13. Imazato S, Russell RR, McCabe JF. Antibacterial activity of MDPB polymer incorporated in dental resin. J Dent. 1995;23:177-181.
- 14. Murata H. Permanent, non-leaching antibacterial surfaces—2: How high density cationic surfaces kill bacterial cells. Biomaterials. 2007;28:4870-4879.
- 15. Guiqian Lu, Dingcai Wu, Ruowen Fu. Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate. React & Funct Polym. 2007;67:355–366.
- 16. Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ. Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules. 2004;5:877-882.
- 17. Li F, Chai ZG, Sun MN, Wang F, Ma S, Zhang L, Fang M, Chen JH. Anti-biofilm effect of dental adhesive with cationic monomer. J Dent Res. 2009;88:372-376.
- 18. Li F, Chen J, Chai Z, Zhang L, Xiao Y, Fang M, Ma S. Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans. J Dent. 2009;37:289-296.
- 19. Beyth N, Yudovin-Farber I, Bahir R, Domb AJ, Weiss EI. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials. 2006;27:3995-4002.
- 20. Weng Y, Guo X, Chong VJ, Howard L, Gregory RL, Xie D. Synthesis and evaluation of a novel antibacterial dental resin composite with quaternary ammonium salts. J Biomater Sci Eng. 2011;4:147-157.
- 21. Imazato S, Ebi N, Takahashi Y, Kaneko T, Ebisu S, Russell RRB. Antibacterial activity of bactericide-immobilized filler for resin-based restoratives. Biomaterials. 2003;24: 3605-3609.
- 22. Ebi N, Imazato S, Noiri Y, Ebisu S. Inhibitory effects of resin composite containing bactericide-immobilized filler on plaque accumulation. Dent Mater. 2001;17:485-491.
- 23. Jung JH, Pummangura S, Chaichantipyuth C, Patarapanich C, Fanwick PE, Chang CJ, Mclaughlin JL. New bioactive heptenes from melodorum fruticosum (annonaceae). Tetrahedron. 1990;46:5043-5054.
- 24. Jones JB, Young JM. Carcinogenicity of lactones III: The reactions of unsaturated 4 lactones with l-cysteine. J Med Chem. 1968;11:1176.
- 25. Xie D, Weng Y, Guo X, Zhao J, Gregory RL, Zheng C. Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions, Dent Mater. 2011;27:487- 496.
- 26. Lattmann E, Dunn S, Niamsanit S, Sattayasai N. Synthesis and antibacterial activities of 5-hydroxy-4-amino-2(5H)-furanones. Bioorg Med Chem Lett. 2005;15:919-921.
- 27. Drummond JL. Degradation, Fatigue and Failure of Resin Dental Composite Materials. J Dent Res. 2008;87:710-719.

___ *© 2014 Howard et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history: The peer review history for this paper can be accessed here: http://www.sciencedomain.org/review-history.php?iid=408&id=5&aid=3385