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Mapping impervious surfaces with a hierarchical spectral mixture analysis 
incorporating endmember spatial distribution
Zhenfeng Shao a, Yuan Zhang a, Cheng Zhanga, Xiao Huang b and Tao Chenga

aState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan, China; bDepartment of 
Geosciences, University of Arkansas, Fayetteville, AR, USA

ABSTRACT
Impervious surface mapping is essential for urban environmental studies. Spectral Mixture 
Analysis (SMA) and its extensions are widely employed in impervious surface estimation from 
medium-resolution images. For SMA, inappropriate endmember combinations and inadequate 
endmember classes have been recognized as the primary reasons for estimation errors. 
Meanwhile, the spectral-only SMA, without considering urban spatial distribution, fails to 
consider spectral variability in an adequate manner. The lack of endmember class diversity 
and their spatial variations lead to over/underestimation. To mitigate these issues, this study 
integrates a hierarchical strategy and spatially varied endmember spectra to map impervious 
surface abundance, taking Wuhan and Wuzhou as two study areas. Specifically, the piecewise 
convex multiple-model endmember detection algorithm is applied to automatically hierarch
ize images into three regions, and distinct endmember combinations are independently 
developed in each region. Then, spatially varied endmember spectra are synthesized through 
neighboring spectra using the distance-based weight. Comparative analysis indicates that the 
proposed method achieves better performance than Hierarchical SMA and Fixed Four- 
endmembers SMA in terms of MAE, SE, and RMSE. Further analysis suggests that the hierarch
ical strategy can expand endmember class types and considerably improve the performance 
for the study areas in general, specifically in less developed areas. Moreover, we find that 
spatially varied endmember spectra facilitate the reduction of heterogeneous surface material 
variations and achieve the improved performance in developed areas.
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1. Introduction

Spectral Mixture Analysis (SMA) and its extensions 
are widely used for estimating impervious surfaces 
from remote sensing images (Long, Rivard, and 
Rogge 2020; Powell and Roberts 2008; Powell et al.  
2007; Small and Lu 2006). In the past decades, efforts 
have been made that focused on the selection of 
appropriate spectral signatures to reduce (or enhance) 
inter-class variation, leading to the development of 
Automated Shortwave Infrared (SWIR) unmixing 
method (Asner and Heidebrecht 2010), the 
Normalized Spectral Mixture Analysis (NSMA) (Wu  
2004), and Derivative Spectral Unmixing (DSU) 
method (Zhang, Rivard, and Sanchez-Azofeifa 2004). 
Furthermore, the importance of spectral bands with 
the lowest intra-class variations in impervious surface 
mapping led to the development of Weighted Spectral 
Mixture Analysis (WSMA) (Chang and Ji 2006) and 
Stable Zone Unmixing (SZU) (Somers et al. 2010).

In addition to the selection of appropriate spectral 
signatures, the types and amounts of endmember 
classes are also essential to the success of SMA (Li  
2019; Fan and Deng 2014, 2015; Degerickx, Roberts, 
and Somers 2019). Numerous studies have found that 
inappropriate endmember combinations may lead to 

considerably reduced accuracy of land cover abundance 
estimates, resulting in inaccurate reference biophysical 
compositions of urban environments. Ridd (1995) pro
posed a three-component model that describes the 
composition of the urban environment: the vegeta
tion–impervious surface–soil. Moreover, the High 
Albedo-Low Albedo-Soil-Vegetation (H-L-S-V) and 
the Low Albedo-Soil-Vegetation (L-S-V) models were 
developed and applied in low-density and high-density 
urban areas, respectively (Zhang et al. 2014; Wu and 
Murray 2003; Small and Lu 2006; Rashed et al. 2003; 
Foody and Cox 1994). If a nonexistent land cover end
member class is included, the estimated abundance of 
this endmember class is usually non-zero, thus inevita
bly resulting in overestimation errors. Rather than 
using a fixed-set of endmembers for an entire image, 
Multiple Endmembers Spectral Mixture Analysis 
(MESMA) (Roberts et al. 1998), as the most represen
tative trial-and-error method, cyclically tests all combi
nations of endmembers and finds the best-fit model 
with the lowest-error criterion (Fernández-Manso, 
Quintano, and Roberts 2012). Despite that MESMA 
takes into account endmember types, however, it does 
not consider their spatial distribution.
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Recently, a number of studies have found that spa
tial information can assist in improving unmixing 
results (Franke et al. 2009; Rogge et al. 2007; Eches, 
Dobigeon, and Tourneret 2010). Deng and Wu (2013) 
developed a Spatially Adaptive Spectral Mixture 
Analysis (SASMA) that synthesized the endmember 
spectral signature of pixels by incorporating the spec
tra of neighboring endmember pixels. Several per-field 
methods used distinct endmember combinations of 
different homogenous regions partitioned from an 
image to tackle complex scenes with a large number 
of materials (Shi and Wang 2014; Sun et al. 2017; Liu 
and Yang 2013). Zare et al. (2013) proposed 
a Piecewise Convex Multiple-Model Endmember 
Detection (PCOMMEND) algorithm that employed 
fuzzy clustering methods to identify regions composed 
of a single spectrum endmember set. The Geographic 
Information Assisted Temporal Mixture Analysis 
(GATMA) was developed to address the issues of end
member class variability and endmember spectral 
variability (Li and Wu 2015; 2017). A more detailed 
discussion can be found in a review that introduced 
and categorized spatial information incorporated 
unmixing methods (Shi and Wang 2014).

Despite the aforementioned efforts, challenges still 
remain (Li 2017; Shi and Wang 2014; Zare and Ho  
2014; Somers et al. 2011; Zhang et al. 2019). A well- 
noted problem is that the numbers and types of end
member classes are inadequate to meet material diver
sity in urban scenes when implementing three/four- 
components SMA. In general cases, the number of 
endmember classes is restricted to B + 1, where B is 
the number of available image bands. In fact, 
a complex urban scene often contains diverse materi
als (Wetherley, Roberts, and Mcfadden 2017). For 
instance, artificial urban surface materials could 
include asphalt, concrete, metal, cement, and tiles 
(Wetherley, Roberts, and Mcfadden 2017; Herold 
and Roberts 2005). Soils, depending on moisture and 
type, could also show spectral variability that is similar 
to impervious surfaces (Hu and Weng 2009). In addi
tion, the spatial heterogeneity of the ground surface is 
associated with the density of population and eco
nomic factors (Shao et al. 2020a; Liu et al. 2020,  
2021; Gao et al. 2019). Impervious surfaces are mainly 
found in urban centers, while vegetation tends to lie in 
mountains or surrounding plains. Therefore, the 
ignorance of the impact of geographical distribution 
and economic factors on the endmember spectral 
variability will inevitably occur mis-estimation. For 
most studies, extreme pixels identified from the vertex 
of the n-dimensional scatter plot are usually extracted 
as endmembers and then applied to the entire image 
(Yang, He, and Oguchi 2014; Li and Wu 2014; Hsieh, 
Lee, and Chen 2001). These extreme endmembers 
with global endmember spectra are able to maximize 
inter-class variation in an effective manner but fail to 

reduce intra-class variation (Mei et al. 2010). Thus, it 
is not valid to use extreme endmembers’ spectral sig
natures and apply them to the whole image. However, 
most existing efforts failed to consider endmember 
combinations and spatial variations of endmember 
simultaneously.

The overlooked types and spatial variations of end
members would lead to under- or over-estimation of 
fractional land cover. To mitigate this problem, we 
took into account the endmember combinations and 
endmember spatial variations through a hierarchical 
strategy and localizing spatially varied endmember 
spectra in this study. Hierarchical strategy is consid
ered to be effective in reducing spectral variations 
(Franke et al. 2009; Yang and He 2017; Sun et al.  
2017). The initial Land Cover Abundances (LCAs) 
estimated by the PCOMMEND method were used to 
stratify the whole image into three regions via 
a specific threshold, with each region have distinct 
endmember combinations. For the whole image, the 
number of endmember classes is enriched to a certain 
extent, thus mitigating the restriction of B. Moreover, 
localizing spatial variation could partially address the 
issue using spatially adaptive endmembers (Li 2017; 
King and Younan 2006). Via a distance-based weight, 
we applied the Synthetic Spectral Signature Method 
(SSUME) (Deng and Wu 2013) to calculate spatially 
varied endmember spectra.

This study deals with endmember class diversity 
and their spatial variations in unmixing by proposing 
an extended SMA based on hierarchical strategy and 
SSUME. We aim to reduce confusion between spec
trally similar classes via various endmember classes 
and local spatially varied endmember spectra when 
mapping accurate impervious surface abundances. 
The rest of this article is structured as follows. 
Section 2 describes the study area and datasets. 
Section 3 presents the proposed methods in detail, 
including hierarchization, endmembers selection, 
impervious surface estimation, and validation data. 
Section 4 presents the estimation results of the pro
posed methods, quality assessment, and comparative 
analysis. Finally, Section 5 presents the discussion, 
followed by the conclusion in Section 6.

2. Study area and dataset

2.1. Study area

In this study, Wuhan and Wuzhou, China, were 
selected as our study areas (Figure 1). Wuhan, a city 
located in central China that has experienced rapid 
urbanization in the past decades, is the capital city of 
Hubei Province with a population of over 11 million. 
At latitude 29°58’–31°22’ N and longitude 113°41’– 
115°05’ E, Wuhan lies in the confluence of the Han 
River into the Yangtze River at in the East of the 
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JiangHan Plain. Middle Wuhan is featured by low and 
flat terrain, while southern Wuhan is rather hilly. An 
older town, i.e. HanYang, lies in the west of Wuhan. 
The southeastern urban center is mainly covered by 
residential, commercial, and university buildings, with 
industrial, farmland, and woodland occupying the 
surrounding areas. Our study area in Wuhan covers 
a total of 4,500 km2, including the downtown and 
industrial regions.

Wuzhou, with a population of 2.99 million, is 
located in southeast Guangxi Province. At latitude 
22°58′12″–24°10′14″ N and longitude 111°51′14″– 
111°40′ E, Wuzhou sits at the confluence of the Gui 
River and the Xun River. The topography of Wuzhou 
is featured by high in northern-southern regions and 
a low, hilly central region. An older town is located in 
southeastern Wuzhou, mainly composed of dense 
low-rise houses, roads, and vegetation. The south is 
a newly developed area, mainly consisting of high-rise 
buildings and industrial buildings. As our second 
study area, the Wuzhou study area covers a total of 
1024 km2 urban areas and is characterized by complex 
urban fabrics. With different local economic, political, 
and social factors, these two study areas show different 
urban forms with complex urban-rural spatial patterns 

(Huang et al. 2021). Hence, we believe Wuhan and 
Wuzhou are ideal study areas for testing the proposed 
method. Moreover, impervious surface mapping can 
facilitate the evaluation of the urbanization process, 
providing essential supports that benefit architectural 
design and urban planning in Wuhan and Wuzhou 
(Shao et al. 2020c; Trinder and Liu 2020).

2.2. Dataset

This study used images collected from Landsat 
Operational Land Imager (OLI) and GaoFen-1 (GF- 
1) satellite to estimate impervious surface abundance 
in Wuhan and Wuzhou. Landsat OLI contains eight 
30 m multispectral bands and one 15 m panchromatic 
band. GF-1 has one 2 m panchromatic band, four 8 m 
Multispectral (MS) bands, and four 16 m resolution 
Wide-Angle Multispectral (WFV) bands.

A Landsat OLI acquired on 15 September 2018 cov
ering Wuhan urban area, was used in our study. It was 
collected from the United States Geological Survey 
(USGS) website. A 2 m pan-sharpened image gener
ated by GF-1 image in 2018 was collected as the 
reference image in Wuhan. The Landsat OLI image 

Figure 1. Two study areas. (a) The People’s Republic of China map; (b) The Landsat OLI image used in the Wuhan study area. (c) 
The GF-1 image used in the Wuzhou study area.
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was geometrically registered into the Universal 
Transverse Mercator (UTM) projection of pan- 
sharpened image with geometric errors of less than 
one pixel and then clipped into 2500 × 2000 pixels. 
A GF-1 WFV image acquired in 2018, covering the 
whole urban area, was used in the Wuzhou study area. 
Ground-based measurement vector data serve as the 
reference of the Wuzhou study area. In this paper, the 
co-registered GF-1 WFV image and Ground-based 
measurement data were collected from Wuzhou 
Municipal Housing and Urban-Rural Development.

3. Methodology

Studies have shown that three/four-component 
SMA does not allow a fine distinguishment of com
plex urban characteristics when applying to the 
entire region, and inappropriate endmember com
binations would lead to over/under-estimation of 
land cover abundance (Zhang et al. 2015). To 
tackle this problem, we first divided a complex 
urban scene into three regions. Endmember combi
nations were independently defined in each region 
according to respective landscape characteristics. 

The SSUME further derived spatially varied end
member spectra to minimize intra-class variation. 
Finally, the three/four-component SMA was used 
to estimate impervious surface abundance. The 
flowchart of the proposed method is shown in 
Figure 2.

3.1. Hierarchization of image

In this study, the initial LCAs estimated by the 
PCOMMEND method were utilized to characterize 
the urban landscape. The PCOMMEND method is 
a spatial-spectral unmixing method that considers 
the spectral and spatial information to generate land 
cover abundances. Multiple endmembers sets are gen
erated using an iterative fuzzy approach. For each 
endmember set, the endmember spectrum is simplex. 
Proportions P was derived by minimizing the objec
tive function using Equation (1). 

J E; P;Uð Þ ¼
XC

i¼1

XN

j¼1
um

ij Xj � EiPij
� �T Xj � EiPij

� �
 

þα
XM� 1

k¼1

XM

j¼kþ1
eik � eij
� �T eik � eij

� �
Þ (1) 

Figure 2. The flowchart of the proposed method.
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where X is the input data; E is an E� D matrix, 
and the percentage is estimated with M sample 
points for each group; Pj is the percent of pixel j; 
Pj;k is the percentage of the j pixel on the k end
member, ranging from 0 to 1; The sum of Pj;k is 
required to be 1; Ui;j is the membership value of 
the j data pixel in the ith endmember set; The sum 
of Ui;j is equal to 1. The number of endmember 
sets C and the number of endmembers per set M 
are set as 3 and 4, respectively.

Based on the urban characteristic, the initial LCAs, 
referenced as proportions P in Equation (1), were 
estimated by the PCOMMEND method. Major 
urban components were coarsely categorized into 
low albedo materials, high albedo materials, and vege
tation, linking to the initial LCA 1,2,3, respectively. 
The initial LCAs have a significantly high correlation 
with major urban components and can distinguish the 
different landscapes. For example, low reflectance 
impervious surfaces and fallow farmland tend to 
have a high initial LCA 1. In the initial LCA 2, high 
reflectance impervious surfaces and bare soil are high
lighted with positive values. Forest and grass have 
positive values in the initial LCA 3. Therefore, the 
initial LCAs are regarded as reliable urban landscape 
indicators to delineate various typical land covers.

A threshold was set to separate the initial LCAs into 
three regions. The threshold selection is an important 
step to characterize urban surface materials in each 
region. Existing studies have shown that three/four 
components achieve the optimal solution in the least- 
squares equation of SMA (Ridd 1995; Zhang 2008). The 
ill-posed problem occurs in SMA when the amount of 
endmember classes is more than the number of 

available image bands. The threshold t was manually 
determined and aimed to assure that three/four end
member classes are distributed in each region, and their 
types are consistent across the urban surface features. 
We designed the rules as follows. Region 1 = the initial 
LCA 1 > t; Region 2 = the initial LCA 2 > t; Region 
3 = 1- (Region 1 ∪ Region 2). Relating to the initial 
LCAs, Low albedo materials and High albedo materials 
mostly appear in Regions 1 and 2. Region 3 is mainly 
covered by vegetation. Thus each region is character
ized by its respective landscape characteristics and is 
treated individually to maximize inter-class spectral 
variability between urban and natural features.

3.2. Selection of endmembers

Endmembers can be considered as samples in unmix
ing. Existing methods tend to obtain endmember sets 
by setting a threshold or constructing a classification 
tree, which is usually time-consuming (Zhou, 
Wetherley, and Gader 2020). Most approaches yield 
endmember sets with a single spectrum when applying 
SMA (Zhang et al. 2014; Wu and Murray 2003; Small 
and Lu 2006). However, the most “representative” end
members and endmember bundles could minimize 
intra-class spectral variability, reducing the mixing of 
impervious surfaces and other land cover types.

In this study, the most “representative” endmembers 
were captured through manual interaction with the aid 
of endmember candidates. In the degree of member
ship, pixels with the same membership values represent 
land covers with similar spectral characteristics. Hence, 
pixels with the same membership value are aggregated 
into endmember candidates in this study. In addition, it 

Figure 3. The impervious surface classification in Wuhan (a) and Wuzhou (b).
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is crucial to ensure pure pixels in endmember candi
dates. For this reason, border pixels and small objects 
were removed from endmember candidates using 
a corrosion algorithm. Then, representative endmem
bers were identified and selected.

The three/four components were applied to 
describe the composition of urban surface in Region 
1–3. Endmember combinations were formed by the 
low albedo, high albedo, vegetation, and soil compo
nents. For instance, a L-S-V combination was used in 
Region 1, including low reflectance impervious sur
faces, soil, and vegetation. In this study, the L-L-S-V, 
the H-H-L-S, the H-H-S, and the L-S-V combinations 
were applied based on the urban characteristics. Such 
utilization of multiple combinations takes into 
account the spectrum diversity of land cover types, 
leading to improved impervious surface estimation.

3.3. Estimation of impervious surface abundance

After identifying representative endmembers in 
Section 3.2, we further implemented SSUME to 
synthesize spatially varied endmember spectra. The 
SSUME was proposed to reduce intra-class variations 
considering the spatial distribution of endmembers. 
The spatial dependency theory assumes that the end
member spectra of a target object should be highly 
associated with the closer neighboring objects corre
sponding to higher weight and vice versa (Wulder and 
Boots 1998). The spatially varied spectra of each end
member class were calculated using the reciprocal of 
the Euclidian distance, as: 

Fm;n;k ¼

Pmþl
i¼m� l

Pnþl
j¼n� l ωi;j;kFi;j;k

Pmþl
i¼m� l

Pnþl
j¼n� l ωi;j;k

(2) 

with 

ωij;k ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi;j� xm;n
� �2

þ yi;j � ym;n
� �2

q (3) 

subject to 

i�m; j�n; l > 0 

where Fm;n;k represents the synthetic spectral signature 
of endmember class k for the target pixel located at 
m; nð Þ; Fi;j;k is the spectral signature of the endmember 

pixel located at i; jð Þ; the weight ωij;k is the target- 
object distance between the endmember pixel and 
the target pixel for endmember class k; and l denotes 
the radius of the search window.

After the synthesis of endmember spectra, a linear 
SMA with full abundance constraints was adopted to 
estimate land cover abundance: 

Fb ¼
XN

i¼1
fiFi;b þ eb (4) 

subject to 

XN

i¼1
fi ¼ 1andfi � 0 

where Fb is the reflectance at band b; Fi;b, representing 
the synthetic spectral signature of endmember i at 
band b, can be obtained from Equation (2); fi is the 
calculated abundance of endmember of class i; N 
denotes the number of endmember classes; eb denotes 
the residual.

3.4. Land cover validation data

A pan-sharpened multispectral image and ground- 
based measurement data were used to produce 
reference images for Wuhan and Wuzhou (see 
Figure 3), respectively. For the Wuhan study area, 
the pan-sharpened image generated by GF-1 in 
2018 was classified into four classes using an 
object-based classification with the support vector 
machines classifier. The classified result was manu
ally modified, then downscaled to 30 m as the 
reference image. For the Wuzhou study area, vector 
data based on ground-based measurements were 
converted to a raster at 0.5 m spatial resolution 
and resampled to 16 m spatial resolution as the 
reference image. In ground-based measurement 
data, underground artificial constructions covered 
by pervious surfaces were removed to avoid confu
sion. The overall classification accuracy of the 
Wuhan and Wuzhou study areas was 97.28% and 
99.63%, respectively. Note that validation data do 
not fully cover the Wuhan study area, and the 
water body in Landsat and GF-1 were masked 
assisted by the validation data.

3.5. Accuracy assessment

Further, we randomly selected 300 pixels and per
formed a pixel-by-pixel comparison between esti
mated impervious surface abundance and reference 
abundance. Three statistical indices widely used in 
previous studies were applied in this study, namely 
the Mean Absolute Error (MAE), the Systematic Error 
(SE), and the Root Mean Square Error (RMSE), 
given by: 

MAE ¼
1
N

XN

i¼1
F̂i � Fi
�
�

�
� (5) 

SE ¼
1
N

XN

i¼1
F̂i � Fi
� �

(6) 
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1
F̂i � Fi
� �2

v
u
u
t (7) 

where F̂i is the estimated impervious surface abun
dance at pixel i and Fi represents the reference imper
vious surface abundance; �Fi are the mean value of 
reference abundance; N is the total number of pixels. 
RMSE measures the standard deviation of the residuals. 
SE quantifies the tendency of over/under-estimation. 
MAE measures the relative estimation error.

To evaluate the importance of spatially varied 
endmember spectra and hierarchical strategy, we 
compared the performance of the Fixed Four- 
endmember SMA (FFSMA) and the Hierarchical 
SMA (HSMA). FFSMA is the conventional SMA 
using four-endmember classes with a single spec
trum of each endmember. High albedo, low albedo, 
soil, and vegetation were chosen as fixed endmem
ber combinations for FFSMA. HSMA also parti
tioned the whole image into three landscapes and 
shared the same endmember combinations with the 
proposed method but used global endmember spec
tra. This ablation experiment was designed to eval
uate how hierarchical strategy and spatially varied 
endmember spectra affect the accurate estimation 
of impervious surface abundance.

4. Results

4.1. Hierarchical results

In this study, parameters C and M were set as 3 and 4 
in Wuhan and Wuzhou, and the threshold was set as 
0.7. The optimal solution was achieved using three/ 
four endmember classes (see Equation (4)). For this 
reason, parameters and the threshold were tested so 
that three/four land cover types were found in each 
region. Three/four endmember classes were identified 
based on the surface materials of each region to ensure 
that endmember combinations align well with the 
urban environment.

Landsat OLI and GF-1 WVF images were used to 
generate the initial LCAs using PCOMMEND. 
Figures 4(a-c) and 5(a-c) show the initial LCAs 
automatically derived from PCOMMEND in 
Wuhan and Wuzhou, respectively. The results sug
gest that the initial LCA 1–3 effectively represented 
the primary land covers in the urban environment. 
Low-albedo pixels tend to be high fractions in the 
initial LCA 1, including low reflectance artificial 
materials, soil, and fallow farmland. High-albedo 
pixels also present high fractions in the initial 
LCA 2, and they mainly consist of sand, bare soil, 
and artificial materials with high reflectance. 
Vegetation shows higher values in the initial LCA 

Figure 4. An illustration of hierarchical results in Wuhan: (a), (b), and (c) are the initial LCAs; (d), (e), and (f) are the corresponding 
Region 1, Region 2 and Region 3.
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3. The above results confirm that the PCOMMEND 
is a convzenient, automated technique and effective 
in discriminating different surface materials.

The corresponding Region 1, Region 2, and 
Region 3 were the hierarchical results, shown in 
Figures 4(d-f) and 5(d-f) for two study areas, respec
tively. Areas highlighted by red are Regions 1–3, and 
the water body (highlighted by blue) was masked out. 
In general, the spatial distribution of hierarchical 
results in the two study areas is in common. For 
both study areas, Region 1 covers the old urban 
center area featured by the industrial district, low- 
rise residential buildings, and soil. Region 2 repre
sented urban sprawl or urban fringe occupied by 
plant and high albedo natural ground (e.g. stone 
and sand). Region 3 illustrates suburban areas, 
which is a typical mosaic of low-rise residential 
buildings and vegetation. The urban sprawl patterns 
in both study areas are slightly different. The rapid 
urban expansion in Wuhan occurred earlier in 
Wuzhou, evidenced by Wuhan’s higher degree of 
urbanization with larger urban cores with less 
urban sprawl in recent years. Despite the varying 
degree of urbanization in the two study areas, the 

hierarchical results are able to summarize the discre
pancies in their urban characteristics, establishing 
foundations for the endmember selection.

4.2. Endmember selection

The urban environment is complicated and covered by 
spectrally similar surface materials. Therefore, distin
guishing diverse land cover enables the performance 
improvement of impervious surface estimation. In this 
study, endmember candidates were produced by the 
degree of membership values using the corrosion algo
rithm. The small objects with area < 10 pixels for 
Wuhan and < 30 pixels for Wuzhou were removed, 
and structural elements of the corrosion algorithm are 
disk = 5 and 7 for Wuhan and Wuzhou, respectively. 
Manual identification and selection of endmembers 
were performed for better performance.

An illustration of endmember combinations and 
types in Wuhan and Wuzhou is shown in Figures 6 
and 7, respectively. Figure 6(a) displays a high albedo 
impervious surface -low albedo impervious surface- 
soil-vegetation combination, referred to as the 
L-L-S-V combination, which was applied in Region 

Figure 5. An illustration of hierarchical results in Wuzhou: (a),(b), and (c) are the initial LCAs; (d), (e), and (f) are the corresponding 
Region 1, Region 2 and Region 3.

GEO-SPATIAL INFORMATION SCIENCE 557



1. The L-L-S-V combination included four land cover 
types, i.e. tile, dark cement, bare soil, and forest. The 
first column of Figure 6(a) is an RGB image. Areas 
highlighted by red in the second column are the loca
tions of endmembers. Additionally, Google Earth 
images acquired in 2018 were used as a reference for 
quality assurance, shown in the third column of 
Figure 6(a). The H-H-S combination, including bright 
cement, blue metal roof, and bare soil, was used in 
Region 2 (Figure 6(b)). Figure 6(c) shows the 
L-S-V combination in Region 3 consisted of the tile 
roof, soil, and forest. In Wuzhou, the 
L-S-V combination was applied in Region 1 and 
Region 3, and the H-H-L-S combination was utilized 

in Region 2. Specific urban surface materials of the 
three combinations in the Wuzhou study area are 
shown in Figure 7(a–c).

Via visual examination, we found that the spatial 
distribution of endmembers matches the actual dis
tribution of vegetation and impervious surfaces. 
Importantly, giant plants and industrial zones 
usually have large-scale, clear boundaries between 
artificial and natural surfaces. Therefore, the 
extracted endmembers from large-scale objects are 
more concentrated and match well with the actual 
shape, as demonstrated in Figures 6(b) and 7(b). 
On the other hand, the endmembers extracted from 
compact high/low-rise building zone and natural 

Figure 6. (a), (b), and (c) are the endmember combinations and types using in Region 1, Region 2 and Region 3 of Wuhan, 
respectively.

Figure 7. (a), (b), and (c) are the endmember combinations and types using in Region 1, Region 2 and Region 3 of Wuzhou, 
respectively.
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surfaces are geographically scattered, with some 
partially missing and incomplete, presumably due 
to hue and texture variations. Owing to the shadow 
effect, forests are divided into sunny sides and 
shadow sides, given their different spectral charac
teristics (see Figures 6(a,c)).

In general, the endmember combinations con
form well with the urban environment, and diverse 
endmember classes were adopted to synthesize spa
tially varied endmember spectra. The positive effect 
of synthesized endmember spectra has been proven 
in the literature (Deng and Wu 2013). In this 
study, we tested the radius of the search window 
from 21 to 71, with 10 as an interval, referring to 
the literature (Deng and Wu 2013). Spatially varied 
endmember spectra were synthesized using 
Equation (2) with a window of 51 ×51 and 
31 ×31 pixels for Wuhan and Wuzhou, respectively. 
In other words, the endmember spectra were loca
lized through spectra of neighboring pixels in 
a local search window. Further, impervious surface 
abundance was calculated following Equation (4) 
using the synthesized endmember spectra. Finally, 
various endmember classes and localizing spatially 
varied endmember spectra were employed to 

reduce confusion between spectrally similar classes, 
aiming to estimate impervious surface abundance 
in an accurate manner.

4.3. Spatial distribution of impervious surfaces

Figures 8(a–c) and 9(a–c) display the visual compar
ison of the impervious surface abundance from our 
proposed method, HSMA, and FSMA of Wuhan and 
Wuzhou, to illustrate the effectiveness of endmember 
classes and their spatially varied endmember spectra 
in unmixing. Figures 8(d) and 9(d) show a sketch 
map of HSMA, the proposed method, and FFSMA in 
the first, second, and third quadrants. The fourth 
quadrants of Figures 8(d) and 9(d) present the 
color bars. In general, the spatial distribution of 
impervious surfaces aligned well with the known 
land cover/use distribution for Wuhan and 
Wuzhou. High abundances of impervious surfaces 
were found in the central business district and heav
ily populated areas, which are largely made of 
cement, concrete, and asphalt. The low-density 
impervious surfaces, in contrast, were found in the 
suburban areas that primarily consist of forests, fal
low, and low-rise buildings.

Figure 8. The impervious surface abundance of Wuhan in Landsat OLI using (a) the proposed method, (b) HSMA, (c) FFSMA; The 
first, second and third quadrants of (d) are the sketch maps of HSMA, the proposed method, and FFSMA; the fourth quadrant is the 
color bar.
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The urban landscapes of the two study sites are 
different. Developed from a relatively early time and 
having experienced a long expansion process, Wuhan is 
in a mature stage, as it was developed from a relatively 
early time and has experienced a long expansion pro
cess. The artificial buildings of Wuhan consist of mostly 
compact high/low-rise buildings and large low-rise 
industrial buildings. In comparison, Wuzhou is still in 
its earlier stage of development, and its urban sprawling 
areas (e.g. compact high-rise building zone and indus
trial zone) are located in the west and south of the city. 
According to our field survey, the compact low-rise 
building zone of Wuzhou is covered by QiLou, 
a unique two-storied structure.

We conducted a quantitative analysis in this study 
to evaluate the performance of the proposed method 
(Table 1). In particular, quantitative assessments 
were conducted not only for the whole study area 
but also for less-developed areas and developed areas 
specifically. The developed areas were defined as the 
zones where impervious surface abundance was equal 

or over 30%. The less-developed areas, on the con
trary, were defined as the zones where impervious 
surface abundance was less than 30%. These accuracy 
measurements indicate that the proposed method has 
achieved an excellent performance in estimating 
impervious surface abundance for Wuhan and 
Wuzhou sites, respectively with MAE = 8.19% and 
7.88%, SE = −3.25% −1.70%, whilst RMSE = 10.63% 
and 11.19%. In addition, better performance is found 
in less developed areas in both study areas (e.g. 
MAE = 5.24% and 4.68%, SE = 4.07% and 3.14%, 
RMSE = 4.89% and 5.20%), when compared to devel
oped areas (e.g. MAE = 9.73% and 9.37%, 
SE = −7.09% and −3.94%, RMSE = 10.57% and 
12.23%).

4.4. Comparative analysis

In our proposed method, we first partitioned the 
whole image into three landscapes and took advan
tage of the appropriate endmember combinations 

Figure 9. The impervious surface abundance of Wuhan in GF-1 WVF using (a) the proposed method, (b) HSMA, (c) FFSMA; The 
first, second, and third quadrants of (d) are the sketch maps of HSMA, the proposed method, and FFSMA; the fourth quadrant is 
the color bar.
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extracted from each landscape for impervious sur
face estimation. To evaluate its effectiveness, we 
compared the proposed method with FFSMA and 
HSMA via visual comparison and quantitative 
assessment.

For better comparison purposes, a series of subur
ban and urban impervious surface abundances are 
displayed in Figures 10 and 11 to demonstrate how 
the spatially varied endmember spectra and hierarch
ical strategy could improve the performances of 
impervious surface estimation. The first column of 
Figure 10 represents the original image. The second 
to the fourth column of Figures 10 and 11 are the 
estimated impervious surface abundances of the pro
posed method, HSMA, and FFSMA, respectively. 
Figures 10(a-f) and 11(a-f) display urban landscape 
on the urban-rural gradient. Figures 10(a,b) and 11 
(a) show inner-city regions that are largely covered by 
compact low/high-rise buildings. Figures 10(c,d,e) and 
11(b,c,d) present regions that are undergoing con
struction. Figures 10(f) and 11(e,f) are rural areas 
covered by crops and forests. These subsets are typical 
representatives of urban features from our two study 
sites and were selected to demonstrate the effective
ness of the proposed method.

Quantitative measurements can be found in 
Table 1. For the whole study area, the proposed 
method outperforms FFSMA and HSMA in both 
Wuhan and Wuzhou sites. For the developed areas 
however, the proposed method has slightly lower 
RMSE than HSMA. In less-developed areas, our pro
posed method and HSMA perform considerably better 
than FFSMA. In summary, our proposed method is 
able to achieve a more accurate estimation of imper
vious surfaces.

5. Discussion

Despite that studies on spectral-only unmixing 
began about a decade ago, spectral methods incor
porating both endmember class variations and spa
tially varied endmember spectra are still 
underexploited. In this session, we discuss the 
importance of endmember types variability and spa
tially varied endmember spectra.

5.1. The importance of hierarchization

The evaluation of the effectiveness of hierarchization 
can be achieved by comparing the proposed method 
and HSMA with FFSMA. Generally, FFSMA tends to 
underestimate impervious surfaces in urban areas and 
overestimate impervious surfaces in suburban areas. 
Specifically, the performances of our method and 
HSMA are considerably better than FFSMA in low/ 
mid-high impervious surface area (see Figures 10(b,c, 
d) and 11(b)). RMSE, MAE, and SE of the proposed 
method and HSMA in the less-developed area have 
better accuracy than developed area, and the values of 
assessment indices are much lower than both less- 
developed and developed area of FFSMA. The esti
mated impervious surface abundance is generally 
greater than zero in pixels of suburban areas where 
the true impervious surface abundance should be zero 
(Song 2005). FFSMA tends to overestimate imper
vious surface abundances, as it applies a fixed four 
endmember combination to all pixels in SMA. 
Studies have suggested that the endmember class 
diversity is essential for mapping impervious surfaces 
(Li 2017; Heiden et al. 2012). When partitioning the 
image into three regions and considering an appro
priate endmember combination in each region, the 
actual number and types of endmember classes can 
address the variability in land cover types, thus effec
tively reducing residuals and leading to satisfactory 
results.

In addition, we found that the impervious surface of 
the downtown area is more likely to be underestimated 
in FFSMA (see Figures 10(a) and 11(a)). Unlike sub
urban areas, urban environment comprises relatively 
complex artificial materials, including asphalt, concrete, 
metal, and tiles. When dealing with such heterogeneous 
landscapes, ignoring endmember variability inevitably 
leads to impervious surface underestimation. Our 
results suggest that the consideration of endmember 
variability effectively improves the accuracy of imper
vious surface abundance using a hierarchical strategy. 
Further quantitative measurements have also demon
strated the importance of hierarchical strategy in urban 
impervious surface estimation. The overall MAE, SE, 
and RMSE of the proposed method and HSMA are 
considerably lower than FFSMA by approximately 5%, 

Table 1. Accuracy assessment of impervious surfaces with the proposed method, HSMA, and FFSMA.

Zone Indices

The proposed method HSMA FFSMA

Wuhan Wuzhou Wuhan Wuzhou Wuhan Wuzhou

Overall MAE 8.19% 7.88% 8.85% 8.87% 14.38% 12.51%
SE −3.25% −1.70% −3.81% −1.43% −5.81% −4.45%
RMSE 10.63% 11.19% 12.40% 12.62% 18.51% 16.90%

Developed MAE 9.73% 9.37% 10.71% 10.48% 16.91% 14.85%
SE −7.09% −3.94% −7.78% −3.85% −13.70% −9.38%
RMSE 10.57% 12.23% 12.25% 13.66% 14.92% 16.04%

Less-developed MAE 5.24% 4.68% 5.30% 5.40% 10.54% 7.47%
SE 4.07% 3.14% 3.79% 3.78% 9.29% 6.19%
RMSE 4.89% 5.20% 5.31% 5.83% 6.27% 6.13%
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−2.57%, and 5.99%, respectively. Compared with FFSMA, 
the RMSE (average value of RMSE reduction of Wuhan 
and Wuzhou) of the proposed method and HSMA in the 
developed area is reduced by approximately 4.08% and 
2.53%, respectively, while RMSE in the less-developed area 
is reduced by 1.16% and 0.63%, respectively.

5.2. The importance of spatially varied 
endmember spectra

The effectiveness of spatially varied endmember spec
tra was assessed by comparing the proposed method 
with HSMA. The proposed method matches the spa
tial characteristics of the ground surface in a more 

Figure 10. The impervious surface abundance of the suburban and urban subsets in Wuhan using the proposed method, HSMA, 
and FFSMA.
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consistent manner and is able to remove the misclas
sification of impervious surfaces from mixed- 
vegetation-soil areas (see Figures 10(e,f) and 11(d,e, 
f)). For natural surroundings, both FFSMA and 
HSMA severely overestimate impervious surfaces. 
Bare soil with sparse vegetation is the primary error 
source of impervious surface overestimation, given its 

similar spectrum to low albedo impervious surfaces. In 
Figure 10(e), the impervious surface abundance of the 
steel plants of Wuhan (in the center of Figure 10(e)) is 
notably underestimated by FFSMA and HSMA, pos
sibly due to the existence of intra-class variations 
between low albedo impervious surfaces (e.g. tile and 
dark cement). Local endmember spectra synthesized 

Figure 11. The impervious surface abundance of the suburban and urban subsets in Wuzhou using the proposed method, HSMA, 
and FFSMA.
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via neighboring spectra are more appropriate to 
reduce the impact of intra-class variation rather than 
global endmember spectra used in HSMA. Thus, spa
tially varied endmember spectra in unmixing are pre
ferred in impervious surfaces estimation.

We re-tracked the location of the endmember 
classes and found that easily-confused land cover 
types were mainly partitioned into separate regions. 
Specific endmember combinations were selected 
according to regional biophysical characteristics. 
Also, endmember signatures were generated by loca
lizing the spatial variation of endmember classes via 
neighborhood information. Consequently, the pro
posed method considers the variability of endmember 
combinations in different regions and takes spatially 
varied endmember spectra into account in the unmix
ing. Thus, the proposed method mitigates the issue 
that the spectral-only mixture analysis inadequately 
deals with within-class spectral variability. Further 
quantitative measurements also show that the pro
posed method performs better than HSMA in terms 
of the whole study area, with comparable accuracy 
improvement in less-developed and developed areas.

5.3. Further study

Although the proposed method has achieved 
a satisfactory performance for mapping impervious 
surfaces, some limitations still exist. For instance, we 
observe that our proposed method shows a slight 
underestimation for impervious surfaces surrounded 
by vegetation (e.g. scattered houses in suburban 
areas). In addition, lush vegetation can be easily 
extracted as endmembers. As a result, the spectral 
of vegetation endmember could have a heavier 
weight on unmixing, thus leading to impervious sur
face underestimation. Moreover, in the Wuzhou sites 
(Figure 11(b,c)) where the types of soil are laterite 
and stony soil, estimation errors occur as stony soil 
has high reflectance and is fractionally confused with 
high albedo impervious surfaces (e.g. concrete, tile). 
Studies have shown that contextual and topological 
knowledge can benefit endmember extraction and 
selection of endmember combinations for accurate 
impervious surface estimation (Du et al. 2014; 
Zhang 2008). Therefore, further efforts can be made 
to explore the utility of such information on 
unmixing.

We also found other unexpected results in 
Figure 11(a). Transportation lines are usually 
expected to have a high impervious surface abun
dance (see Figure 10(a)). However, the transportation 
lines in Wuzhou sites (Figure 11(a)) present consid
erably low impervious surface abundance. This phe
nomenon could be explained by the varying 
characteristics of transportation lines between these 
two cities. Unlike the transportation lines of Wuhan 

with six lanes of overhead roads and extra four lanes 
on the ground, the transportation lines in Wuzhou 
are four-lane roads bordered by lush trees, thereby 
causing an underestimation. Challenges still remain 
to capture the spectral information of impervious 
surfaces under the tree cover. We believe supplemen
tary geographic information and street view data that 
offer ground observations might overcome the spec
tral deficiency of impervious surfaces (Shao et al.  
2020b, 2021). Further efforts can be made to improve 
the mapping of covered impervious surfaces by 
incorporating Geographic Information Systems 
information and street view data (Chen et al. 2021; 
Guo et al. 2021).

6. Conclusions

SMA has been widely employed in analyzing urban 
environments, but challenges still remain to accurately 
estimate impervious surfaces in complex urban scenes 
In this study, we propose an extended SMA that inte
grates hierarchical strategy and spatially varied end
member spectra for impervious surface estimation. 
We compare the performance of the proposed 
method, HSMA, and FFSMA via visual comparison 
and quantitative assessment.

Built upon the initial LCAs estimated by the 
PCOMMEND method, the proposed method char
acterizes the urban landscape into three regions. 
Appropriate endmember combinations are inde
pendently introduced for each region. With the 
incorporation of the hierarchical strategy, the pro
posed method considers three endmember combi
nations where each endmember combination has 
three/four endmember classes. Thus, the diversity 
of endmember classes is expanded to minimize 
intra-class variation. Both visual comparison and 
accuracy assessment indicate that the proposed 
method has significantly improved the performance 
for the entire study area in general, especially in 
less developed areas. Furthermore, spatially varied 
endmember spectra are synthesized through neigh
boring spectra. The proposed method incorporates 
local endmember spectra into SMA, aiming to 
reduce the impact of intra-class variation. 
Additional comparative analyses indicate that the 
proposed method achieves a satisfactory perfor
mance when compared to HSMA, especially in the 
developed areas.

In summary, this study shows that the endmem
ber class diversity and spatially varied endmember 
spectra can effectively improve impervious surface 
estimation. First, we find that the hierarchical strat
egy is able to expand endmember classes and 
develop appropriate endmember combinations. 
The proposed method incorporates the hierarchical 
strategy into SMA, thus enhancing its ability to 
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handle diverse land cover types. Second, assisted by 
spatially varied endmember spectra, estimation 
errors can be reduced in heterogeneous surface 
materials, especially in complicated urban fabrics. 
Finally, this study provides scientific evidence to 
support land use/land cover unmixing. Accurate 
abundance estimations derived from the proposed 
method can be used to support urban landscape 
management.
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