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The currently applied maintenance strategies, including Reactive and Preventive
maintenance can be considered obsolete. The constant improvements in Information
and Communication Technologies as well as in Digital Technologies along with the
increase of computational power, have facilitated the development of new Artificial
Intelligence algorithms to integrate cognition in computational systems. This trend is
posing a great challenge for engineers, as such developments will enable the creation
of robust systems that can monitor the current status of the machines and by extension to
predict unforeseeable situations. Furthermore, Smart Computers will be capable of
examining all possible scenarios and suggest viable solutions in a fraction of time
compared to humans. Therefore, in this paper, the modelling, design and development
of a Predictive Maintenance and Remote Monitoring system are proposed, based on the
utilization of Artificial Intelligence algorithms for data acquisition, fusion, and post-
processing. In addition to that, the proposed framework will integrate a Mixed Reality
application for the intuitive visualization of the data, that will ultimately facilitate production
and maintenance engineers to monitor the condition of the machines, and most
importantly to get an accurate prediction of the oncoming failures.
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INTRODUCTION

Maintenance of industrial equipment as a part of the manufacturing lifecycle, approaches 60–70% of
the overall cost of production. Therefore, being able to predict and perform machine maintenance
operations in a short period of time can lead to successful troubleshooting, and at the same time
increase the availability of machine tools (Mourtzis et al., 2015). Currently, inadequate maintenance
techniques can reduce the total productive ability of the plant by between 5 and 20% (Wollenhaupt,
2016). Traditionally, maintenance professionals have combined several techniques, both quantitative
and qualitative, with the aim to anticipate potential problems and alleviating downtime in their
production plants. Predictive maintenance gives them the potential to optimize maintenance tasks in
real time, maximizing the useful life of their equipment while avoiding disruption of operation.
Recent studies also show that unplanned downtime is costly, with an estimation of $50 billion per
year for global producers (Deloitte, 2017a). In the Industry 4.0 environment, maintenance should do
much more than simply prevent the downtime of individual assets. Predictive maintenance increases
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uptime by 10–20%, while reducing overall maintenance costs by
5–10% and maintenance planning time by 20–50%. Furthermore,
due to increased interconnectivity and new opportunities for
collecting, processing, and analyzing information, predictive
maintenance can be a very powerful strategy (Deloitte, 2017b).

In addition to failure prediction, a significant challenge is the
implementation of reliable and error-free maintenance operations
and, as a result, the constant validation of fully working equipment
as soon as possible. To that end, a significant amount of
development work has been made to design and improve real-
time technical service systems and software focused onmobile apps
to prevent unwanted errors andmalfunctions (Masoni et al., 2017).
Moreover, the handling of complex cases of smart factories,
intelligent maintenance, self-organized adaptive logistics,
customer-integrated engineering and smart factory architectures
require the integration of production data into modeling that can
only be achieved with the use of advanced simulation and
Information Technology (IT) (Mourtzis, 2020). Moreover, the
value of products will eventually be focused on their software
parts not on their specification or implementation functions under
the Product Service Systems (PSS) paradigm (Mourtzis et al., 2018).
With the advancement of Information and Communication
Technology (ICT) and cutting-edge technologies such as Mixed-
Reality (MR), Augmented Reality (AR) and Virtual Reality (VR),
the academic domain is expanding this strategy by leveraging the
advantages of AR for data visualization during maintenance
operations (Mourtzis et al., 2017; Mourtzis et al., 2018;
Palmarini et al., 2018). Emerging technologies such as the
Internet of Things (ΙoΤ), cyber-physical networks and cloud
computing have enabled the processing of vast volumes of
tracking data, which is intended to significantly increase
manufacturing productivity (Tao et al., 2018; Fantini et al.,
2020). However, as a core topic in prognostics and health
management, the remaining useful life (RUL) prediction based
on monitoring data ca be used to prevent a failure triggered (Lei
et al., 2018). RUL prediction is thus a hot topic that has drawnmore
andmore interest in recent years (Yang et al., 2019). Most research
studies on intelligent prognosis and health management (PHM)
analysis using data-driven approaches by deducing correlations
between data from different sensors ( e.g. accelerometers, acoustic
energy emission) to determine the remaining useful life (e.g.
accelerometers, acoustic energy sounders, etc.). In order to limit
the complexity inherent in the dynamic updating of online data,
Machine Learning has arisen as a way of analyzing vast volumes of
data for statistical purposes. Especially in the implementation of
neural network-based techniques, complex multidimensional non-
linearities can be used for automated learning, allowing for efficient
processing of data features in an attempt to provide optimized
solutions (Vogl et al., 2019).

Having identified the above-mentioned challenges, this research
work presents the design and development of a predictive
maintenance framework for industrial equipment. Further to
that the contribution of this research work extends to the
presentation of a custom Data Acquisition (DAQ) device and a
framework for processing the data via the Digital Twin of the
equipment for the calculation of Remaining Useful Life of critical
components. The remainder of the paper is structured as follows. In

State of the Art the most pertinent literature is reviewed, and
commercial devices are compared. In Proposed System
Architecture, the proposed system architecture is presented. In
System Implementation the practical implementation steps are
discussed. Then in Case Study, an experimental case study that
has derived from Industry is presented and the results are discussed.
Finally, in Concluding Remarks and Outlook, the paper is
concluded, and future research points are discussed by the authors.

STATE OF THE ART

Machine Learning
Among the latest trends in the modern manufacturing world, is
the so-called AI. An also well-known subset of the above-
mentioned concept is Machine Learning (ML). Concretely ML
algorithms are defined as computer-based algorithms that
improve their efficiency through experience, i.e. data
processing (Mitchell, 1995). Globally the AI adoption is
surging at enormous rates, as it becomes apparent in the
report presented in (Hupfer, 2019), from where it can be
concluded that AI adoption marked a surprising 270%
increase in a timespan of 4 years along with an increase in
global spending of around 80 billion dollars Figure 1.

Additionally, Deep Learning (DL) techniques have been
applied for the integration of systems in edge computing,
setting edge nodes in edge services and terminal devices, using
DL architectures for predictive analysis with quick preprocessing
and accurate performance classification to assess the life
expectancy of components. A classification of the most
common DL frameworks is as follows:

• Neural Networks (NN) (Chryssolouris, 2006; Chen et al.,
2019)

• Deep Neural Networks (DNN) (Zhao et al., 2017)
• Convolutional Neural Networks (CNN) (Li et al., 2018;

Mourtzis et al., 2020a)
• Recurrent Neural Networks (RNN) and Long Short-Term

Memory (LSTM) (Zhao et al., 2017)
• Gated Recurrent Units (GRU) (Chen et al., 2019)
• Recurrent Neural Network (CNN-RNN) (Banerjee et al.,

2019)
• Convolutional Neural Network and Long Short-Term

Memory (CNN-LSTM) (Kong et al., 2019)
• Convolutional Neural Network and Gated Recurrent Unit

(CNN-GRU) (Lei et al., 2018)

As Industry 4.0 continues to evolve, many companies are
struggling with the realities of AI implementation. Indeed, the
benefits of PdM such as helping determine the condition of
equipment and predicting when maintenance should be
performed, are extremely strategic. The implementation of ML
frameworks can lead to major cost savings, higher predictability,
and increased availability of the systems. Therefore engineers
have focused their efforts on the development of new technologies
and techniques for facilitating the prediction of manufacturing
equipment malfunctions and therefore to further optimize
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existing maintenance policies as well as to introduce more
adaptive maintenance policies. PdM can be defined as a series
of processes, where data is collected over time in order to monitor
the state of equipment, in a manufacturing system. Ultimately,
the goal is to identify/recognize patterns that in turn will facilitate
engineers to predict and ultimately prevent failures
(Rezaeianjouybari and Shang, 2020). Some of the most
common problems that can be addressed with PdM include,
the calculation of Remaining Useful Life (RUL), which aims at the
suitable scheduling of future Maintenance and Repair Operations
(MRO), Flagging Irregular Behavior, which is based on anomaly
detection by the utilization of time series analysis, and Failure
Diagnosis and Recommendation of Mitigation after failure (Lei
et al., 2018; Mourtzis et al., 2020a). While certain Facility
Managers perform PdM, this has been done traditionally by
using Supervisory Control and Data Acquisition (SCADA)
systems set up with human-coded/hard-coded thresholds, alert
rules, and configurations. However, this is a semi-manual
approach that does not take into consideration the more
complex dynamic behavioral patterns of the machinery, or the
contextual data relating to the manufacturing process, thus
lacking adaptability relative to the current status of the
industrial equipment (Nicholson et al., 2012). What is more,
in recent research works SCADA systems are integrated with ML
algorithms, in order to extend their usability as well as to shift
towards prognostics (Pang et al., 2020; Ruiming et al., 2020;
Zhang and Lang, 2020). In the research work of Wang et al.

(2020), the authors have developed a framework based on
Convolution Auto Encoder and Long-Short Term Memory
(LSTM) in an attempt to estimate RUL more accurately in
comparison to conventional methods. For the recognition of
patterns, which facilitates the process of building the
predictive model, data exploration techniques must be utilized
so that the engineer can determine whether the data includes
degradation or failure patterns (Erfani et al., 2016; Li et al., 2019).

Remaining Useful Life
As the name indicates, Remaining Useful Life, also referred to as
RUL, describes a wide variety of algorithms which aim to predict
the remaining life of assets and/or their components, ultimately
developed under a predictive maintenance framework. According
to Baru (2018) there can be identified three basic techniques
regarding the calculation of RUL based on the data that are
available, namely lifetime data, run-to-failure data, and known
threshold data. An interesting approach in presented in (Loutas
et al., 2013) for the calculation of RUL for rolling bearings based
on the utilization of ε-Support Vector Regression (ε-SVR),
concluding that linear models cannot provide accurate results
since there is non-linear between the features extracted by the
data spectral analysis and the RUL prediction. Another aspect of
the usefulness of RUL estimation is presented by (Sun et al.,
2020). The authors have implemented a framework for the RUL
calculation of cutting tools, thus managing to increase the
environmental sustainability of the cutting tools by 8.39% per

FIGURE 1 | Machine Learning Types & algorithms (Adapted from Ahmed and Khan, 2019).
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flute. From the investigation of the available literature it can be
concluded that the estimation of RUL is a challenging topic,
requiring exhaustive data processing. Further to that in the
majority of the publications it is implied that linear
approximations regarding the degradation of the physical
system are not sufficient in terms of accuracy, as presented in
(Yang et al., 2021), where the authors investigated the prediction
of RUL in inductionmotors. The authors in (Wen et al., 2021) has
proposed a generalized methodology for the prediction of RUL
based on the fusion of multiple signals. It is worth noting that they
achieved an increase in terms of accuracy of approximately 10
percent. Kozjek et al. (2020) have also presented an interesting
research work on the prediction of RUL with the utilization
reinforcement learning, which is compared with two other
algorithms, indicating promising results. In the research work
of (Liu et al., 2019), a RUL prediction framework is proposed
based on Health Index comparison, making it suitable for cases
where there is limited amount historical data. It is stressed out
that the topic of RUL prediction is still challenging for engineers
and by extension there is plenty of room for improvement. In
addition to that, the use of Digital Twin could compensate the
lack of raw data from machines, with the generation of fault
datasets.

Extended Reality
Among the latest developments of the current industrial
revolution, advances in high-end digital technologies are
entailed, including Extended Reality (XR). In its essence, XR
is an umbrella term, often used by engineers and researchers
around the world, in order to describe technologies such as
Augmented Reality (AR), Mixed Reality (MR), and Virtual
Reality (VR) (Mourtzis et al., 2020b). The two former
technologies are very close, since they are based on the
partial immersion of the user to a virtual environment, while
the latter, implies the total user immersion in a virtual,
computer generated environment. In addition to that, what
differentiates AR from MR is the fact that MR is based on
the user interaction with the digital information, also known as
holograms in that case (Fast-Berglund et al., 2018). The use of
AR in maintenance is an important aspect that has to be further
researched under the Industry 4.0 framework. Since new
technologies are constantly becoming available, existing
techniques could be leveraged so as to increase the efficiency
of maintenance tasks, minimize the errors and the risks imposed
in such operations. As presented in the research work of
Vorraber et al. (2020), both maintenance technicians and
experts are keen on integrating AR and MR solutions in their
line of job, in order to achieve better communication and most
importantly to limit the complexity of the maintenance
procedures. Although the maturity level of AR applications
has increased during the last decades (Mourtzis et al., 2020c),
there are constantly arising new challenges, such as the
integration of Predictive Maintenance and AR/MR so that
digitalization of the manufacturing processes becomes a
reality (Wolfartsberger et al., 2020). Further to that in two
recent systematic literature reviews, presented by Palmarini
et al. (2018) and Egger and Masood (2020) the current

implementations of AR are based on manual solutions and
the use of Predictive Analytics/Prognostics has not been yet
faced, thus indicating that there is fertile ground for further
research in that field.

PROPOSED SYSTEM ARCHITECTURE

In the following paragraphs the proposed system architecture will
be discussed in detail. The key aspects of the proposed
methodology are the DAQ device, which conforms to the
latest IoT standards. However, in order to efficiently monitor
the status of professional refrigeration systems, they have to be
analyzed into two subsystems, namely the cooling chamber of the
refrigerator and the compressor compartment. These two
subsystems often are not located in the same room/building,
thus require different DAQ devices to be installed. By the virtue of
the diversity of installed sensors, crosschecking the measured
values, is enabled and therefore more accurate predictive models
can be trained. The general architecture of the proposed is
depicted in Figure 2.

Data Acquisition Device
In this section the architecture of the framework for the DAQ
device will be discussed. For the DAQ module, two main aspects
will have to be investigated, namely the DAQ device and the
communication interfaces as well. The development of the DAQ
device is based on the design of a custom circuit board in
combination with an Arduino micro-controller which
incorporates all the required modules for the data acquisition
from the sensors attached to the board, the pre-processing of the
data, an interface for user interaction and a wireless network
module for the data transmission to the Cloud Database. In order
to make the DAQ device adaptive to the customer needs, and
subsequently to support a wide variety of configurations, the
sensor modules are not hardwired/soldered on the main PCB of
the DAQ device. More specifically, the PCB supports wired
connectivity, through 3.5 mm jack ports for the sensors.
However, in order to enable the communication between the
DAQ device (Fig. 3A) and the Cloud Database an RF-based
Wireless Sensor Network (WSN) is utilized. For the setup of the
WSN, XBee modules are utilized. More specifically, an XBee
module (Figure 3B) is installed on each of the DAQ devices and
another one is installed on a computer which acts as the network
coordinator. For the correct communication of the DAQ devices
to the computer, each RF module is tagged. Furthermore, during
the data transmission, the data packets are also including the tag
of each RF tag, so that the received data can be correlated to the
corresponding machine.

As far as the sampling rate is concerned, the DAQ device
collects feedback from the installed sensors on a varying rate. The
sampling rate for the accelerometer sensor is set to one (1) second
or 1 Hz. As far as the sampling rate for the temperature sensor is
set to 5 s and for the pressure sensor is set to 10 ms (milli-second)
as soon as a surge event is detected. However, if the customers
require a different resolution regarding the data collection and by
extension the estimations made by the framework, then they
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adjust the sampling rates. In Figure 3, the prototype board for the
DAQ device is presented.

Digital Twin Development
In order to create a suitable framework for the predictive
maintenance functionality of the equipment, the design and
development of a Digital Twin is required. The aim is to
analyze the data gathered from the DAQ devices and based on
the simulation model to predict future equipment malfunctions.
Therefore, in the case of the refrigerators, the physical model is
created in the Simulink programming environment. For the
simulation of the model, MATLAB is also utilized for
handling the imported data as well as setting up the
simulation parameters. The physical model of the refrigerator
is fully parametrically designed so that it can be adapted to the
technical specifications of the physical system. In Figure 4, the
developed model within the Simulink environment is presented.

It is stressed out that the model consists of several subsystems,
or else functional blocks, in an attempt to increase the resolution
of the simulation model, such as the compressor, the evaporator,

the condenser, and the refrigerator compartment. In the “Data
Input” block, the data from the DAQ device are imported to the
model. Then the standard refrigeration cycle for refrigeration is
run and the results are plotted. Through the plots, crucial
parameters of the refrigerator, such as temperature, power
consumption and pressures within the refrigerant distribution
network can be observed. For the simulation, the fluid properties
of the R134a refrigerant were also imported in the model. As a
result with the proposed methodology, it is possible to predict
future asset malfunctions based on the simulation of the
refrigeration cycle and plan accordingly their production
schedule so that the equipment downtime is further
minimized. In addition to that, the simulation results are also
combined/fused with the data gathered from the physical
machine so as to predict the RUL of specific components of
the equipment. The usability of the Simulink model extends also
to the generation of fault data. For instance, in the refrigerators a
common failure is the loss of pressure in the refrigerant
distribution network. Therefore, in the existing model the
“fault” is simulated with the addition of an array of blocks,

FIGURE 2 | Proposed System Architecture.

FIGURE 3 | Prototype DAQ device.
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based on which the differential pressure in specific subsystems,
such as the compressor pressure differential is offset to a fault
value. Then after the corresponding datasets for the healthy state
and the fault state have been generated, the model automatically
recalls the RUL algorithm.

In its essence the RUL algorithm utilizes data from both the
digital twin and the physical model for the prediction of the
time, in hours, before maintenance is required. The first step in
the RUL algorithm is the Fourier transformation of the signals
to the frequency domain. The next step is the creation of the
spectrograms for each of the under-examination parameters,
e.g. pressure inlet and outlet in the compressor, vibration
signal from rotational components. In this step, two
spectrograms are created, one for the fault data and one for
the healthy data. Based on the spectrograms of the faulty and
the healthy datasets, features can be extracted and classified for
future use via the use of a Support Vector Machine (SVM).
Therefore, boundary conditions can be formed for the under-
examination parameters. As soon as the above-mentioned
model is trained, then the model is constantly running and
gets updated at a regular basis, given that there are new data
posted on the Cloud database. In an attempt to generate a fault
dataset, modification of the Simulink model is required. The
modification involved the creation of additional subsystems
which are used for the simulation of faults. Ultimately, the goal
of this experiment series is to generate fault datasets, i.e.
datasets containing measurements of the physical model
operating under malfunction. For the generation of the
fault datasets, a pressure drop in the refrigerant network/
piping was simulated and increased humidity within the
cooling chamber. In order to process the data derived from

the simulation runs, the outputs were transformed via Fourier
Transformation, in order to represent the events in the
frequency domain. Then, with the use of spectrograms,
useful features were extracted and based on these features,
with the use of a Support Vector Machine, the faults could be
classified.

Augmented Reality Module
An ARmodule is provisioned in order to facilitate the monitoring
process of the industrial equipment. This module can be realized
as a multi-platform application, from which the customers can
either remotely or on-site visualize crucial information about
their equipment and interact with it, easily and intuitively with
the use of this cutting-edge digital technology. Concretely, the
current implementation of the framework supports handheld
Android-based platforms, e.g. mobile phones and tablets, as well
as Head Mounted Displays (HMD), such as the Microsoft
HoloLens.

User tracking and pose estimation for the Android-based
devices is based on the recognition of a feature-rich image
target, as in the one presented in Figure 5. Further to that, in
Figure 5A the physical form of the image target, whereas in
Figure 5B, the features recognized by the device are overlaid on
the image target.

As soon as the image target is recognized by the device,
through the integrated camera, then the transformation
matrix, denoted as T, between the camera and the marker is
Eq. 1:

xc � T pX (1)

Where:

FIGURE 4 | Refrigerator model in MATLAB Simulink.
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xc is the projection of a point in ideal image coordinates.
T is the pose matrix.
X expresses the points in world coordinates.
Therefore for the calculation of xc a 3 × 3 rotation matrix is

utilized, denoted by R, as per the Eq. 2.

xc � [R|t] pX0⎡⎢⎢⎢⎢⎢⎣ xy
z

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ r1,1 r1,2 r1,3
r2,1 r2,2 r2,3
r3,1 r3,2 r3,3

tx
ty
tz

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

Afterwards, in order to translate the result in pixel coordinates,
denoted by xpix , i.e. as a 2D representation, calibration matrix is
used, denoted by C. Consequently, xpix based on Eq. 3 becomes:

xpix � K p xc0⎛⎜⎝ xpix
ypix
1

⎞⎟⎠ � ⎡⎢⎢⎢⎢⎢⎣ f 0 px
0 f py
0 0 1

0
0
0

⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ xc
yc
zc

⎞⎟⎠ (3)

Based on the pose estimation steps described in the previous
paragraph, for the registration of the AR content using Android-
based platforms, a fiducial image target is required. As soon as it is
recognized by the device camera, then by calculating the user’s
position and pose, the augmentations are overlaid on the physical
environment.What is more, in order to enhance the user experience,
the application supports the functionality called “Extended
Tracking”, based on which, the handheld device can continue
overlaying the augmentations in the physical environment in the
event of the camera loosing direct contact with the image target.

However, for the implementation of the AR module in the
Microsoft HoloLens HMD, the user pose estimation is
approached in a different way, as the HMD is integrated with
four (4) greyscale tracking cameras. As a result the Depth,
denoted by D, is calculated with the use of Eq. 4.

D � R����������
U2 + V2 + 1

√ (4)

Where:
D Is the Depth
R is the Range, which is measured from the integrated
HoloLens ToF (Time-of-Flight) camera.
U and V are the distance values of a certain point.

Therefore the depth value into real, 3D world coordinates can
be derived from Eq. 5.

⎛⎜⎝ x
y
z

⎞⎟⎠ � D⎛⎜⎝U
V
1

⎞⎟⎠ (5)

Consequently, for the user pose estimation in the case of
Microsoft HoloLens, the developed application initially prompts
the user to select/setup an initial point of reference. This reference
point is then automatically translated into a 3D world anchor
based on which the AR visualizations are positioned and rendered
in the physical environment.

One of the main aspects of the AR module/application, is the
condition monitoring of the assets. This can be done in two ways.
The first solution is for remote monitoring, where the responsible
engineer uses either device to visualize a scaled 3D model of the
refrigerator, upon which important information are displayed.
The second solution is for monitoring the condition of the asset
while inspecting it physically. In the case of the refrigerators,
which is presented in the following paragraphs, it is impossible
for the responsible engineer to monitor the current status/health
of the refrigerator group without having to physically inspect the
compressor unit, which is located away from the cooling
chamber. However, with the proposed framework, it is
possible to recognize the refrigerator, by utilizing the image
targets, discussed previously and retrieve data for the
corresponding refrigerator group from the Cloud database. As
a result, the equipment/asset inspection can be performed in
near-real-time.

Another aspect of the AR application is the provision of a
communication tool, which enables the communication between
the OEM and customer, in order to inspect the equipment in real
time, and in addition to that to create basic AR instructions also in
real time, by performing common “drag and drop” operation in
the field of view of the user. Further to that, this functionality
enables both the OEM and the client to communicate via a video
call session, where the OEM can visualize the field of view of the
user and with the use of basic 3D tool representation, the client
can perform maintenance tasks in real time. The above-
mentioned functionalities are based on the adaptation of the

FIGURE 5 | Example of Image Target used in Android-based AR applications.
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methodology presented in the research work of Mourtzis et al.
(2020b) Figure 6.

SYSTEM IMPLEMENTATION

The proposed architecture can be realized as a multi-sided
application. The first aspect of the application is a desktop-
based application, which communicates with the server in
order to retrieve the data from the server and process them
through the predictive algorithm. The predictive algorithm is
responsible for the identification of patterns within the processed
data. Each of these patterns represents a classification of the
possible situations of the under-examination machine, or cluster
of machines. A predictive algorithm will have to analyze the data
gathered from the sensors so that a prediction of unforeseeable
machine malfunctions can be identified. However, since the data
are available on the server, it is of great importance to create an
application for monitoring the current situation of the machines.

From a software point of view, for the setup of the DAQ
device, the Arduino IDE (Arduino, 2020) was used. Moreover, for
the setup of the WSN the X-CTU (X-CTU, 2020) application
fromDigi has been utilized. For the development of the Graphical

User Interfaces (GUI), a Universal Windows Platform (UWP)
(Microsoft, 2018) application has been developed. The benefits of
using UWP is the multi-platform implementation, the ease of
configurability, ease of implementing security protocols,
serviceability of the framework and updates’ distribution. In
the following paragraphs the functionalities and the GUIs
designed and developed so far will be discussed in detail. In
order to do so, the Unity 3D game engine is utilized (Unity, 2020).
As regards the code scripts, the Microsoft Visual Studio IDE is
used (Microsoft, 2020). More specifically, for the development of
the main functionalities of the application, the code scripts are
written in C# programming language. Since the application
supports two user groups, one for the OEM supplier/service
provider and one for the customers, a common login/register
system is implemented. Upon installation of the application on
the end-user’s desired platform, the application prompts the user
to register an account which automatically saved in the Cloud
database. Therefore each time the user is connected, after getting
authorized, their user group is automatically retrieved by the
Cloud database and the suitable GUIs are loaded. It is stressed out
that although the development of a UWP application enables
multi-platform support, the AR functionalities are only available
for handheld devices, such as Android-based mobile phones and

FIGURE 6 | (A) AR visualization of compressor and its working parameters; (B) Cooling chamber cluster and the current working conditions.
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tablets, and Head Mounted Displays (HMD) such as Microsoft
HoloLens.

As long as the login is successful, if the user is listed as a client,
then the available options are to create a new cluster of
refrigerators or process/monitor an existing cluster. The “Set
Up New Line” functionality is targeted for new customers, or
customers that acquired new equipment, i.e. new refrigerator
group(s) or new DAQ device(s), as presented in Figure 7A.

The core functionality of the developed framework lies within
the monitoring functionalities. In the corresponding GUIs, the
customer can visualize in 3D a scaled version of their refrigerator
group and upon request to visualize the available information,
which are automatically fetched by the Cloud database. Then, in
continuation, if requested, the data can be transformed into
statistical figures, so that the client can visualize the current
status of their equipment. All of the above-mentioned data
can also be visualized in the form of augmentations in case
the customer is close to the refrigerator. In order to further
notify the customer about an upcoming maintenance action or if
any piece of equipment requires special attention, certain alerts
have been implemented as presented in Figures 6 and 7.
Regarding the communication interfaces between the DAQ
device, the end-user application and the Cloud Platform,
RESTful API services have been developed. As regards the
communication interface between the DAQ device and the
Cloud Database, the DAQ device as a client can send POST,
and PUT requests to the Cloud Platform, so as to enable the data
to be posted on the database if they are not existent, or updated as
needed. On the contrary, the majority of the services
implemented on the end-user application send only GET
requests, in order to fetch data to the end-user’s device, with
the exception of user registration, where a POST request is sent in
order to record the user’s data on the database. However, due to
the large volumes of sensitive data that are circulated within the
proposed framework, a set of security measures are taken.
Initially, all the HTTP requests are of type HTTPS (Hypertext

Transfer Protocol Secure). Secondly, DELETE requests are not
allowed for anyone trying to connect to the Cloud Platform.
Therefore, in order to delete any records from the database, this
process has to be undertaken manually by the authorized system
administrator. In an attempt to make the proposed framework
more general, a custom editor has been developed for supporting
the functionalities of the framework itself. More specifically, the
development team assisted by the editor can create virtually any
configuration of systems and functionalities, so that the
framework can be adapted to the actual needs of the
corresponding company.

From a hardware point of view, a desktop PC has been utilized
for the development of the application as well as the Cloud
Database and its services. For the implementation of the
developed AR-based application, an Android-based tablet and
a Microsoft HoloLens HMD are used. As regards, the DAQ
device, an Arduino Mega 2560 microcontroller is paired with the
custom board presented in the previous paragraphs. In addition
to that for the XBee RFmodules, the Arduino XBee shield and the
Adafruit explorer shield were used.

CASE STUDY

In manufacturing systems the profit is derived by the subtraction
of operating costs from total income. Therefore, the profit
becomes a problem with two possible solutions, either the
minimization of operating costs, or the maximization of
income. As regards, operating costs, industrial equipment
maintenance costs are also included. Production equipment
affects operating costs with machine deterioration and failures
as well.

The applicability of the developed framework has been tested
and validated in a real-life industrial scenario,derived from an
OEM supplier of professional refrigerator systems. The OEM is
looking forward to transforming their business model based on

FIGURE 7 | (A) Settings for a new refrigerator line; (B) Settings for new/old sensors.
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the PSS paradigm, by providing the proposed framework as a
service, in an attempt to improve their after-sales policy. What is
more, it is estimated that based on the monitoring and analysis
from the AI algorithms, the engineering department of the OEM
will be able to gather insightful feedback, aiming at the
improvement of the design process and the quality of their
products. The main benefit of the proposed methodology, is
that it can provide time estimations about future equipment
malfunctions, which by extension can enable both the OEM and
the client to act proactively and in time, in order to further
minimize the equipment downtime. Further to that, with the
provision of the AR application knowing beforehand the
upcoming equipment failures, can facilitate maintenance
engineers to prepare the AR content timely and communicate
it to the client. Therefore, the need for an external maintenance
technician is further minimized, thus reducing both the overall
time and cost of maintenance.

In order to test and validate the proposed framework, the
DAQ device was installed, on an experimental refrigerator group
located at the premises of the OEM, used for test purposes. It is
stressed out that the OEM has already integrated sensing systems
on the majority of their products for monitoring purposes.
However, the existing solution is wired and requires a
computer and an engineer close to the refrigerator
compartment, in order to monitor their status. Therefore, the
first step was the installation of the DAQ device, presented in the
previous paragraphs as well as the setup of the required WSN
network. The WSN follows the star topology, meaning that the
one XBee is connected to a PC and acts as the WSN coordinator.
Then, each DAQ connects to the coordinator and transmits the
data at the defined rate. Afterwards, in order to handle the data
arrived at the WSN coordinator, the corresponding COM port is
listened by the PC via a Python script and the data are uploaded to
the database and saved within the corresponding CSV file. Then
the data saved in the Cloud database are automatically input to
the Digital Twin of the refrigerator in order to simulate its
condition and calculate the RUL for the critical components.
Based on this setup the monitoring and simulation runs were
executed at the premises of the case study provider. For the
purposes of the experiments, a scenario of compressor
malfunction has been examined. For the maintenance of the

refrigerator in such case, the inspection of the equipment from an
OEM technician would require travelling and inspection which
according to the OEM it would account for approximately 28 h,
the order and acquisition of the replacement compressor would
require approximately 24 h and the installation on the
refrigerator group would require approximately 5 h. However,
with the adoption of the proposed framework, and based on the
calculation of the compressor RUL, the client is capable to order
the failing part timely, thus minimizing the waiting time. Further
to that, with the utilization of the AR application the inspection of
the equipment can be facilitated, thus eliminating the need for an
OEM maintenance technician to visit the client. The time for
inspection was calculated to be approximately 5 h. In the
following figure, the time estimations for the current situation
as well as the corresponding times with the adoption of the
proposed methodology are presented Figure 8.

CONCLUDING REMARKS AND OUTLOOK

The scope of this research work was to present the latest trends
regarding the fields of predictive maintenance and XR and
furthermore to propose a novel framework that will facilitate
engineers to constantly monitor the status of the manufacturing
equipment and in advance to predict the forthcoming
maintenance activities. By extension, the prediction of
malfunctions will enable companies to schedule their
production more efficiently, whilst it makes them more
adaptive to any disturbances caused within the company
limits. From the practical implementation of the developed
framework in the industrial partner, it became evident that the
refrigerator downtimes can be reduced by approximately 20%,
since both the clients and the OEM were capable to monitor the
status of their equipment and by extension, with the use of the AI
algorithm, the RUL prediction for crucial components of the
refrigerator system, the client got a trustworthy estimation of
when their equipment should be maintained. In addition to that,
since the customer, could get an estimation of the upcoming
failure, they are able to schedule a maintenance session with the
OEM much faster and fitted to both ends’ schedule without
creating great disturbances. An equally important finding is that

FIGURE 8 | Time distribution per task, as-is situation vs proposed
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the maintenance costs can be reduced by approximately 10%
since the OEM can order and acquire the needed components
beforehand, thus eliminating overnight delivery costs. Along with
that, by predicting and scheduling timely the maintenance
session, the equipment is not left to run until failure, which
could affect the operation of other components, thus leading to
increased maintenance cost, due to additional technician labor
and extra replacement parts.

Although the development and the implementation of the
proposed framework have yielded promising results, there are
several implications that must be addressed before such solutions
reach an acceptable maturity level and by extension, become
commercially available. The most important implication faced, is
that the calculation of the RUL cannot be performed in real-time
thus inducing a certain amount of latency in the AR
visualizations. The amount of latency is affected by two major
issues, first the network speed and second the computational
power of the system handling the Digital Twin. Another
implication is the authoring of the AR visualizations in the
field of view of the end-users. Currently, this is a manual task,
which in the future must be addressed, so that AR applications
can become useful tools in the modern manufacturing
environment rather than increasing the complexity of the
systems, by increasing the time and effort to prepare the so-
called “AR scenes”.

In the future, the Digital Twin will also be improved. It is
estimated that following the implementation of the proposed

framework in similar equipment, i.e. a fleet of assets, will enable
the creation of data ensembles. The idea behind this is to utilize
similar datasets in order to improve the predicting accuracy of the
Digital Twin.
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