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Abstract

We present and prove a set of necessary and sufficient conditions that the inequality f4(x, y, z) ≥ 0

holds for all nonnegative real variables x, y, z, where f4(x, y, z) is a cyclic homogeneous polynomial
of degree four which satisfies f4(1, 1, 1) = 0.
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1 Introduction
A quartic cyclic homogeneous polynomial of three variables has the form

f4(x, y, z) = x4 + y4 + z4 +A(x2y2 + y2z2 + z2x2) +Bxyz(x+ y + z)

+C(x3y + y3z + z3x) +D(xy3 + yz3 + zx3),

where A,B,C,D are real constants.
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In [1], V. Cirtoaje presented and proved that

3(1 +A) ≥ C2 + CD +D2

is a necessary and sufficient condition to have f4(x, y, z) ≥ 0 for all real x, y, z in the particular case
f4(1, 1, 1) = 0.

In [2], we obtained two set of necessary and sufficient conditions to have f4(x, y, z) ≥ 0 for all real
x, y, z in the general case f4(1, 1, 1) ≥ 0. These conditions are stated in Theorem 1.1 and Theorem
1.2.

Theorem 1.1. The cyclic inequality f4(x, y, z) ≥ 0 holds for all real numbers x, y, z if and only if

f4(t+ k, k + 1, kt+ 1) ≥ 0

for all real t, where k ∈ [0, 1] is a root of the equation

(C −D)k3 + (2A−B − C + 2D − 4)k2 − (2A−B + 2C −D − 4)k + C −D = 0.

Theorem 1.2. The cyclic inequality f4(x, y, z) ≥ 0 holds for all real numbers x, y, z if and only if
g4(t) ≥ 0 for all t ≥ 0, where

g4(t) = 3(2 +A− C −D)t4 − Ft3 + 3(4−B + C +D)t2 + 1 +A+B + C +D,

F =
√

27(C −D)2 + E2, E = 8− 4A+ 2B − C −D.

The following theorem in [3] expresses some strong sufficient conditions that the inequality
f4(x, y, z) ≥ 0 holds for all real x, y, z.

Theorem 1.3. Let
G =

√
1 +A+B + C +D,

H = 2 + 2A−B − C −D − C2 − CD −D2.

The cyclic inequality f4(x, y, z) ≥ 0 holds for all real numbers x, y, z if the following two conditions are
satisfied:

(a) 1 +A+B + C +D ≥ 0;
(b) there exists a real number t ∈ (−

√
3,
√
3) such that f(t) ≥ 0, where

f(t) = 2Gt3 − (6 + 2A+B + 3C + 3D)t2 + 2(1 + C +D)Gt+H.

In [4], we found some sharp sufficient conditions that the inequality f4(x, y, z) ≥ 0 holds for all
x, y, z ≥ 0, which are stated in Theorem 1.4.

Theorem 1.4. The inequality f4(x, y, z) ≥ 0 holds for all nonnegative real numbers x, y, z if

1 +A+B + C +D ≥ 0

and one of the following two conditions is fulfilled:

(a) 3(1 +A) ≥ C2 + CD +D2;

(b) 3(1 +A) < C2 + CD +D2 , and there is t ≥ 0 such that

(C + 2D)t2 + 6t+ 2C +D ≥ 2
√

(t4 + t2 + 1)(C2 + CD +D2 − 3− 3A).

In addition, we have conjectured that for 1 + A + B + C + D = 0, the conditions (a) and (b) in
Theorem 1.4 are necessary and sufficient to have f4(x, y, z) ≥ 0 for all x, y, z ≥ 0. The main objective
of this paper is to show that this conjecture is true. Some related results are also given in [5], [6] and
[7].
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2 Main Results
The main result is given by the theorem below, which gives a set of necessary and sufficient conditions
to have f4(x, y, z) ≥ 0 for all x, y, z ≥ 0 in the most usual case f4(1, 1, 1) = 0.

Theorem 2.1. For f4(1, 1, 1) = 0, the inequality f4(x, y, z) ≥ 0 holds for all nonnegative real numbers
x, y, z if and only if one of the following two conditions is satisfied:

(a) 3(1 +A) ≥ C2 + CD +D2;

(b) 3(1 +A) < C2 + CD +D2 , and there exists t0 ≥ 0 such that

F4(t0) = (2C +D)t20 + 6t0 + 2D + C − 2
√

(t40 + t20 + 1)(C2 + CD +D2 − 3(1 +A)) ≥ 0.

Consider now the more general case where f4(1, 1, 1) ≥ 0. Applying Theorem 2.1 to the function

g4(x, y, z) = f4(x, y, z)− (1 +A+B + C +D)xyz
∑

x,

which satisfies g4(1, 1, 1) = 0, we get the following corollary.

Corollary 2.2. The inequality f4(x, y, z) ≥ 0 holds for all nonnegative real numbers x, y, z if one of
the following two conditions is satisfied:

(a) 3(1 +A) ≥ C2 + CD +D2;

(b) 3(1 +A) < C2 + CD +D2 , and there exists t0 ≥ 0 such that

F4(t0) = (2C +D)t20 + 6t0 + 2D + C − 2
√

(t40 + t20 + 1)(C2 + CD +D2 − 3(1 +A)) ≥ 0.

To prove Theorem 2.1, we need three lemmas.

Lemma 2.3. Let

S =
∑

x2y2 −
∑

x2yz, U =

∑
x3y −

∑
x2yz

S
, V =

∑
xy3 −

∑
x2yz

S
.

If x, y, z ≥ 0, then

U > 0, V > 0, UV = 1 +
xyz(x+ y + z)(x2 + y2 + z2 − xy − yz − zx)2

S2
≥ 1.

In addition, for f4(1, 1, 1) = 0, the inequality

f4(x, y, z) ≥ 0

holds for all real x, y, z if and only if
F (U, V ) ≥ 0,

where

4F (U, V ) = 4(U2 − UV + V 2 + 1 +A+ CU +DV )

= (U + V + C +D)2 + 3

(
U − V +

C −D

3

)2

+
4

3
(3 + 3A− C2 − CD −D2).
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Lemma 2.4. If t0 is a real root of the equation

2t4 +Dt3 − Ct− 2 = 0,

then (
1

t0
+ t0 + C +D

)2

+ 3

(
1

t0
− t0 +

C −D

3

)2

=
[(2C +D)t20 + 6t0 + C + 2D]2

3(t40 + t20 + 1)
.

Lemma 2.5. Let t0 be a real root of the equation

2t4 +Dt3 − Ct− 2 = 0.

If
3(1 +A) < C2 + CD +D2,

f4(1, 1, 1) = 0 and f4(x, y, z) ≥ 0 for all x, y, z ≥ 0, then

(2C +D)t20 + 6t0 + C + 2D ≥ 0.

3 Proof of Lemmas 2.3, 2.4 and 2.5
Proof of Lemma 2.3. From

2S = x2(y − z)2 + y2(z − x)2 + z2(x− y)2,

it follows that S ≥ 0. In addition, S = 0 when x = y = z, and also when y = z = 0 (or any cyclic
permutation). For x, y, z ≥ 0, by the Cauchy-Schwarz inequality, we have

(z + x+ y)(x3y + y3z + z3x) ≥ xyz(x+ y + z)2,

hence
x3y + y3z + z3x ≥ xyz(x+ y + z),

with equality for x = y = z. From this inequality and S ≥ 0, it follows that U > 0. Similarly, we can
show that V > 0. To complete the proof, we use the identity

f4(x, y, z)

S
= F (U, V ),

which is valid for all real x, y, z such that S 6= 0. Consider now the case S = 0. If x = y = z, then

f4(x, y, z) = x4f4(1, 1, 1) = 0.

Also, if y = z = 0, we have
f4(x, y, z) = x4 ≥ 0.

Remark 3.1. Consider the case where f4(1, 1, 1) = 0 and 3(1 + A) = C2 + CD + D2. In order to
study when the equality f4(x, y, z) = 0 occurs (for other cases than x = y = z), assume that

p = x+ y + z, q = xy + yz + zx, r = xyz.

We have the following two identities

UV − 1 =
pr(p2 − 3q)2

(q2 − 3pr)2
,
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U + V − 1 =
q(p2 − 3q)

q2 − 3pr
.

Without loss of generality, assume that p = x+ y + z = 3. After some calculations, we get
p = x+ y + z = 3,

q = xy + yz + zx = 9(U+V−1)

U2+V 2−UV +U+V +1
,

r = xyz = 27(UV−1)

(U2+V 2−UV +U+V +1)2
.

(3.1)

Since the equality f4(x, y, z) = 0 holds for U +V = −C−D and U −V = (−C+D)/3 (Lemma 2.3),
we get the equality conditions

p = x+ y + z = 3,

q = xy + yz + zx = −108(C+D+1)

(C−D)2+3(C+D−2)2
,

r = xyz = 108(9(C+D)2−(C−D)2−36)

((C−D)2+3(C+D−2)2)2
,

(3.2)

which are the same as the ones in [2].

Remark 3.2. Let f4(x, y, z) be a fourth degree cyclic homogeneous polynomial such that f4(1, 1, 1) =
0 and f4(x, y, z) ≥ 0 for all real numbers x, y, z. The inequality f4(x, y, z) ≥ 0 becomes an equality
when x = y = z, and also when x, y, z satisfy

(C −D)(x+ y + z)(x− y)(y − z)(z − x) ≥ 0

and are proportional to the roots w1, w2 and w3 of the polynomial equation

w3 − 3w2 + qw − r = 0.

Proof of Lemma 2.4. Denote

G =
1

t0
+ t0 + C +D, H =

1

t0
− t0 +

C −D

3
.

We need to show that X = Y , where

X = (G2 + 3H2)[(3(t20 + 1)2 + (t20 − 1)2], Y =
4

3
[(2C +D)t20 + 6t0 + C + 2D]2.

Since

X = [G(t20 − 1)− 3H(t20 + 1)]2 + 3[G(t20 + 1) +H(t20 − 1)]2

=
2

t0
(2t40 +Dt30 − Ct0 − 2)2 + 3[G(t20 + 1) +H(t20 − 1)]2

= 3[G(t20 + 1) +H(t20 − 1)]2,

the desired equality becomes

[G(t20 + 1) +H(t20 − 1)]2 =
4

9
[(2C +D)t20 + 6t0 + C + 2D]2.

This is true because of

3[G(t20 + 1) +H(t20 − 1)] = 2[(2C +D)t20 + 6t0 + C + 2D].

Proof of Lemma 2.5. Denote

a =
2C +D

3
, b =

C + 2D

3
, g(t) = at2 + 2t+ b.
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We need to show that g(t0) ≥ 0.
We will show first that there exists t ≥ 0 such that g(t) ≥ 0. For the sake of contradiction, assume

that g(t) < 0 for all t ≥ 0. From
g(0) = b

and
lim
t→∞

g(t)

t2
= a,

we get
a < 0, b < 0.

In addition, from g

(√
b

a

)
< 0, we get

ab > 1.

Choosing x, y, z such that U + V = −C −D and U − V = (D − C)/3, that is

U =
−(2C +D)

3
= −a > 0, V =

−(C + 2D)

3
= −b > 0,

from Lemma 2.3 we get

F (U, V ) =
3 + 3A− C2 − CD −D2

3
< 0,

which contradicts the hypothesis that f4(x, y, z) ≥ 0 for all x, y, z ≥ 0. Therefore, there exists t ≥ 0
such that g(t) ≥ 0.

Since C = 2a − b and D = −a + 2b, we can rewrite the hypothesis 2t40 +Dt30 − Ct0 − 2 = 0 in
the form

a(t30 + 2t0) + 2 = b(2t30 + t0) + 2t40, t0 > 0.

Using this relation gives

g(t0) =
2(t40 + t20 + 1)(at0 + 1)

2t30 + t0
=

2(t40 + t20 + 1)(b+ t0)

t20 + 2
,

from which it follows that g(t0) ≥ 0 for a ≥ −1/t0 and also for b ≥ −t0. To complete the proof it
suffices to show that the remaining case (where a < −1/t0 and b < −t0) is not possible. Indeed, if
a < −1/t0 and b < −t0, then for t = 0 we have g(0) = b < 0, and for t > 0 we have

g(t) ≤ −2t
√
ab+ 2t < −2t+ 2t = 0.

This is a contradiction, because there exists t ≥ 0 such that g(t) ≥ 0.

4 Proof of Theorem 2.1
Sufficiency. By Lemma 2.3, it suffices to show that F (U, V ) ≥ 0.

Case (a): 3(1 +A) ≥ C2 + CD +D2. We have

4F (U, V ) = (U + V + C +D)2 + 3

(
U − V +

C −D

3

)2

+
4

3
(3 + 3A− C2 − CD −D2)

≥ 4

3
(3 + 3A− C2 − CD −D2) ≥ 0.

Case (b): C2 + CD +D2 > 3(1 +A). Write the inequality F (U, V ) ≥ 0 in the form

(U + V + C +D)2 + 3

(
U − V +

C −D

3

)2

≥ 4

3
(C2 + CD +D2 − 3− 3A).

234



Zhou; BJMCS, 8(3), 229-237, 2015; Article no.BJMCS.2015.157

For any t ≥ 0, by the Cauchy-Schwarz inequality, we have

(U + V + C +D)2 + 3

(
U − V +

C −D

3

)2

≥ 3M2

3(t2 + 1)2 + (t2 − 1)2
=

3M2

4(t4 + t2 + 1)
,

where

M = (t2 + 1)(U + V + C +D) + (t2 − 1)

(
U − V +

C −D

3

)
=

2

3
[(2C +D)t2 + 3(Ut2 + V ) + C + 2D].

Thus, we only need to show that

[(2C +D)t2 + 3(Ut2 + V ) + C + 2D]2

t4 + t2 + 1
≥ 4(C2 + CD +D2 − 3− 3A).

This is true if

(2C +D)t2 + 3(Ut2 + V ) + C + 2D√
t4 + t2 + 1

≥ 2
√

C2 + CD +D2 − 3− 3A.

Since
Ut2 + V ≥ 2t

√
UV ≥ 2t,

it suffices to prove that

(2C +D)t2 + 6t+ C + 2D ≥ 2
√

(t4 + t2 + 1)(C2 + CD +D2 − 3− 3A),

which is true by hypothesis.

Necessity. Let t0 be a positive root of the equation

2t4 +Dt3 − Ct− 2 = 0.

It suffices to consider the case C2 + CD + D2 > 3(1 + A), and to show that if f4(1, 1, 1) = 0 and
f4(x, y, z) ≥ 0 for all x, y, z ≥ 0, then

(2C +D)t20 + 6t0 + C + 2D ≥ 2
√

(t40 + t20 + 1)(C2 + CD +D2 − 3− 3A).

By Lemma 2.4 and Lemma 2.5, we have√(
1

t0
+ t0 + C +D

)2

+ 3

(
1

t0
− t0 +

C −D

3

)2

=
(2C +D)t20 + 6t0 + C + 2D√

3(t40 + t20 + 1)
.

Based on this result, using Lemma 2.3 for x = 1, y = t0 and z = 0 yields

U = t0, V = 1/t0

and

4F (U, V ) =

(
t0 +

1

t0
+ C +D

)2

+ 3

(
t0 −

1

t0
+

C −D

3

)2

+
4

3
(3 + 3A− C2 − CD −D2)

=
[(2C +D)t20 + 6t0 + C + 2D]2

3(t40 + t20 + 1)
− 4

3
(C2 + CD +D2 − 3− 3A).
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Since the hypothesis f4(x, y, z) ≥ 0 for all x, y, z ≥ 0 involves F (U, V ) ≥ 0, we get

[(2C +D)t0)
2 + 6t0 + C + 2D]2

3(t40 + t20 + 1)
≥ 4

3
(C2 + CD +D2 − 3− 3A).

In addition, since
(2C +D)t2 + 6t+ C + 2D ≥ 0

(by Lemma 2.5), we can rewrite this inequality as

(2C +D)t20 + 6t0 + C + 2D ≥ 2
√

(t40 + t20 + 1)(C2 + CD +D2 − 3− 3A),

which is just the desired inequality.

5 Conclusion
In [4], we presented and proved Theorem 1.4, which states some strong sufficient conditions for
cyclic homogeneous polynomial inequalities of degree four in nonnegative real variables and, for the
most usual case f4(1, 1, 1) = 0, we conjectured that the sufficient conditions in Theorem 1.4 are also
necessary to have f4(x, y, z) for all x, y, z ≥ 0. In this paper, we have proved that this conjecture is
true.
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