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Abstract 
 

Based on the very old methods of solving linear systems of simultaneous congruences, the 
Chinese Remainder Theorem is still an irreplaceable tool in Computing, Signal Processing and 
Information security.            
We demonstrate its potential by considering an example of an application concerning 
quaternionic imaging.  
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1 Introduction 
 
In the first century AD, a Chinese mathematician by the name of SUN ZI, published a book, Sun Zi 
Suanjing, or the Arithmetical Classic of Sun Zi [1]. In this book Sun Zi introduced a method for 
solving linear systems of congruences (cf Annex 1) that is known as the Chinese Remainder 
Theorem, or CRT [2].  
 
Republished in 1247(AD) by Qin Jiushao, CRT has become, in the last thirty years of our modern 
era ,an irreplaceable tool used in computing, signal processing  and information security. 
 
 
 

Short Communication 
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2 Historical Development     
 
Sun ZI (or Sun Tzu) was a Chinese mathematician and astronomer who lived between the 3

rd
 and 

5th centuries, during the Wei and Jin dynasties. Interested in astronomy and with a desire to 
develop a calendar, he investigated Diophantine equations. He is known primarily as the author of 
a book, SunZi Suan Jing, or the “Arithmetical Classic of SunZI”, which contains the earliest known 
example and the formulation of the famous “Chinese Remainder Theorem”, or CRT. The results 
concerning a general method for solving the linear systems of congruences were published for the 
first time, much later, in 1247 by Quin Jiushao. 
               
Aryabhata, (476-550), Hindu Mathematician, published his work about a century after Sun Zi 
Suanjing and invented a general rule for solving undetermined equations (a method called 
KUTTAKA). 
 
During the 11

th
 century, Ibn Tahir (sometimes known as Al-Baghadi), 980-1039, used the CRT in 

his treatise Al Takmila. 
 
Fibonacci (1170-1250) was the first European to study the CRT in his Liber Abaci, in 1202.     
 
Quin Jiushao (1202-1261) was one of the greatest mathematicians in Chinese history. He 
composed the great work Mathematical Treatise in Nine Sections. The work included the Dayan 
General Mathematical Art, a general form of the Chinese Remainder Theorem solution of linear 
congruences equation and the algorithms to solve it. He also introduced the zero symbol into 
written Chinese mathematics. 
 
Later during the 14th and 15th centuries, Isaac Argyros and Frates Federicus used the CRT in their 
treatise Eisagoges Arithmetike. 
 
Leonard Euler (1707-1783) gave the general solution for solving linear systems of congruences 
(Euler theorem). 
 
Friedrich Gauss (1777-1855) published, in 1801, his book Disquisitiones Arithmeticae of which 
several chapters are devoted to equivalence and solvability of congruences. 
 

3 Base of Chinese Remainder Theorem 
 
The Chinese Remainder Theorem (CRT) is mainly based on the algorithm of linear congruencies.         

The system of linear congruencies a≅ b (mod m) can be reduced to a set of a≅ bi (mod mi ), with:  

1≤i≤k                      
 

x ≅ [a1M1y1 +a2M2y2 +⋯ +akMkyk ](mod M ) 

with M= m1 x m2 x ⋯ x mk, Mi = M/mi, 

yi ≅ (Mi )
-1

(mod mi) and  yi integer which verifies: yi Mi ≅1(mod mi). 

 
(Two numbers are considered to be relatively prime if their greatest common divisor is 1). 
 
If the equation set does not meet the restrictions (no coprimes) to be solved by the traditional CRT 
method, then the algorithm should convert it to a new set of equations, where the moduli are 
relatively prime. 
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4 Historical Example of Problem 
 
An old woman goes to the market with a basket of eggs. She sets the basket down and a horse 
accidentally steps on it, crushing all the eggs. The rider offers to pay her for the damaged eggs 
and asks how many eggs she had. She tells the rider that she can’t remember but that when she 
took all of the eggs out, three at a time, there were two left in the basket. When she took them out 
five at a time, there were three left and when she took them out seven at a time, there were two 
left. 
 
What is the smallest number of eggs she could have had? 
 
In this example we have a system of three simultaneous congruences 
   

Congru1  x ≅ 2 (mod 3) 

Congru2  x ≅ 3 (mod 5) 

Congru3  x ≅ 2 (mod 7) 

 

5 Solution (with Sun ZI algorithm) 
 
The Chinese Remainder Theorem (CRT) is mainly based on the algorithm of linear congruencies. 

The system of linear congruencies a≅ b (mod m) can be reduced to a set of a≅ bi (mod mi ), with: 

1≤i≤k.  (Cf Annex1). 
 
If the equation set does not meet the restrictions (not coprimes) to be solved by the traditional CRT 
method, then the algorithm should convert it to a new set of equations, where the modules are 
relatively prime.  
 
(Two numbers are considered to be relatively prime if their greatest common divisor is 1). 
 

x≅ [a1M1y1 +a2M2y2 +⋯ +akMkyk ] (mod M)  with M= m1 x m2 x ⋯ x mk ,  Mi = M/mi , yi ≅ (Mi )
-1 (mod mi) 

and  yi integer which verifies: yi Mi ≅1(mod mi). 

 
m1=3     m2=5     m3=7      M=3x5x7=105 
          
a1=2   a2=3  a3=2    M1=35   M2=21   M3=15 
    

yi ≅ (Mi )
-1(mod mi) →  y1 ≅ (35)-1(mod 3)=2  

               

y2 ≅ (21)-1(mod 5)=1   y3 ≅ (15)-1(mod 7)=1 

 
We obtain: x=[2X35X2+3X21X1+2X15X1](mod105)=233(mod105)=23 
 

5.1 Other Method 
 
We convert the three congruences into sets and write the elements out to the product 
 
M=3X5x7=105              
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With congr 1  :     x=(2,5,8,11,14,17,20,23,26,29,32,35,..,    98,101,104,…… 
With congr 2      x=8,13,18,23,2833,38,43,53,58,63,68,73,78,83,88,93,98,103,… 
With congr 3       x=(2,9,16,23,30,37,44,51,58,65,72,79,86,93,100,…… 

 
To find an x that satisfies all three congruences, intersect the three sets to get: 
 

 x=23 (mod 105) or x=23+105 u, with u= 0, 1, 2 ,…∞. 
 

6 The Inverse CRT 
 
The objective of the inverse CRT is to represent any integers x (0 < x < M−1) with a set of integers 
ai function of m1, m2,…mK. The ai are obtained from the following set of simultaneous 
congruences. 
 
       a i≅x(mod mi).  
 
We have with the preceding examples: X=23  
 

with m1=3, m2=5, m3=7 
 

a1=23(mod3),  a2=23(mod5),    a3=23(mod7) 
a1=2                 a2=3             a3=2 
 

So, from the free values 3, 5, 7 of the common key and with the final value 23 (compressed 
information), we can rediscover the three initial values ai : 2, 3; 2. 
 

7 Philosophy 
 
The Chinese Remainder Theorem can be viewed as a manifestation of the general principle “pars 
pro toto” - a part goes for the whole thing.  
 
The CRT is basically a divide-and-conquer technique. The original problem given problem is 
divided into sub problems. The latter can be solved independently of each other, and then 
combined in parallel, giving the original problem. It is amazing to see how ancient mathematics 
like the CRT and Euclidian algebra, have continued to find many applications today! 
 
(A Google search using the search term “Chinese Remainder Theorem” gives more than 390000 
results!). 
       

8 Applications of the CRT 
 
The Chinese Remainder Theorem has applications in many fields, the main ones being computing, 
coding theory, cryptography and signal processing. 
 
The advantages to CRT approach for computing are that it requires less memory size and 
computation time. This result is obtained by its use parallelization and simple arithmetic operations. 
 
In coding theory, detection and correction of errors is carried out by adding redundancy to data 
that is sent via a noisy channel or in a computer. The CRT remainder techniques are useful in 
developing code that detects errors. 
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In cryptography, the CRT is used in secret sharing through error-correcting code. The CRT is itself 
a secret-sharing scheme without any need for modification: The CRT is itself a secret-sharing 
scheme without any need for modification. 
 
The CRT gave rise to modular technique for signal and image processing. Cyclic convolution and 
Fourier transform are important elements of digital signal processing. 
 
To illustrate the potential of CRT in image processing we propose an unconventional 
application in quaternion spectral imagery. 
 

9 Quaternionic Fourier Transform 
 
Based on the quaternion’s concept, the QFT has been introduced by Ell [3]. The quaternion Fourier 
Transform of a 2D real signal f(x, y) is defined as: 
 

F�(u, v) = � � e���π��f(x, y)e���π�� dx dy

�∞

�∞

�∞

�∞

 

 
This QFT, of type 1 [4,5] is noted two-side. If the input f(x, y) is a quaternion function and not only a 
real function [5]; we can decompose f(x, y) as: 
 

f(x, y) = f�(x, y) + f�(x, y) ∙ i + f�(x, y) ∙ j + f�(x, y) ∙ k 

 
where fr(x, y), fi(x, y), fj(x, y) and fk(x, y) are real functions. We obtain: 
 

F�(u, v) = F��(u, v) + F��(u, v)i + F��(u, v)j + F��(u, v)k 

 
The QFT is invertible and its inverse is expressed as: 
 

�(�, �) = � � ��������(�, �)������ �� ��

�∞

�∞

�∞

�∞

 

 
The discrete Quaternion Fourier Transform (DQFT) was introduced by Sangwine and Ell in year 
2000. This transform has many different expression types .In this paper; we only use the type 1 of 
DQFT, which has the following expression (direct formulation): 
 

��(�, �) = � � ������
��

�
��(�, �)������

��

�
�

���

���

���

���

 

 

10 CRT and Quaternionic Spectral Imagery 
  
A real 2D image B/W: f(x,y) is considered (Fig. 1). Its spectrum (Fig. 2), is computed with the 
Quaternion Fourier Transform (QFT). The reversible spectrum obtained Fq(u,v) is a quaternion. 
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Fig. 1. Original image 
 

  

  
 

Fig. 2. Spectrum (r,i,j,k) 

 

Given the Hermitian symmetry [6], we retain only (Fig. 3) the for spectrum of the first quadrant 
Γq(u,v). 
        
 v  
                                                          
         ∗ Γq(u,v): Γrq, Γiq , Γjq , Γkq      

      
                                                                              
   U 
 
 
 
  Γq(u,v)=[1+Sgn u ][1+Sgn v ]Fq(u,v) 

 
 

Fig. 3. Quaternionic spectrum 
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With B/W we obtain four tables (u,v) : real, i ,j ,k with 4×(N×M) pixels of eight bits. For each value 
of u,v we obtain  one block  2x2 of 8 bits which corresponds to a total of 32 bits . 
 
Example: Block 2x2 belonging to the for components of the spectrum 
  

235 135 
156 223 

 
But 235=14×16+11, 135=8×16+7, 156=9×16+12, 223=13×16+15. We obtain a block 4x2 in four 
bits coding after division by 16: 
 

14 8 9 13 
11 7 12 15 

 

10.1 Selection of the Key  
 
We choose the eight prime numbers:  2   3   5   7  11  13  17  19  (The key can be obtained after a 
random selection). We obtain eight simultaneous congruences: 
 

x= 14 mod 2                     x=9 mod11 
x=11 mod 3                      x=12 mod13 
x= 8 mod 5                       x=13 mod17 
x= 7 mod 7                       x=15 mod 19 

 
The solution in decimal notation [7], is 6354698, which corresponds to the 23 bits followings:       
11000001111011100001010. 
 
The compression is lossless and the ratio is 32/23=1, 39. (For a particular data set, the values of 
the key components can be optimized, as well as their classification). 
 
With a complementary Huffman encoding, we obtain 201701 in decimal notation and only 
110001001111100101 in binary notation (18 bits). The total ratio of compression is then: 
18/32=56/100. (In this case, the use of compression by Gödelization is not very interesting, 
because our previous value: 6354698 is already a prime number and the decomposition in prime 
factors is irrelevant). 
 
This compression [8] is possible due to the non-random nature of the spectral data. In the absence 
of redundancy in the data, no compression is possible!        
 
If the real original image is a color image RGB, we process the three components 
independently, as three images B/W.   
 

11 Interpretation 
 
The results obtained with a single key are not constant and are based on statistical properties of 
the data redundancy We chose this example of application because it corresponds to the general 
approach of the CRT, which realizes the grouping of the quaternionic spectrum, divided into four 
components r, i, j, k in a unique spectrum. This spectrum is solution of system congruence, 
associated with these four spectral components. 
  
The compression via CRT is subject to severe constraints that limit performance. Indeed, in this 
application, the key must be unique and, in these circumstances, cannot adapt to local conditions. 
If this unicity condition was not satisfied, it would be necessary to transmit all the keys used, which 
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would lead to the disappearance of any compression. Furthermore, the compression ratio is 
dependent to choice of the key. 
 

12 Conclusions 
 
The use of the CRT in image compression is mainly justified by the potential insertion of coded 
information (digital watermarking, RSA cryptosystem). In pure compression, a performance 
remains modest and limits the diffusion of this method. 
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ANNEX I 
 

Congruence (Latin congruentia: consistency, Accordance)  
 
Congruence on the integers is a relationship between two integers. It is the foundation of modular 
arithmetic.  
 
Congruence modulo m.  
 
Two integers a and b are called congruent modulo m (where m, modulus, is a strictly positive 
integer greater than or equal to 2), if one of these two equivalent conditions is satisfied.  

 
1)  Their difference is divisible by m. 
               
       a-b= k m   k integer 
   
2) The remainder (or residue) of the Euclidean division of a by m is equal to that of the 

division of b by m. 
               

              Notation: a≅ b (mod m) 

 
Properties 
 

Reflectivity: a≅a(mod m) 

Symmetry: if a≅b(mod m) then b≅ a(mod m) 

Transitivity: if a≅b(mod m) and b≅c(mod m)                      

then a≅c(mod m) 
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