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In the present paper, an efficient optimization method based on Bayesian updating
strategy is developed for the design of a spark-ignition engine equipped with pre-
chamber. 3D computational fluid dynamics (CFD) simulation coupled with strategies
including design of experiment, genetic algorithm, and machine learning methods is
used to optimize the pre-chamber with desired combustion phasing. The optimization
process starts from a design of experiment matrix of 11 design parameters, which are used
to analytically characterize the pre-chamber geometry and set up the 3D combustion CFD.
Taking CA50 as the single objective, the CFD results are then used to train the machine
learning models. Different machine learning models are evaluated based on their Root
Mean Square Error. Five machine learning models from five different categories are
selected for second round evaluation. The trained machine learning model is used in
the genetic algorithm optimization, which yields the optimized configuration and is again
justified by CFD. The new CFD results based on the optimized design are added into the
database to further refine the machine learning model. After 24 iterations for each selected
machine learning models, the medium Gaussian support vector machine model is
identified as the best method for the present application. Iterations using the medium
Gaussian support vector machine model continue until a satisfactory result is achieved.
Detailed combustion analysis is conducted to investigate the physical mechanism about
how the design of pre-chamber influences the engine’s performance. It is found that larger
volume of the upper part of the pre-chamber results in stronger jet flow and turbulent
intensity which further accelerates the flame propagation inside the pre-chamber,
dominating the contrary effects from reduced pressure and temperature. Regression
analysis shows that the radius of the pre-chamber is the most influential design parameter.
The current work not only sheds light on the optimization of engine design, but also has
demonstrated a general strategy applicable to the purpose of arbitrary engine optimization
and mechanical system design.
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INTRODUCTION

Turbulent jet ignition (TJI) (Attard et al., 2010; Toulson et al.,
2010; Alvarez et al., 2018) is one promising technology that allows
ultra-lean combustion with high energy efficiency and low
emission. The TJI system adopts a pre-chamber that houses a
spark plug and optionally fuel/air injectors, which has already
been adopted in natural gas spark ignition engines (Mastorakos
et al., 2017). In general, stoichiometric fuel/air mixture can be
supplied to the pre-chamber to ensure successful ignition,
meanwhile the main chamber can accommodate sufficiently
lean mixture for substantially-enhanced thermal efficiency. For
the active pre-chamber design, where both fuel and air injectors
equipped, accurate fuel/air mixture without EGR can be prepared
for the pre-chamber. Disadvantage of this active pre-chamber
option is that additional fuel system is required, which increases
the cost and complexity of control, packaging, and cooling. In the
case of passive pre-chamber, no fuel injector is installed inside the
pre-chamber, so that the fuel/air mixture has to rely on natural
scavenging during the intake stroke to enter the pre-chamber.
Therefore, the passive pre-chamber design causes difficulty for
precise charge preparation inside the pre-chamber, which may
lead to more severe combustion instabilities and higher chance of
misfire. In both options, the fuel and air mixture in the pre-
chamber are ignited by the spark plug. The temperature and
pressure inside the pre-chamber quickly increase. Consequently,
the large pressure difference between the pre-chamber and main
chamber forces the hot combustion products out of small orifices
at the end of the pre-chamber, forming a hot turbulent jet igniting
the compressed lean charge in the main combustion chamber.
Combustion induced by this hot reacting turbulent jet occurs
much more rapidly due to the spatially distributed flame-fronts
(Attard et al., 2010). Less heat is transferred to the engine parts
due to the fast combustion and lean mixture. Compared to the
conventional SI engines that run at stoichiometric conditions and
limited by engine knock, the lean mixture in the main chamber is
knock free for most of the conditions and hence allows much
higher compression ratio. Furthermore, relatively low
combustion temperature occurring in the lean main chamber
significantly reduces emissions of NOx and particulate
matter (PM).

TJI has been extensively investigated both experimentally and
numerically. Toulson and co-workers conducted a series of
fundamental studies of TJI using an optical-accessible rapid
compression machine (RCM). Toulson et al. (2012) compared
conventional spark ignition and TJI in an optical single cylinder
engine, and demonstrated that TJI enables faster combustion due
to the multiple widely distributed ignition sites produced. Gentz
et al. (2015) investigated the orifice size’s effects on TJI in a rapid
compression machine (RCM). It was found that for near
stoichiometric air to fuel ratios, a large nozzle that produces
more spatially distributed jets would result in faster combustion
progression. However, at leaner conditions a smaller diameter
nozzle that produces a faster and more vigorous jet is required to
initiate combustion. Gentz and Toulson (2016) further compared
active and passive fueling in TJI. For passive fueling, the single
orifice has better performance than the dual orifice with the same

cross section area. Karimi et al. (2014) conducted an experimental
and computational analysis of the hot jet ignition in a combustion
vessel. The hot jet is characterized by three different jets: wall jet,
wall impinging jet, and free jet. Li et al. (2019) conducted an
experimental study of TJI in a RCM and a single cylinder engine.
The study revealed that there are two ignition patterns in the pre-
chambers depending on the diameter of orifices: flame ignition
pattern with large orifice diameter and auto-ignition pattern with
smaller orifice. Biswas et al. (2016) revealed two ignition
mechanisms in the main chamber: jet ignition and flame
ignition. Biswas and Qiao (2016) conducted an experimental
study of the ignition of ultra-lean premixed H2/air mixtures by
the hot jet issued by a pre-chamber with a stoichiometric mixture,
visualized using simultaneous high-speed Schlieren photography
and OH* Chemiluminescence. Three nozzle geometries (straight,
convergent and converging-diverging) are compared. Diamond
shock structures in the supersonic jets and a high-temperature
zone downstream the shocks were observed, which may reduce
the flammability limit in the main chamber. Combustion
instability becomes noticeable near the lean-limit conditions.
Biswas and Qiao (2018) further investigated the effects of
spark location and equivalence ratio in pre-chamber on the
ignition pattern in the main chamber. The effective ratio
describing the spark location governs the flame dynamics in
the pre-chamber. Bolla et al. (2019) simulated an automotive-
sized scavenged pre-chamber mounted at the head of a rapid
compression-expansion machine using RANS and LES. It is
shown that the tilted nozzle of the pre-chamber orifice
generates a swirl flow inside the pre-chamber. Benekos et al.
(2020) conducted a 2D DNS study of the ignition process in the
main chamber. The effect of the wall thermal boundary
condition, initial mixture temperature, and equivalence ratio in
the main chamber was investigated numerically. It was found that
the hot jet from the pre-chamber can be broken into small kernels
at cold condition of the main chamber, or forms a flame torch at
the hot condition. Muller et al. (2018) investigated the ignition
mechanism in the main chamber. It was found that both kinetic
effects and thermal effects are important for the hot jet induced
ignition process. Strong correlations between fluid dynamics,
mixing and combustion are observed. Akhtar et al. (2017)
investigated the effects of orifice geometry on the performance
of pre-chamber using Schlieren imaging. Circular and slit shapes
with the same cross-section area were considered. It was found
that the slit pre-chamber can accelerate the flame propagation in
the early stages. Freeman et al. (2020) developed a new design of
pre-chamber with the assistance of 3D combustion CFD. The
CFD results show that the pre-chamber SI engine has good
improvements over the conventional gasoline SI engine,
especially the fuel economy. Based on the pressure difference
between main chamber and pre-chamber, the gas exchange
process between them can be described by a four-stage
process. Shah et al. (2015) experimentally investigated the
effects of pre-chamber volume and nozzle diameter on the
resultant ignition characteristics. It was found that a larger
pre-chamber provides higher ignition energy which results in
shortened flame development angle and combustion duration. At
a given pre-chamber volume, nozzle diameter mainly affects the
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combustion duration. Hlaing et al. (2020) reveals a two-stage
combustion mechanism in the main chamber where the latter
stage is thought to be contributing to the bulk ignition of the main
chamber charge. The pre-chamber heat release is correlated to the
mixture strength of the pre-chamber, which affects the phasing of
the pre-chamber combustion and the initial heat release in the
main chamber. Tang et al. (2020) used simultaneous negative
PLIF and OH chemiluminescence to visualize the gas exchange
process and flame jet from the nozzles of a pre-chamber, which
showed that the flame jet penetration length is much shorter than
that of the pre-chamber jet. A three-stage gas exchange process is
proposed. When the equivalence ratio of the pre-chamber is
increased from lean to slightly rich, the pressure difference
between main chamber and pre-chamber, ignition timing, and
timing of peak pressure difference increases at first and then
reaches a plateau. Kim et al. (2019) compared turbulent
combustion models (multi-zone well-stirred reactor and
G-equation) for pre-chamber ignition. G-equation model gives
better predictions than the well-stirred reactor model. From
above, although extensive computational and experimental
work has been conducted to understand and predict pre-
chamber spark ignition, the design of the pre-chamber is still
largely experience-based and there is a lack of general strategy
that can provide guidance toward an optimal design. Zhang et al.
(2020) conducted a comprehensive 3D CFD analysis of a light-
duty gasoline engine with a passive pre-chamber. A three-phase
phenomenological model is proposed to describe the flame
ignition behavior during pre-chamber jet combustion. Pre-
chamber with swirl nozzles generates organized and repeatable
swirl motion that could be beneficial for combustion. The pre-
chamber nozzle umbrella angle and orientation could be further
optimized for a given combustion system to achieve reduced
combustion heat loss. Hua et al. (2021) compared four pre-
chamber designs, passive and active fueling in engine tests.
They found that the volume and number of the jet hole are
two key parameters for optimizing the structure of the pre-
chamber. The pre-chamber with smaller volume has better
IMEP and fuel economy due to the lower heat dissipation and
combustion loss in the pre-chamber. The single-hole pre-
chamber studied generates a stronger hot jet than the 7-hole
pre-chambers, which effectively improves the burning rate and
extends the lean-burn limit.

From the manufacturing and mechanical design perspective,
MAHLE Powertrain has been the leading developer in
application of TJI for powertrain of passenger cars. Attard
et al. (2010) demonstrated in one single-cylinder engine that
the TJI can tolerate up to 54%mass fraction diluent, which results
in 18% improvement in fuel economy. Attard and Parson (2010)
showed that the spark plug type, orientation and electrode gap
have little to no effect on jet ignition combustion. They concluded
that it is partially due to the spark discharge in the pre-chamber
occupies a much larger fraction of the chamber relative to
conventional spark ignition. They also found that the spark
plug reach has the greatest effect that is not very important
for conventional SI engines.

Coupled with genetic algorithm, 3D combustion CFD has been
extensively used in engine development (Shi et al., 2011). Ge et al.

(2009) and Ge et al. (2010) developed automated calculation
processes to optimize fuel system, piston bowl, and swirl ratio.
Ge et al. (2010) developed an optimization method that
simultaneously optimizes multiple operating conditions by
separating the design parameters into hardware parameters and
operating parameters. Ge et al. (2011) and Lee et al. (2012) combined
scaling laws with the optimization method in (Ge et al., 2010) for
engine combustion optimizations. Machine learning techniques
have been applied to many areas of engine combustion. Moiz
et al. (2018) combined machine learning with genetic algorithm
and 3D CFD for engine combustion optimization. The method was
applied to a heavy-duty diesel engine. Kodavasal et al. (2018) used
machine learning techniques to analyze the controlling factor of
cycle-to-cycle variation in a gasoline spark-ignited engine. Probst
et al. (2019) used two machine learning techniques (Gaussian
process and SuperLearner) in engine combustion predictions.
Different optimization methods were compared. The particle
swarm optimization, differential evolution, GENOUD algorithm,
and micro-genetic algorithm (GA) were recommended. Badra et al.
(2020) optimized the combustion system of a gasoline compression
ignition engine using CFD and machine learning-grid gradient
algorithm. Shah et al. (2019) used machine learning techniques to
predict the ignition delay, flame speed, octane rating, and
combustion phasing of multicomponent gasoline surrogates in
homogenous charge compression ignition engines.

The design of the pre-chamber is the most critical component
of this type of engines, which remains a challenge. The papers in
literature usually investigated the effects of one or a few design
parameters on engine performance. However, systematic study of
the pre-chamber geometry is missing. The present paper reports
an automated optimizationmethod for pre-chamber design using
3D combustion CFD. DOE, GA, machine learning is coupled
with 3D combustion CFD for optimization of the pre-chamber
design for a spark-ignition engine. Different machine learning
models are compared. The optimal design is compared with an
averaged design and a bad design to understand how the design
parameters physically influence the engine performance.

ENGINE CONFIGURATIONS AND
NUMERICAL METHODS

A three-dimensional port fuel injection (PFI) spark-ignition
engine was simulated, which is one of the example cases of
the CONVERGE. Table 1 lists the parameters of the engine
configurations. For all the cases, the global equivalence ratio is set

TABLE 1 | Engine configurations.

Bore (mm) 86
Stroke (mm) 90
Rod length (mm) 180
Compression ratio 10
Engine speed (rpm) 3,000
IVC (deg ATDC) −100.5
EVO (deg ATDC) 140.2
IVO (deg ATDC) −410.5
EVC (deg ATDC) −351.8
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to unity. In the original engine, the spark plug is installed at the
center of the cylinder head. In the present work, the spark plug is
then replaced by the TJI system (c.f., Figure 1), whose bottom part
has the size as the spark plug. Thus, the whole pre-chamber can be
directly installed to the SI engine without making a new cylinder
head. Full cycle simulations of all the engine cases were conducted,
i.e., starting from EVO (exhaust valve opening, which is −579.8°
ATDC) to EVO (140.2° ATDC). The gas exchange process is
simulated. At the IVC (intake valve closing), the mass fraction of
CO2 and H2O in the whole chamber (including main and pre-
chamber) is 1.83%, which is equivalent to about 5.4% EGR.

In the present paper, a commercial CFD software CONVERGE
(Richards et al., 2017) was used for engine simulation, which is
based on the finite volumemethod.Table 2 lists the primarymodels
used in the present simulations. Adaptive mesh refinement (AMR)
and fixed embedding were used to balance efficiency and accuracy.
Real fluid model, Redwich–Kwong equation of state, was employed.
SAGE combustion model with PRF mechanism (Liu et al., 2012)
was used for all the simulations of SI engine cases, in which the fuel
is gaseous gasoline. For the simulation of the rapid compression
machine, the fuel is methane. The SAGE combustion model with
the GRI 3.0 mechanism was used. The SAGE combustion model
treats each computational cell as a perfectly stirred reactor, i.e., there

is no explicit turbulence chemistry interaction (TCI) models.
Recently, Dahms et al. (2019) conducted an asymptotic analysis
that showed there is implicit TCI in the multi zone SAGE model.
The implicit TCI means that the performance of the combustion
model depends on grid size, numeric, etc. The TCI can be fully
recovered by SAGE model when the grid size and time step
approaches the size of DNS. Although the present grid size and
time step are not small enough to fully recover the TCI, local mesh
refinement near the flame front can largely recover the TCI.
Additionally, the turbulence effects are taken into account
through the turbulent diffusivity, through which the TKE affects
the mixing processes of energy, species, and momentum. Thus, a
certain level of the turbulence effects on the combustion process has
been captured by the present simulations. All the combustion
simulations use unsteady RANS with RNG k–ε model (Han and
Reitz, 1995). Constant diffusivities were assumed, with turbulent
Prandtl number of 0.9 and turbulent Schmidt number of 0.78. Spark
plug geometry was neglected in the pre-chamber. In both
conventional SI engine and pre-chamber, spark ignition was
modeled using a point source. Base mesh size is set to 4 mm.
Three level embedding based on temperature and velocity was
applied to AMR. Boundary of the pre-chamber was refined to
0.5 mm using fixed embedding. Five and three level fixed
embedding were used for the nozzle and near nozzle jet flow
region, respectively. Level three AMR is activated by both
temperature gradient and velocity gradient.

Launder and Spalding wall model (Launder and Spalding,
1974) is employed to treat the boundaries of the solid walls. The
temperature of piston, liner, cylinder head, pre-chamber, exhaust
valve bottom, exhaust valve stem, exhaust port, intake port, intake
valve bottom, and intake valve stem are set to 450, 400, 400, 450,
525, 425, 400, 300, 480, and 350 K, respectively. At the inlet of
intake port, the pressure is fixed to 1 atm and a perfect

FIGURE 1 | Surface of one pre-chamber SI engine.

TABLE 2 | Computational models.

Turbulence model RNG k–ε model
Combustion model SAGE model
Real fluid model Redwich–Kwong equation of state
Turbulent Prandtl number 0.9
Turbulent Schmidt number 0.78
Reaction mechanism GRI 3.0 (RCM) Jia’s PRF mechanism (engine)
Wall function Launder and Spalding wall model
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stoichiometric mixture of gaseous gasoline and air is set. The
pressure at the outlet of exhaust port is set to 1 atm, too. Backflow
with temperature of 610 K and a mixture of N2 (71.9% by mass),
CO2 (19.2%), and H2O (8.9%) is applied to the outlet of exhaust

port. At the beginning of the simulations (−579.8° ATDC, which
is EVO), the mixtures in the main chamber and pre-chamber are
assumed to be N2 (71.9% by mass), CO2 (19.2%), and H2O
(8.9%). By simulating the whole cycle, the scavenging process of

FIGURE 2 | Computational mesh of one case at −2.5° ATDC.

FIGURE 3 | Left: design parameters of the pre-chamber. Right: design with all minimal parameters (black solid line), all median parameters (red dashed line), and all
maximal parameters (blue dotted line).
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the main chamber and pre-chamber is covered. The predicted
residuals in the main chamber and pre-chamber are more
reliable. The same numerical model has been used to simulate
theMSU single nozzle TJI case, which successfully reproduced in-
cylinder images and the averaged pressure trace of the main
chamber that will be presented in the next section. It implies that
the present numerical model and mesh is able to reproduce the
ignition and combustion processes in the pre-chamber and main
chamber. Figure 1 shows the surface of one pre-chamber SI
engine. The intake ports and exhaust ports are on the two side of
x-direction, i.e., the engine is about symmetric of y-plane (y � 0).
Figure 2 shows a typical mesh of the pre-chamber SI engine at
−2.5° ATDC. Due to the additional volume of the pre-chamber,
the compression ratio of the pre-chamber SI engine is reduced
from 10.0 for the baseline engine. Fuel injection is neglected for
simplification. The intake air/fuel mixture is assumed to be
perfectly mixed.

The pre-chamber has 6 holes. The hole size and normal
direction of nozzle exit are fixed. In the present study, only
the geometry above the nozzle is optimized. An axi-symmetric
shape is assumed for the upper part of the pre-chamber that is
above the nozzle part. Thus, the geometry of upper part can be
simplified as a symmetric 2D profile. The half profile is then
parameterized and analytically described using 11 design
parameters. Figure 3 (left) shows the sketch of an example
design with the 11 design parameters. Point A is fixed and
connects with the nozzle part of the pre-chamber. Points B, C,
D, and E are flexible. Point B has the same radial coordinate as

Point A, i.e., the part AB is vertical. Vertical coordinate of Point B
is determined by design parameter “bz”. Points C and D have the
same radial coordinates, which is determined by design parameter
“cr.” Their vertical coordinates are determined by “cz” and “dz”.
Coordinates of Point E is determined by design parameter “er”
and “ez.” Radius of the pre-chamber top is set to be larger than the
spark plug size to ensure that a regular spark plug can be installed
to the pre-chamber. Thus, the radial coordinate of Point E has a
minimal value. Design parameter “xde” is used to determine the
curvature of DE. Design parameters “gz,” “hz,” and “θ” are used to
determine the curve between points B and C. Table 3 lists the
range of these 11 design parameters. Bezier curves are applied on
the corner to ensure smooth transitions. The parameters “bz,”
“dz,” “gz,” “hz,” and “θ” are physically within [0,1]. Except theta,
all are set to [0.01, 0.99] to avoid potential singularity issue. For
“θ”, a range of [0.2, 0.8] is chosen to avoid too sharp angles for
curve BC. The minimal value of parameter “er” indicates the
radial size of a conventional spark plug, i.e., the pre-chamber
should be at least large enough to host a spark plug. Its maximum
value is set to 1.8 based on the experience. The parameter “cr”
indicates the ratio of radius at point C and point E, and thus it is
larger than 1. Its minimal value is set to 1.02 to leave sufficient
space for the curve DE. Its maximal value is set to 1.2 based on the
experience. The minimal value of parameter “ez” indicates the
minimal heights to host a conventional spark plug. Its maximal
value is set to 3.0 based on the experience. The parameter “cz”
is a normalized parameter describing the height of point C. Its
minimal value is limited by its distance to the cylinder head,
i.e., to avoid intersection with the cylinder head and maintain
enough thickness of prechamber wall. Its maximal value is set
to 2.0 based on the authors’ experience. The curvature
parameters “xbc” and “xde” have non-negative values, with
0 for straight line and 1 for circular curve. They are set to the
ranges of [0.1, 2.0] to cover a reasonable variety of curvature.
Figure 3 (right) shows the three example designs. Black solid

TABLE 3 | Ranges of design parameters of the pre-chamber.

bz cr cz dz er ez gz hz θ xbc xde

min 0.01 1.02 0.2 0.01 1.515 1.0 0.01 0.01 0.2 0.1 0.1
max 0.99 1.20 2.0 0.99 1.8 3.0 0.99 0.99 0.8 2.0 2.0

FIGURE 4 | Sketch of the Bayesian updating optimization method.

FIGURE 5 | Comparison of predicted and measured pressure in the
main chamber.
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line indicates the design with all minimal parameters. Red
dashed line indicates the design with all median parameters
(which is the design DOE56 in “Combustion Analysis of the
Optimal Design” section). Blue dotted line indicates with all
maximal parameters.

Figure 4 shows the sketch of the optimization method, which
is based on the Bayesian updating strategy (Enright and
Frangopol, 1999). The Bayesian updating strategy is a
learning-by-practicing approach, in which the Bayes’ theorem
is used to update the probability for a hypothesis as more
evidence or information becomes available. In the present
application, the machine learning module is updated when
more CFD results become available. The optimization starts
from a DOE (design of experiment) of all the design
parameters. In the present work, the size of the DOE is set to
56, which represents a small size DOE matrix with 11 design
parameters. The DOE matrix is generated using Latin hypercube
sampling method in Matlab. All the designs in this DOE are
simulated using 3D combustion CFD. These CFD results form
the first database, which is used inmachine learning (ML)module
for data training. Thus, the ML module can replace the 3D
combustion CFD in the optimization process. Then, a genetic
algorithm (GA) coupled with the trained ML module is used for
optimization, which will recommend one “optimal” design(s).
The “optimal” design(s) are further confirmed in the 3D
combustion CFD. Thus, the role of ML+GA approach is to
suggest the potential good designs, instead of accurately
predicting the objective CA50. All the designs suggested by
ML+GA approach will be further confirmed by the 3D CFD
simulations. In another words, we judge the ML algorithm based on

what design it has suggested, not the CA50 it predicted. The benefit of
ML is to reduce the total number of the computational expensive 3D
CFD simulations. Thus, the ML is not necessary to be a quantitative
prediction tool. Instead, qualitative prediction of CFD results by the
ML will be sufficient and actually is more critical than the quantitative
prediction. The results of these “optimal” designs are added to the
database to further improve the accuracy of the ML module.
Compared to the 3D combustion CFD cases that usually take

FIGURE 6 | Comparison of experimental chemiluminescence images (top) and predicted temperature contour (bottom) in the main chamber at similar burn
duration times.

TABLE 4 | RMSE of machine learning models.

Category Model RMSE (°)

Linear regression models Linear 2.8443
Interactive linear 3.2296
Robust linear 2.8354
Stepwise linear 3.2269

Regression trees Fine tree 3.3271
Medium tree 3.1988
Coarse tree 3.1697

Support vector machines Linear SVM 2.6581
Quadratic SVM 2.6682
Cubic SVM 2.7713
Fine Gaussian SVM 3.1815
Medium Gaussian SVM 2.6349
Coarse Gaussian SVM 2.6877

Ensemble of trees Boosted tree 2.8123
Bagged tree 2.7968

Gaussian process regression Squared exponential GPR 2.6706
Matern 5/2 GPR 2.6429
Exponential GPR 2.628
Rational Quadratic GPR 2.6723
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FIGURE 7 | Comparison of predicted and actual CA50 values using the five selected machine learning models with the 56 samples from DOE. (A) Robust Linear
Model, (B) Coarse Tree Model, (C) Medium Gaussian SVM, (D) bagged tree, and (E) exponential GPR.
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about 20 h using 72 cores, the computational time of the GA+ML
option is only about a fewminutes using a laptop, which is completely
negligible. Thus, this method significantly reduces the computational
costs by replacing the 3D combustionCFDwith theMLmodule in the
optimization. TheMLmodule also helps to narrow down the optimal
domain in the whole design space and reduces the total runs of 3D
combustion CFD. The Bayesian updating approach reduces the
total number of iterations. Given the nature of the GA, the final
“optimal” design is the best design among all the considered
designs, not the exact optimum in the whole design space (Shi
et al., 2011).

RESULTS AND DISCUSSION

Model Validation
The 3D combustion CFD model is validated in one MSU RCM
case with pre-chamber, which operates under engine-like
conditions (Gholamisheeri et al., 2017). In this case, the nozzle
diameter is 3.0mm and λ � 1.25. The initial pressure and
temperature for both the experiments and simulations were
1.04 bar and 80°C, respectively. The fuel is methane. A 30
species skeletal mechanism based on GRI3.0 (Lu and Law,
2008) is used in the SAGE model. Except the reaction
mechanism, all the models and settings are the same as the
ones described in “Engine Configurations and Numerical
Methods” section. Figure 5 shows the comparison of
predicted and measured (Gholamisheeri et al., 2017) pressure
in the main chamber, achieving very good agreement. Figure 6
shows comparison of experimental chemiluminescence images
(Gholamisheeri et al., 2017) and predicted temperature contour
in the main chamber at similar burn duration times. The
principle shape of the hot jet issued from the pre-chamber has
been captured reasonably. Due to the nature of the RANS model,
the predicted hot jet is much smoother than the measured one. In
overall, the present numerical model is capable of reproducing
the TJI combustion.

Evaluation of Machine Learning Models
The present CFD model is then applied to simulate the SI engine
cases that are fueled with gasoline and with the pre-chamber (c.f.,
Figure 1). All the following results and analysis are based on the

FIGURE 8 | Comparisons of CFD-predicted CA50 from the five selected
machine learning models.

FIGURE 9 | CFD-predicted CA50 of all the generations.

FIGURE 10 | Comparison of predicted and actual CA50 values using
medium Gaussian SVM with all 184 samples.
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simulations of the gasoline SI engine with a passive pre-chamber.
In the present work, the ML module (regression learner) and GA
module in Matlab are employed for the optimization. CA50, the
crank angle corresponding to 50% fuel consumption, is taken as
the single objective of engine performance for simplicity. Given
the same spark timing, smaller CA50 indicates faster combustion,
which makes more room for spark retardation and improved fuel
economy. For the ML module, cross-validation with 5 folds is
used. At the first step, all the machine learning models available in
the regression learner module are tested. The all design

parameters listed in Table 3 are taken as the inputs of the ML
modules. The CFD predicted CA50 is set as output. Table 4
shows the RMSE of all tested machine learning models. The
samples are the results of the DOE matrix, which is in total 56
samples. Overall, the exponential GPR has the lowest RMSE of
2.628. Among each category, one model is selected for further
evaluations, including robust linear model (Ronchetti et al.,
1997), coarse tree model (Breiman et al., 1984), medium
Gaussian SVM (Xu et al., 2009), bagged Tree model (Ting and
Witten, 1997), and exponential GPR (Williams and Rasmussen,

FIGURE 11 | Pressure trace profiles of the main chamber (left) and pre-chamber (right).

FIGURE 12 | Comparison of z-velocity distributions of designs SVM67 (left), DOE56 (middle), and RegTree64 (right) at −15° ATDC.
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2006). Figure 7 show the comparison of the predicted and actual
CA50 using these five selected models. The x-axis indicates
the actual CA50. The y-axis indicates the predicted CA50
using the machine learning models. It can be seen that in
general all the models have poor quality of fitting. One reason
is due to the small sample number (�56). The difference in
fitting between difference machine learning models are more
evident. Particularly, the coarse tree model has very poor
fitting. Using the method illustrated in Figure 4, these five
machine learning models are tested with 24 iterations. Each
iteration gives one “optimal” design for each model. Figure 8
shows the CFD-predicted CA50 of the “optimal” designs from
these selected machine learning models. It can be seen that
relatively, the medium Gaussian SVM model (SVM) gives the
most optimized design with these 24 iterations. Thus, the medium
Gaussian SVM model is used for next stage optimization.

The medium Gaussian SVM model is trained using all the
CFD results (including the ones used in other machine learning
models). Same method illustrated in Figure 4 is used. After 10
generations, no better design than the design “SVM67” (67 is its
generation number) is found. Figure 9 shows the CFD-predicted
CA50 of all the generations. The x-axis indicates the generation
number. Symbols “*” indicate the 56 samples of the DOE matrix.

Square symbol squares indicate the results of the medium
Gaussian SVM model. Circle symbols indicate the results of
the other machine learning models. Thus, the design “SVM67”
that has the lowest CA50 of 2.9° ATDC is selected for further
analysis. In the next section, this design is compared with design
“RegTree64” that represents the worst CA50 (22.2° ATDC).
Besides these two extreme points, design “DOE56” that
represents an averaged design (all the design parameters are
averaged values over their whole ranges) is considered in the
detailed analysis, too. Its CA50 is 6.5° ATDC. With these three
points, a clearer trend can be observed.

Figure 10 shows the comparison of predicted and actual CA50
values using medium Gaussian SVM with all the 184 samples.
Comparing to the medium Gaussian SVM plot in Figure 7 that is
based on 56 samples, the fitting quality has been improved. The
corresponding RMSE has been reduced from 2.6349 to 2.2618.
Although the optimization started from a minimal-size DOE
matrix and thus the initial fitting quality is low, it has been
improved gradually by adding more samples from CFD
simulations into the database for training. For optimization
purpose, as long as the ML+GA approach can capture the
correct trend, the optimization direction will be correct. Even
sometimes the ML+GA approach suggests some bad designs, it

FIGURE 13 | Comparison of CO2 distributions of designs SVM67 (left), DOE56 (middle), and RegTree64 (right) at −15° ATDC.

FIGURE 14 | Comparison of TKE distributions of designs SVM67 (left), DOE56 (middle), and RegTree64 (right) at −15° ATDC.

Frontiers in Mechanical Engineering | www.frontiersin.org January 2021 | Volume 6 | Article 59975211

Ge et al. CFD Optimization of Pre-Chamber

https://www.frontiersin.org/journals/mechanical-ngineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-ngineering#articles


will not ruin the whole optimization process since the designs will
be confirmed in the CFD simulations. Only the CFD results will
be seriously considered for further analysis and hardware
development, not the results predicted by the machine
learning model. Thus, qualitative prediction of the CFD results
by the machine learning model will be sufficient for the present
optimization applications.

It should be mentioned that the present “optimal” design is
only optimal in terms of CA50 based on the spark timing of -15°

ATDC and without spark plug geometry. With other objectives
and/or constraints being taken into account, the optimal design
will be different. A successful optimization of CA50 will provide
direct guidance toward the optimal fuel economy.

Combustion Analysis of the Optimal Design
To improve the understanding of how the design parameters
affect the engine performance, the selected three designs are
compared. Figure 11 shows the pressure trace and heat release
rate (HRR) profiles of the main chamber and pre-chamber. The
design SVM67 has the earliest pressure rising, which indicates
faster combustion. The design RegTree64 has the lowest peak
pressure and weak HRR that indicates weak combustion in both
pre-chamber and main chamber. However, right before the spark
timing (CA � −15° ATDC), the design RegTree64 has higher in-
cylinder pressure than the other two designs. This is due to its
smaller volume of the pre-chamber than the other two designs

(c.f., Figure 12), and thus has higher compression ratio. With the
same boost pressure and temperature, the design RegTree64 that
has higher compression ratio has higher in-cylinder pressure and
temperature than the other two designs, which is a more favorable
thermodynamic condition for faster combustion. However, the
CA50, pressure trace and HRR indicate that RegTree64 has the
slowest combustion. Apparently, the ignition process of design
RegTree64 did not benefit from the more elevated
thermodynamic conditions at the spark timing. The design
DOE56 also has slightly higher pressure and temperature than
design SVM67 at the spark timing, while its ignition process is
slower than design SVM67. This implies that for the present
combustion processes, thermodynamics is not the most
dominant factor. The averaged mass fractions of CO2 of pre-
chamber at the spark timing are 0.0246 (SVM67), 0.0230
(DOE56), and 0.0207 (RegTree64), respectively. The design
SVM67 has the highest CO2 concentration in the pre-
chamber, which is also not favorable for its faster combustion
than the other two designs. Thus, the thermochemical condition
of the whole pre-chamber is not the most dominant factor, either.

Figure 13 shows the comparison of CO2 distributions of
designs SVM67 (left), DOE56(middle), and RegTree64 (right)
at -15° ATDC. The contour plots are the mass fraction of CO2 on
the x-slice that is through the center of the nozzle (x � 0). The
symbol “+” indicates the location of spark. The mass fractions of
CO2 at the spark location at this moment are 0.02334 (SVM67),

FIGURE 15 |Comparison of temperature distributions of designs SVM67 (left), DOE56 (middle), and RegTree64 (right) at −12.5° ATDC. Top row: x-slice. Bottom
row: y-slice.
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0.0216 (DOE56), and 0.02734 (RegTree64). The high CO2
concentration at the spark location in design RegTree64 is part of
the reason of its slowest ignition process. Comparing the design
SVM67, theCO2 concentration of designDOE56 at the spark location
is lower, which is favorable for ignition and flame propagation.
However, its overall ignition process is slower than the one of
design SVM67. Thus, all the thermochemical conditions of design
SVM67 are not favorable for a faster ignition process. Itmust be due to
another physical mechanism beyond the thermochemical conditions.

Figure 12 shows the z-velocity distributions inside the pre-
chamber at the spark timing of the selected three designs. The
contour plots are on the x-slice that is through the center of the
nozzle (x � 0). With the piston moving to top dead center (TDC),
the gas in the main chamber enters the pre-chamber through the
nozzles. Consequently, jet flows are formed inside the pre-
chamber. With the larger volume of the pre-chamber, the jet
lasts longer in the design SVM67 than the other two designs.
The flow field inside the pre-chamber is more complex in design
SVM67 than the other two design as well. Many vortexes are
formed in the design SVM67, creating stronger turbulence that
enhances flame propagation. The z-velocities at the spark location
are 14.5, 52.9, and 23.0 m/s, respectively. The relatively small
upward flow velocity of design SVM67 benefits the flame
propagation downward. Near the spark location, there is a
region with strong downward flow that will transport the flame
kernel downward. The design DOE56 has a very strong upward

flow near the spark location that will put the flame kernel to the
ceiling of the pre-chamber, which will cause more flame
quenching. Figure 14 shows the contour plots of turbulent
kinetic energy (TKE) inside the pre-chamber at the spark
timing of the selected three designs. The design SVM67 has
evidently higher TKE than the other two designs. And its
distribution in space is more homogeneous. Higher TKE increases
the turbulent flame speed and accelerates the flame propagation.

Figures 15 and 16 show the contour plots of temperature of
designs SVM67 (left), DOE56(middle), and RegTree64 (right) at
−12.5° and −10° ATDC, respectively. The top row shows the
results on the x-slice that is through the center of the nozzle (x �
0), while the bottom row shows the results on the y-slice (y � 0). It is
evident that the flame propagates much faster in design SVM67 than
the other two designs. The directions of flame propagation loosely
correlate with the high TKE regions. Additionally, the relatively strong
downward flow near the spark location moves the whole burning
cloud downward, i.e., farther away from the top of the pre-chamber
and less wall quenching. Since the jet flow from the nozzle that is
upward is still existing, the flame cannot propagate into the central
region of the pre-chamber. Instead, it propagates along the side wall.
For the design DOE56, the flame kernel propagates to the top of the
pre-chamber. This is due to the relatively low TKE and the strong
upward flow as illustrated in Figure 12. It can be seen that the flame
kernel has been partially quenched by the wall. Its flame kernel
propagates into the region of side walls that has relatively stronger

FIGURE 16 | Comparison of temperature distributions of designs SVM67 (left), DOE56 (middle), and RegTree64 (right) at −10° ATDC. Top row: x-slice. Bottom
row: y-slice.
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downward flow. The flame kernel of the design RegTree64 has a
reasonable size at the early stage (c.f., right plot of Figure 15), almost
comparable with the one of design DOE56. This is partially due to its
relatively weak upward flow. However, comparing to the other two
designs, the flame kernel of design RegTree64 does not propagate
much. Its shape is not heavily distorted by the flow as the other two
design. This must be due to its much lower velocity magnitude and
TKE than the other two designs. Eventually, the design RegTree64 has
very slow ignition process inside the pre-chamber, and consequently
very slow combustion inside the main chamber. Thus, it can be

concluded that the turbulent intensity and flow structure inside the
pre-chamber is critical for the ignition process. A strong turbulence
and large downward flow velocity are preferred for better engine
performance.

Regression Analysis of the Design
Parameters
Regression analysis is conducted to reveal how the design
parameters influence the objective, which is the CA50 in the

FIGURE 17 | Correlations between CA50 and design parameters (bz, cr, cz, dz, er, and ez).
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present study. Figures 17 and 18 shows the correlations between
CA50 and all the design parameters. Higher coefficient of
determination (R2) indicates stronger correlations. Thus, it can
be concluded that the design parameters “cr,” “er,” and “ez” are
the most evident impacts on the CA50. The parameters “cr”
(largest radius, equal to “cr” times the radius at Point E) and “er”
(radius at the top of pre-chamber) determine the radii of upper
and lower parts of the pre-chamber, respectively. Parameter “ez”
determines the height of the pre-chamber. Their negative slopes
indicate that greater radius and/or height reduces the CA50,

i.e., faster combustion. This is consistent with the previous
combustion analysis that larger volume benefits ignition
process. The pre-chamber has a roughly cylindrical shape. Its
volume mainly depends on the radius and height. This explains
why these three parameters have relatively more consistent
impacts on the CA50. Since the volume is proportional to
square of radius, the slopes of “cr” and “er” is larger than the
parameter “ez”. But since the radius depends on both “cr” and
“er,” the resulting coefficients of determination of these two
parameters are lower than “ez”. The design parameter “θ”

FIGURE 18 | Correlations between CA50 and design parameters (gz, hz, theta, xbc, and xde).
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determines the slope between the upper part and lower part of the
pre-chamber. Larger theta leads to steeper slope. The correlation
shows that a steep slope is preferred for better engine
performance. Its relatively coefficient of determination implies
strong interactions with other design parameters. The parameters
that determine the heights of the pre-chamber, “cz,” “dz,” “hz,”
“gz,” and “bz,” shows weak correlations with the CA50 based on
their low coefficients of determination.

The parameters “xbc” and “xde” determine the curvatures
around the corners. Their influences are relatively negligible. The
present finding is consistent with the observation in Shah et al.
(2015) that larger pre-chamber volume benefits the pre-chamber
ignition process. For engine combustion, usually the
thermodynamics is the most dominant factor. With everything
else kept as the same, larger pre-chamber volume results in lower
compression ratio that will usually reduce engine efficiency and
slow down combustion due to lower in-cylinder temperature and
pressure at spark timing. The present application shows that there
is competition in the effects of thermodynamics and fluid
dynamics on pre-chamber engine combustion. Under certain
condition, the fluid dynamics could overtake the
thermodynamics to be the most dominant factor for pre-
chamber engine combustion. The thermodynamics may
become the most dominant factor if the volume of pre-
chamber exceeds certain limit. When the volume of pre-
chamber is too large, it will lead to low CR, excessive heat loss
in pre-chamber (Hua et al., 2021), and weak hot jet issuing into
the main chamber. Under this circumstance, the CR should be
fixed during the optimization of pre-chamber geometry to isolate
its effects.

To avoid potential bias in linear regression analysis,
bootstrapping resampling method is conducted. The total 184
data points are randomly resampled for 1,000 times and linear
regression analysis is applied to each sampling. Figure 19 shows the
scatter plot of slope and coefficient of determination (RSQ) of all the
design parameters calculated from the 1,000 times bootstrapping.

The results show the same trend as the ones in Figures 17 and 18 in
terms of slope and coefficient of determination. The parameters “cr,”
“er,” and “ez” have the greatest coefficient of determination. It
implies that the previous linear regression analysis is sufficient to
compare the relative importance of different design parameters on
engine performance. The results of fit linear regression model are
provided in the Supplementary Material.

CONCLUSION

In this work, an efficient optimization method that is based on
Bayesian updating strategy is developed for 3D CFD-based
optimization of internal combustion engines. The method
couples DOE, genetic algorithm, and machine learning
method. The method is applied to optimize the pre-chamber
design for a spark-ignition engine. The pre-chamber geometry is
parameterized by 11 design parameters. CA50 is taken as the
primary objective of the optimization. A DOE matrix of these
design parameters is generated. The designs in the DOE matrix
are simulated using 3D combustion CFD, which generates a
database that is used to train the machine learning models.
Different machine learning models are evaluated in two stages.
The first stage is based on the RMSE of the machine learning
models. The second stage is based on the iterations with genetic
algorithm and 3D combustion CFD. The optimal design is
compared with an averaged design to understand the effects of
pre-chamber design on engine performance. The following
conclusions can be drawn from the present paper:

(1) The proposed Bayesian updating optimization method based
on 3D combustion CFD, parameterization, DOE, GA, and
machine learning is efficient and feasible for engine
development.

(2) The medium Gaussian SVM model is found to be the best
machine learning model in the Matlab for the present
application.

(3) Combustion analysis of selected designs showed that the
turbulent intensity and flow structure inside the pre-chamber
is critical for the spark ignition process. Larger volume of the
pre-chamber leads stronger jet flow into the pre-chamber,
and consequently stronger turbulence and downward flow
that speeds up the processes of ignition and flame
propagation.

(4) Simple linear regression analysis was conducted. The results
show that the radius and height of the pre-chamber have
evident impact on the CA50. These are the three primary
design parameters determining the volume of the pre-
chamber. Large radius of the upper part of pre-chamber
benefits the ignition process. The heights of the pre-chamber
show less influential on engine performance. Steep slope
between the upper part and lower part of the pre-chamber is
beneficial for the ignition process.

(5) Larger volume of pre-chamber leads to lower compression
ratio, lower pressure and temperature at the spark timing,
and higher residual concentration in the pre-chamber, all of
which is not favorable for faster ignition/combustion.

FIGURE 19 | Slope and coefficient of determination (RSQ) of all the
design parameters of 1,000 times bootstrapping.
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Thus, thermochemical conditions conflict with the fluid
dynamic conditions. Selecting the right design is to find a
sweet spot that compromises these two different
mechanisms.

In the future, more design parameters, including nozzle
hole number, nozzle hole size, nozzle hole direction, nozzle
hole orientation, spark timing, and piston bowl will be taken
into consideration. Wider ranges of the design parameters
should be explored. The geometry of spark plug needs to be
included into the CFD model. More objectives (e.g., CA10,
TKE and residual gas fraction of pre-chamber, emissions) and
constraints (e.g., peak pressure, peak pressure rising rate) may
be taken into account using multi-objective optimization
methods.
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