
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgsi20

Geo-spatial Information Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tgsi20

High-performance solutions of geographically
weighted regression in R

Binbin Lu, Yigong Hu, Daisuke Murakami, Chris Brunsdon, Alexis Comber,
Martin Charlton & Paul Harris

To cite this article: Binbin Lu, Yigong Hu, Daisuke Murakami, Chris Brunsdon, Alexis
Comber, Martin Charlton & Paul Harris (2022) High-performance solutions of geographically
weighted regression in R, Geo-spatial Information Science, 25:4, 536-549, DOI:
10.1080/10095020.2022.2064244

To link to this article: https://doi.org/10.1080/10095020.2022.2064244

© 2022 Wuhan University. Published by
Informa UK Limited, trading as Taylor &
Francis Group.

Published online: 20 May 2022.

Submit your article to this journal

Article views: 1989

View related articles

View Crossmark data

Citing articles: 4 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=tgsi20
https://www.tandfonline.com/loi/tgsi20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10095020.2022.2064244
https://doi.org/10.1080/10095020.2022.2064244
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2022.2064244
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2022.2064244
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2022.2064244&domain=pdf&date_stamp=2022-05-20
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2022.2064244&domain=pdf&date_stamp=2022-05-20
https://www.tandfonline.com/doi/citedby/10.1080/10095020.2022.2064244#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/10095020.2022.2064244#tabModule

High-performance solutions of geographically weighted regression in R
Binbin Lu a, Yigong Hu a, Daisuke Murakami b, Chris Brunsdon c, Alexis Comber d, Martin Charlton c

and Paul Harris e

aSchool of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China; bDepartment of Data Science, Institute of
Mathematical Statistics, Tokyo, Japan; cNational Centre for Geocomputation, Maynooth University, Maynooth, Ireland; dSchool of
Geography, University of Leeds, Leeds, UK; eSustainable Agriculture Sciences North Wyke, Rothamsted Research, Okehampton, UK

ABSTRACT
As an established spatial analytical tool, Geographically Weighted Regression (GWR) has been
applied across a variety of disciplines. However, its usage can be challenging for large datasets,
which are increasingly prevalent in today’s digital world. In this study, we propose two high-
performance R solutions for GWR via Multi-core Parallel (MP) and Compute Unified Device
Architecture (CUDA) techniques, respectively GWR-MP and GWR-CUDA. We compared GWR-
MP and GWR-CUDA with three existing solutions available in Geographically Weighted Models
(GWmodel), Multi-scale GWR (MGWR) and Fast GWR (FastGWR). Results showed that all five
solutions perform differently across varying sample sizes, with no single solution a clear winner
in terms of computational efficiency. Specifically, solutions given in GWmodel and MGWR
provided acceptable computational costs for GWR studies with a relatively small sample size.
For a large sample size, GWR-MP and FastGWR provided coherent solutions on a Personal
Computer (PC) with a common multi-core configuration, GWR-MP provided more efficient
computing capacity for each core or thread than FastGWR. For cases when the sample size was
very large, and for these cases only, GWR-CUDA provided the most efficient solution, but
should note its I/O cost with small samples. In summary, GWR-MP and GWR-CUDA provided
complementary high-performance R solutions to existing ones, where for certain data-rich
GWR studies, they should be preferred.

ARTICLE HISTORY
Received 14 December 2021
Accepted 6 April 2022

KEYWORDS
Non-stationarity; big data;
parallel computing;
Compute Unified Device
Architecture (CUDA);
Geographically Weighted
models (GWmodel)

1. Introduction

Geographically Weighted Regression (GWR)
(Brunsdon, Fotheringham, and Charlton 1996, 1998;
Fotheringham, Charlton, and Brunsdon 1998;
Fotheringham, Brunsdon, and Charlton 2002) is
a technique specifically developed to explore spatial
heterogeneities in a regression’s “response to predictor
variable” relationships. Unlike a fixed coefficient regres-
sion, such as an Ordinary Least Squares (OLS) regres-
sion, GWR allows regression coefficients to vary
spatially; the resultant coefficient maps allow an inves-
tigation into their change (if any) across space. The
GWR methodology has been extensively developed in
terms of its usage and extensions (Comber et al. 2022),
but where inference in GWR is not always as stable as
that found with say, an OLS regression and as such,
GWR adaptations exist to counter this (da Silva and
Fotheringham 2016; Harris et al. 2017). GWR has been
widely applied in many scientific domains, including
regional economics (e.g. Jin, Xu, and Huang 2019),
urban planning (e.g. Cao et al. 2019b), sociology (e.g.
Yin et al. 2018), ecology (e.g. Liu et al. 2019), public
health (e.g. Wang et al. 2019; Xu et al. 2021), agriculture
(e.g. Harris et al. 2017), and environmental science (e.g.
Cao et al. 2019a; Huang and Wang 2020).

Our increasingly digital world continues to gener-
ate huge volumes of data – many of which are spatially
indexed (Lee and Kang 2015; Ivan et al. 2017).
However, in order to attribute process understanding
to such “Big Spatial Data” almost all spatial models
require adaptation so they can be efficiently calibrated
and validated within tolerable time frames. GWR is
one such model that is computationally demanding
and in this respect has benefitted from high-
performance computing solutions (Harris et al. 2010;
Murakami et al. 2020; Li et al. 2019b). Commonly,
such solutions only exist for the conventional forms
of GWR, where many extended GWR models are
more computationally demanding still – for example,
multiscale GWR (Lu et al. 2018; Li and Fotheringham
2020) which requires a complex iterative solution to its
calibration. Similarly, Geographically and Temporally
Weighted Regression (GTWR) (Huang, Wu, and
Barry 2010; Fotheringham, Crespo, and Yao 2015)
for space-time processes has a higher computational
demand than that found with conventional GWR.

Unsurprisingly, there are an increasing number of
(conventional) GWR applications exploring “Big
Data” (e.g. Cao, Diao, and Wu 2019). Here, we con-
ducted a bibliometric study, searching the keyword
“Geographically Weighted Regression” via Web of

CONTACT Binbin Lu binbinlu@whu.edu.cn

GEO-SPATIAL INFORMATION SCIENCE
2022, VOL. 25, NO. 4, 536–549
https://doi.org/10.1080/10095020.2022.2064244

© 2022 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0001-7847-7560
http://orcid.org/0000-0002-9553-6275
http://orcid.org/0000-0002-9544-9542
http://orcid.org/0000-0003-4254-1780
http://orcid.org/0000-0002-3652-7846
http://orcid.org/0000-0002-0622-393X
http://orcid.org/0000-0003-0259-4079
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2022.2064244&domain=pdf&date_stamp=2022-11-29

Science (WoS), where in total, 2014 articles were
found from 1999 to 2019, and their keywords are
visualized in a word cloud form (Figure 1). Observe
the frequency (size) of “Big Data”, which
appears second only to “GWR”. Thus, the demand
for high-performance solutions for GWR is clear,
where its application in “Big Data” problems can be
limited (Murakami et al. 2020), even with the employ-
ment of the existing solutions listed above (sec-
tion 1.2).

1.1. Existing implementations of GWR

There are a number of standalone implementations
with GWR enabled, such as GWR3 (Charlton,
Fotheringham, and Brunsdon 2003), GWR4 (Nakaya
et al. 2009), the GWR tool in ESRI ArcGIS (ESRI Corp
2011), and Multi-scale GWR (MGWR) (Li et al.
2019b). GWR is also available through scripting plat-
forms with: the mgwr module of the PySal package in
Python (Oshan et al. 2019); as part of the econometrics
toolbox in MATLAB (LeSage and Pace 2009); and five
R packages – spgwr (Bivand and Yu 2006),
Geographically Weighted Models (GWmodel) (Lu
et al. 2014b; Gollini et al. 2015), gwrr (Wheeler
2013), McSpatial (McMillen 2015) and lctools
(Kalogirou 2016). The five R packages considered as
a whole provide the richest suite of GWR forms (e.g.
conventional, robust, heteroskedastic, multiscale,
space-time and more) and therefore development
here is most appropriate. However, all suffer compu-
tationally, particularly given the strict memory limit
for specific operation systems (R Core Team 2020).
Workarounds to exceeding computational limits exist,
such as coarse-scaling the observations, or the use of
aggregations via upscaling (e.g. Yang et al. 2019) – all

prior to a GWR fit, but none are ideal given important
sources of information, fine scale detail and variability
are lost.

1.2. Existing high-performance solutions

Efforts to improve the computational efficiency of
GWR exist. Firstly, through Harris et al. (2010) who
implemented a grid-based (parallelization) approach
to conventional GWR. More recently, Li et al. (2019a)
developed a python implementation (FastGWR) that
optimizes the conventional GWR algorithm together
with embedding multi-core parallel computing tech-
nology. This computational scheme has also been
transplanted for use with multiscale GWR (Li and
Fotheringham 2020). Wang et al. (2020) proposed
a high-performance solution of GWR with the
Compute Unified Device Architecture (CUDA),
namely Fast-Parallel-GWR (FPGWR) which was
developed with Microsoft Visual Studio 2015 and
CUDA development kit. Finally, a mathematical
approach was taken by Murakami et al. (2020) who
proposed Scalable GWR (ScaGWR) that saves on
computational overheads via the pre-compressing of
large matrices and vectors with polynomial kernels.
For ScaGWR, the computational cost presents a linear
relationship with the sample size, while a quad-
quadratic order appears for the usual un-adapted
GWR form. The ScaGWR routine can be found in
the R package scgwr (Murakami et al. 2019) and
GWmodel. ScaGWR provides approximate coefficient
estimates in comparison with conventional GWR,
where the results from ScaGWR might vary slightly
when different parameters are specified – for example,
the chosen degree or order of the polynomials
(Murakami et al. 2020).

Figure 1. Word cloud of keywords from 2014 articles on GWR queried via WoS from 1999 to 2019.

GEO-SPATIAL INFORMATION SCIENCE 537

1.3. Our study’s approach in R

In this sense, the computational bottleneck is still proble-
matic for GWR (and its extensions) in the
R environment, particularly for the geographically
weighted functions in GWmodel. However, generic high-
performance computing options have been incorporated
in many packages since R release 2.14.0 (Eddelbuettel
2020), where grid computing, cloud computing, multi-
core and Graphic Processing Unit (GPU) are commonly
invoked. In this respect, this study investigates high-
performance solutions for (conventional) GWR within
the R package GWmodel, where our workflow consists of
three hierarchies: 1) optimize the algorithm for a GWR
calibration for accepting out-of-memory issues with “Big
Data”; 2) adopt multi-thread parallel computing for
a GWR calibration (GWR-MP), which enables analysis
on a standard Personal Computer (PC) with a multi-core
processor; 3) apply parallel computing on the GPU
devices via CUDA (GWR-CUDA).

For performance evaluation, we compare the perfor-
mances of the new solutions proposed (i.e. GWR-MP
and GWR-CUDA) with existing solutions found in
GWmodel, MGWR and FastGWR using varying sample
sizes, where the latter two are outside of the
R environment. We haven’t included FPGWR where
CUDA was also adopted as: 1) the source code or tool
is not available; and 2) key aspects of FPGWR are not
clear, such as distance calculation, kernel function imple-
mentation, making FPGWR difficult to fully reproduce.
This study is organized as follows. Firstly, we provide
a description of conventional GWR methodology and
the new high-performance techniques proposed.
Secondly, competing high-performance solutions to
GWR are objectively compared through a designed
experiment. Thirdly, we summarize and suggest future
research.

2. The GWR methodology and
high-performance solutions

2.1. Basics of GWR

The conventional GWR model characterizes spa-
tially varying relationships via location-specific
regressions whose coefficients are estimated by
(geographically) weighted least squares. The
model can be expressed as (Brunsdon,
Fotheringham, and Charlton 1996; Fotheringham,
Brunsdon, and Charlton 2002):

yi ¼ β0 ui; við Þ þ
Xl

k¼1
βk ui; við Þxik þ εi (1)

where yi is the dependent variable at location i on
a two-dimensional space; xik is the value of the kth

independent variable at location i; l is the number of

independent variables; β0 ui; við Þ is the intercept para-
meter at location i; βk ui; við Þ is the local regression
coefficient for the kth independent variable at location
i; ui; við Þ are the spatial coordinates of location i; and εi
is the independent random error at location i.

In line with Tobler’s first law of geography
(Tobler 1970), extended to consider situations in
which nearby regression relationships are more
similar than distant ones, GWR consists of
a series of local regressions where observations
are weighted (i.e. given decreasing influence) via
a distance-decay kernel function (Lu et al. 2014a).
The estimator of the coefficients at location i has
the following matrix expression:

bβ ui; við Þ ¼ XTW ui; við ÞX
� �� 1XTW ui; við Þy (2)

where X is the matrix of the independent variables
with a column of 1s for the intercept; y is the
dependent variable vector; bβ ui; við Þ ¼

β̂0 ui; við Þ; β̂1 ui; við Þ; . . . ; β̂m ui; við Þ
� �T

is the vector

of m +1 local regression coefficients; W ui; við Þ is
a n� n diagonal matrix denoting geographical
weights of each observation for calibrating the
local regression at location i, and is defined as:

W ui; við Þ ¼

wi1 0 :: :: 0
0 wi2 :: :: 0
: : : : :

: : : : :

0 0 : : win

2

6
6
6
6
4

3

7
7
7
7
5

(3)

where wij j ¼ 1; � � � ; nð Þ is calculated via a kernel
function decaying with respect to Euclidean dis-
tance, or some other distance metric (Lu et al.
2014a), between locations i and j, and
n represents the number of observations.
Gaussian, exponential, bi-square, box-car, tri-
cube are among the many kernel functions that
can be specified (Gollini et al. 2015), where an
optimal kernel bandwidth is commonly found by
leave-one-out cross-validation or by a corrected
Akaike Information Criterion (AICc) procedure.
The kernel bandwidth relays the chosen spatial
scale of the regression relationships.

Diagnostics for a GWR model’s fit are essential,
where R-squared, adjusted R-squared and AICc
are commonly reported. These can be expressed
as (Fotheringham, Brunsdon, and Charlton 2002):

R2 ¼

P
i y_i � �yi

� �2

P
i y_i � �yi

� �2
þ
P

i yi � y_i

� �2 (4)

R2
adjusted ¼ 1 � 1 � R2� � n � 1

n � 2tr Sð Þ þ tr STS
� �

� 1
(5)

538 B. LU ET AL.

AICc ¼ 2n lnðσ̂Þ þ n lnð2πÞ þ n
nþ tr Sð Þ

n � 2 � tr Sð Þ

� �

(6)

where y_i is the fitted value at location i; �y is the mean
value of y; σ̂ is the estimated standard deviation of the
error term:

σ_
2
¼

P
i y_i � �yi

� �2

n � 2tr Sð Þ þ tr STSð Þ
¼

yT I � Sð Þ
T I � Sð ÞY

n � 2tr Sð Þ þ tr STSð Þ

(7)

where I is an n� n identity matrix and tr Sð Þ and
tr STS
� �

denote the traces of the hat matrix S and
STS. For GWR, each row Si of the hat matrix can be
found as follows:

Si ¼ Xi XTW ui; við ÞX
� �� 1XTW ui; við Þ (8)

where Xi is its ith row of the matrix X of independent
variables.

Furthermore, t statistics at each individual regres-
sion point can be produced along with the coefficient
estimates. For each estimated regression coefficient at
location i, β

_

k ui; við Þ, the t statistic can be calculated by:

tk;i ¼
β
_

k ui; við Þ

SE β
_

k ui; við Þ
� � (9)

where SE β
_

k ui; við Þ
� �

is the localised standard error of

β
_

k ui; við Þ. For each location-specific calibration, the
standard errors are obtained from:

SE β
_

i

� �
¼ σ_

ffi

diag CiCT
i

� �q

(10)

where

Ci ¼ XTW ui; við ÞX
� �� 1XTW ui; við Þ (11)

The given calculations are commonly reported in most
GWR software tools, where the algebraic matrix opera-
tions are programmed in a straightforward manner.
However, their computational cost is expensive, parti-
cularly when dataset size (number of observations n) is
large. Computational burden is primarily
a consequence of: 1) complex matrix operations, parti-
cularly the n� n matrices involved, like the hat matrix
S; and 2) a large number of matrix operations are
repeated in the location-wise calibrations, kernel band-
width optimization and when calculating the model fit
diagnostics.

2.2 Reducing memory cost for GWR

A variety of GWR forms and extensions are pre-
sent in GWmodel, making it the most comprehen-
sive GWR R package (Comber et al. 2022). In
early versions of GWmodel, all GWR functions

were developed directly from the algebraic formu-
lations in Section 2.1 above. This requires
a number of n� n matrices to be calculated and
stored, specifically for calculating diagnostic infor-
mation and enabling statistical inference (Leung,
Mei, and Zhang 2000). Note here, that it is almost
impossible to allocate as much as 2 GB to a single
vector in a 32-bit or 64-bit build of R due to
predefined allocations of address space on
Windows (R Core Team 2020). Allocating mem-
ory for a 16,000 � 16,000 numeric matrix in
R will normally be an upper limit. This means
the maximum n for any of the conventional
GWR functions in R is around 16,000. However,
in practice, the maximum number of observations
a conventional GWR tool can handle is likely to
be much smaller (i.e. n ≪ 16,000).

It is therefore necessary to first relieve these mem-
ory constraints when developing high-performance
solutions for GWR, and to support GWR analyses of
very large datasets. In this respect, Li et al. (2019a)
optimized the calculations of AICc and localised stan-
dard errors by avoiding the storage of the entire hat
matrix, which reduced the memory storage size from
O(n2) to O(nm). This strategy of avoiding any n� n
matrix operation or storage is effective and makes it
workable when dealing with a large dataset on any
basic PC. Therefore, as a potential approach for redu-
cing memory costs, we re-formulized the algebraic
operations of a GWR calibration, as follows, which
are essentially the same as the optimizations proposed
by Li et al. (2019a).

First observe that Equation (2) can be divided into
the following two parts:

XTW ui;við ÞX¼ XT
1 ;���;X

T
n

� �
wi1 ��� 0
..
. . .

.
0

0 ���win

0

B
@

1

C
A

X1

..

.

Xn

0

B
@

1

C
A

¼
Xn

j¼1
wijXT

j Xj

XTW ui;við Þy¼ XT
1 ;���;X

T
n

� �
wi1 ��� 0
..
. . .

.
0

0 ���win

0

B
@

1

C
A

y1

..

.

yn

0

B
@

1

C
A

¼
Xn

j¼1
wijyjXT

j

(12)

where Xj is the jth row of the X matrix. In this
sense, the point-wise estimator of GWR can be
regarded as a cross manipulation between the
inverse of a mþ 1ð Þ � mþ 1ð Þ matrix and a
mþ 1ð Þ � 1 vector. Accordingly, the weight matrix

W ui; við Þ can only be stored as a vector with its
diagonal elements.

GEO-SPATIAL INFORMATION SCIENCE 539

For diagnostics of GWR, more complicated
computations are involved, particularly for the n�
n matrices, including hat matrix S, its square STS
and the matrix Q ¼ I � Sð Þ

T I � Sð Þ. As shown in
Equations (5–7), the traces of S and STS are
needed, but where they could be found in these
two steps:

tr Sð Þ ¼
Xn

i
Sii ¼

Xn

i
XiCi

i (13)

tr STS
� �

¼
Xn

i
SiST

i (14)

where Ci
i means the ith column of matrix Ci.

Moreover, the matrix Q can also be expressed as
follows:

Q ¼ I � Sð Þ
T I � Sð Þ ¼

Xn

i¼1
ei � Sið Þ

T ei � Sið Þ (15)

where ei is the ith row of the identity matrix I. Observe
the matrix Q is also required in many statistical tests
for GWR (i.e. for spatial non-stationarity), such as the
F-tests proposed by Leung, Mei, and Zhang (2000) and
Fotheringham, Brunsdon, and Charlton (2002), which
are similarly included in most GWR software tools
(GWR3, GWR4, as well as GWmodel). In this sense,
it is natural for these F-tests to benefit from the high-
performance solutions proposed.

According to the above equations, the storage
of all n� n matrices required for a GWR calibra-
tion and associated diagnostics can be avoided, by
storing only vectors of length n and matrices of
size n� mþ 1ð Þ in the location-wise computa-
tions. Thus, the memory cost of GWR can be

similarly reduced to O(nm), essential for working
with “Big Spatial Data” in R. In the current release
of GWmodel, the GWR functions have already
been optimized in this respect. Therefore, for this
study, the next steps are an assessment of high-
performance solutions embedded in paralleling
computing techniques.

2.3. Parallelization solutions for GWR

The two parallelization solutions adopted were: (a)
multicore Central Processing Unit (CPU) and
GPU accelerator via multithreading parallel
(GWR-MP) and (b) CUDA (GWR-CUDA),
respectively.

As illustrated in Figure 2, the procedure of
GWR-MP was carried out in the following steps:

(1) Create the coefficient matrix βn� mþ1ð Þ and the
vectors of n dimensions (S2) for recording the
diagonal elements of STS if diagnostic informa-
tion is calculated1;

(2) Create c2 threads, and divide the n point-wise
operations into them, i.e. nt operations are con-

ducted on the tth thread, where
Pc

t¼1
nt ¼ n;

(3) For each thread, create a vector of n dimensions
(Si) and a vector Qi

(4) Carry out the following operations for each
location i:
a. Calculate the weight vector wi ¼

wi1; � � � ;winð Þ from the corresponding dis-
tances of the observations from the location i;

b. For estimating β
_

i calculate Equation (2) in
two parts, i.e. Equation (12);

Figure 2. Parallel computing flowchart of the GWR-MP algorithm.

540 B. LU ET AL.

c. Calculate the ith row of the hat matrix and
assign it to Si in memory, then renew the ith

element of S2 as Si
2 ¼ SiST

i ;
d. Renew the vector Qi ¼ ei � Sið Þ

2.
(5) Repeat Step 4 until all the location-wise opera-

tions are finished, and the coefficient estimates

β
_

n�m, tr Sð Þ, tr STS
� �

and ~σ2 are ready for the
final output.

By contrast, the parallelizing strategy for GWR-
CUDA is designed specifically to fit GPU devices. As
illustrated in Figure 3, the detailed procedure of GWR-
CUDA includes the following steps:

(1) Read the data matrices or vectors (i.e. X,Y and
coordinates) from memory into GPU;

(2) Divide the n point-wise operations into
groups, and within each group, g or fewer
point-wise calibrations are conducted in par-
allel, where g should meet the following
condition:

bgknþ 2bgkkþ bgk � M � α (16)

where b is the number of bytes needed for each ele-
ment in the matrix or vector (commonly set as 8), M is
the GPU memory size, α is the memory reserved for
intermediate calculations. In practice, the number of
variables k is far less than the number of observations,
n (i.e. k� n), the number of g is more dependent on
the term, bgkn.

(3) Create arrays Δg�k�n, Ωg�k�k and a matrix �g�k,
and conduct the following location-wise calibra-
tions (i = 1, . . ., g) in parallel within the current
group:
a. Calculate the weight vector wi ¼ wi1; � � � ;winð Þ

from the corresponding distances of the obser-
vations from the location i;

b. Calculate XTW i ¼
Pn

j¼1
wijXT

j and assign it to

the ith k� n component of Δ;

c. Calculate XTW ui; við ÞX ¼
Pn

j¼1
wijXT

j Xj and

assign it to the ith k� k component of Ω,

and then calculate its inversion;

d. Calculate XTW ui; við Þy ¼
Pn

j¼1
wijyjX

T
j and

assign it to the ith row of �;

e. Calculate the location-wise coefficient esti-

mate β
_

i, Si, SiST
i and ei � Sið Þ

2.

(4) Repeat Step 3 until parallel computations for all

the groups are finished, and the coefficient esti-

mates β
_

n�m, tr Sð Þ, tr STS
� �

and σ_
2

will be ready

for the final output.

It is important to note that both GWR-MP and
GWR-CUDA procedures are designed to include
the GWR model’s diagnostic information calcula-
tions, with the calibration points the same as the
observations and an assessment of model fit is
required (which includes kernel bandwidth opti-
misation). Otherwise, the above procedures would
be greatly simplified with only coefficient estimates
returned. We implemented GWR-MP and GWR-
CUDA in R, coded the parallel part via C++ and
wrapped them via the Rcpp package (Eddelbuettel
2013).

3. Experimental design

3.1. General information

For this study, we compared the computational
performances of GWmodel (version 2.1–4),
FastGWR (updated on 12 August 2019), MGWR
(version 2.1.1), GWR-MP and GWR-CUDA for

Figure 3. Parallel computing flowchart of the GWR-CUDA algorithm.

GEO-SPATIAL INFORMATION SCIENCE 541

implementations of conventional GWR only to
ensure the same results. As shown in Table 1, we
adopted two devices for running GWR where both
devices had a GPU specification for running
GWR-CUDA.

In terms of experimental data, we produced
a series of simulated datasets of size n ranging
from 1000 to 10,000 with increments of 1000,
from 10,000 to 100,000 with increments of
10,000 and from 100,000 to 1,000,000 with incre-
ments of 100,000. For MGWR, FastGWR and
GWR-MP, we specified a different number of
cores ranging from 2 to 48 to run them in parallel.
We didn’t test them with all the combinations, but
selectively adopted 2, 3, 4, 5, 6, 7, 8, 12, 24, 36 and
48 cores for typical tests. Note that the number of
physical cores on the experimental device is 24,
but the number of logic cores could be up to 48
through the hyper-threading technology. Notably,
the current GWR routine in GWmodel is a serial
program, so that the setting of multicores will not
work differently for it. As shown in Figure 3, we
adopted a different computing strategy for GWR-
CUDA, where all samples are divided into groups,
and location-wise calibrations within each group
are conducted in parallel on the GPU device.
Thus, the number g is the parallel computation
counts for executing GWR-CUDA, and we took
g = 384 (or less if samples were insufficient for the
final group) according to Equation (16). For each
sample size n and GWR implementation, 10
experiments were conducted independently on
the two devices, respectively. Moreover, samples
sizes ranging from 100,000 to 1,000,000 are
adopted only for the extreme performance tests
of GWR-CUDA, not for tests on the other four
GWR solutions, as relatively inefficient solutions
result due to unacceptably long time frames.

3.2. Performance indicators

Two indicators were used to evaluate perfor-
mance – the average time cost and the “speedup”
of the parallel computations. For each sample size
n and GWR implementation, the average time cost
was calculated as follows:

�Tn;GWRj ¼

Pm
i¼1 Ti

n;GWRj

m
(17)

where Ti
n;GWRj

represents the time cost of running the
jth GWR implementation with a sample size n, m (in
this case, taken as 10) is the number of individual
experiments and �Tn;GWRj refers to the average time
cost. Note that in all cases, the time costs include
both the (automated) kernel bandwidth optimization
(by AICc) and the GWR model calibration.

Speedup is an important indicator to evaluate the
performance of parallel computations (Hill and Marty
2008). According to its original definition, we take
a simple expression for its calculation, as..

k ¼
TS

TM
(18)

where k is the speedup, TS is the time cost of serial
computing and TM is the time cost of parallel
computing with multi-cores. For this study, we
repeated 100 independent experiments for each
scenario, meaning speedup could be calculated
using average time costs from m individual
runs, i.e.:

k ¼
�TS
�TM

(19)

where �TS and �TM are the average time costs of serial
and parallel computations, respectively. We can verify
that the estimation of speedup is significantly valid
and reliable, by assuming the time cost for each indi-
vidual test is a random variable subject to a normal
distribution.

4. Results and discussion

In Figure 4, we present the averaged time costs of
GWmodel, FastGWR, MGWR, GWR-MP and GWR-
CUDA with a different number of cores with samples
of sizes ranging from 1000 to 100,000. As the GWR
implementation in GWmodel is a serial program, the
time cost will not be affected by increasing cores, but
averaged time costs grow exponentially as sample size
increases. This indicates that the basic GWR function
in the latest release of GWmodel is not working effi-
ciently with a large dataset, even though the function

Table 1. Device parameters for running study GWR models.
GWmodel, FastGWR, MGWR, GWR-MP, GWR-CUDA

Device model ThinkSystem SR650
CPU Intel(R) Xeon(R) Gold 5118 CPU @ 2.30 GHz, 24 cores
Memory 128 GB
Operating system Ubuntu 20.04
GPU-1a NVIDIA Tesla V100 PCIe, RAM 16 GB
GPU-2 NVIDIA GeForce RTX 2060 (Mobile)

aThis version of GPU is the primary device for testing GWR-CUDA, and the results of running GWR-CUDA by default refer to using it; while the second device
is only used for providing supplementary evidence.

542 B. LU ET AL.

benefits from algorithmic optimization and code
implementation with C++. It can handle a relatively
large dataset, say greater than 100,000, but its running

time will be incredibly long, particularly when band-
width optimization is additionally conducted. MGWR
is applicable for running on multi-cores, but it failed

Figure 4. Average time costs of GWmodel, FastGWR, MGWR, GWR-MP and GWR-CUDA with a different number of cores.

GEO-SPATIAL INFORMATION SCIENCE 543

to calibrate the GWR models with sample sizes greater
than 60,000. In the limited number of visible tests, it
performed similarly to FastGWR, which is also devel-
oped via Python by the same research team (Oshan
et al. 2019; Li et al. 2019a). Thus, results for MGWR
can be represented by those for FastGWR and are not
discussed further.

Both FastGWR and GWR-MP are naturally
designed for multi-core parallelism. From
Figure 4, FastGWR and GWR-MP always outper-
form the serial routine in GWmodel, and these
advantages grow as the number of cores increase
and as sample size increases. From Figure 4,
GWR-MP performs similarly to FastGWR in
most cases, but where GWR-MP tends to out-
perform FastGWR for samples greater than
60,000. Relative to GWR-MP, the time costs of
FastGWR become exponentially large when the
number of cores exceeds 24 for sample sizes
greater than 60,000, which means that all the phy-
sical cores will be employed and the logic cores
will be used via the hyper-threading technology.
On this condition, the performance and stability
of each physical core could worsen due to frequent
switches between two logic cores on each physical
core. In addition, FastGWR was developed with
the Message Passing Interface (MPI), a standard
and portable message-passing system for parallel
programming (Dalcín et al. 2008). The MPI was
originally designed for distributed memory sys-
tems, then extended to shared memory parallel
computing for effectively utilizing node-level

architecture (i.e. stand-alone machine with multi-
cores). Its communication efficiency could be
more or less affected by the memory capacity
pressure, particularly when all the cores are fully
occupied (Brinskiy, Lubin, and Dinan 2015). That
could be the main reason of the relatively weak
performance of FastGWR when the number of
cores exceeds 24. From Figure 4, GWR-CUDA
consistently performs the best of all across all
scenarios.

For critically testing GWR-CUDA, we extend
the size of samples up to one million with two
different versions of GPU devices. In Figure 5, we
present the average time costs of GWmodel and
GWR-CUDA. The time consumption of GWmodel
increases exponentially, particularly when the
sample size is larger than 8000; in contrast, the
time cost of GWR-CUDA grows much more
slowly as sample size gets larger, but a dramatic
increase occurs for sample sizes of around 800,000
or more. The two versions of GPU devices present
different performances for running GWR-CUDA,
dealing with samples of one million for around
3.5 h (12,766 s) on GPU-1, and around 5 h
(17,828 s) on GPU-2. As one of the world’s most
advanced GPU, NVIDIA® Tesla® V100 (GPU-1)
renders a great advantage over the GeForce RTX
2060 Mobile (GPU-2), a mobile graphics chip
embedded in a laptop. Given that a laptop cannot
run stably with full capacity for a long period, we
only tested GWR-CUDA on GPU-2 with samples
of sizes ranging from 1000 to 100,000, and

Figure 5. Average time costs of GWmodel and GWR-CUDA with different sample sizes.

544 B. LU ET AL.

1,000,000 only. Moreover, results indicate that the
physical parameters of the CPU and the GPU
device will affect the performances of the chosen

high-performance solutions. Equipment (laptop or
PC) with high-end CPU or GPU devices will pro-
vide better performances, and where High-

Figure 6. Speedup indicators of GWmodel, FastGWR, MGWR, GWR-MP and GWR-CUDA with a different number of cores.

GEO-SPATIAL INFORMATION SCIENCE 545

Performance Computing (HPC) infrastructure
should provide a better scope for potential
improvement in this aspect.

The average time costs could be specific for the
devices adopted, and almost impossible to be
reproduced with a different device. From an objec-
tive assessment, we used the speedup indicator to
evaluate how improvements benefitted from the
parallel strategies implemented in FastGWR,
MGWR, GWR-MP and GWR-CUDA. A larger
speedup means the parallel solution for a specific
GWR implementation makes a greater optimization
in computational efficiency than running it serially.
As shown in Figure 6, the performance of GWR-
MP and FastGWR (and MGWR) improves as more
cores are used for running them in parallel. Again
GWR-MP demonstrates better usage of multi-core
equipment for samples of sizes ranging from 3000
to 10,000, while performance does not show an
improvement when the number of cores exceed
24, i.e. all the physical cores are fully occupied.
For GWR-CUDA, its superiority in parallel perfor-
mance is apparent when the sample size is greater
than 10,000, but note that the speedup falls sharply
to 40 when the sample size reaches 90,000. In
Figure 5, we can see that the average time costs
of GWR-CUDA also increase exponentially as the
sample size becomes large, where a sharper increase
occurs around a sample size of 80,000.

Note in the inset figure of Figure 5, GWR-CUDA is
not always the best performer in comparison with the
serial solution in GWmodel. GWR-CUDA takes more
time than the serial solution when the sample size is less
than 3000. To implement GWR-CUDA, all the pre-
defined data matrices or vectors (i.e. X,Y and coordi-
nates) are transferred from memory into the GPU, and
the results, including hat matrix S and coefficient esti-
mates bβ are transferred from GPU back to memory –
widely known as I/O issue important for GPU perfor-
mance (Fujii et al. 2013). In other words, the I/O cost is
predominant when the sample size is less than 3000, and
the computational advantage of GWR-CUDA starts to
emerge when the size is getting larger than 3000. The I/O

cost could be affected by the physical parameters of GPU,
CPU and protocol type, so GWR-CUDA will perform
differently with different devices. Thus, the critical value
(i.e. 3000 in this study) could fluctuate marginally width
different computational configurations.

The results also reveal a fact that the high-
performance solutions would be not be recom-
mended for samples with relatively small sizes,
say less than 5000, the most common data volume
in the previous GWR applications. On the flip
side, GWR applications with a relatively large
data set (e.g. large than 20,000) were rarely
found due to the lack of and universal access to
high-performance tools. The findings in the con-
text of rich scenarios are beneficial to both devel-
opment and optimization of the high-performance
solutions.

5. Summary

In this study, we have proposed two high-
performance solutions for GWR via multi-core
parallel and CUDA techniques: GWR-MP and
GWR-CUDA, respectively. We objectively com-
pared them with existing GWR implementations
found in GWmodel, MGWR and another high-
performance solution FastGWR. Results indicate
that no solution was always the best in terms of
computational efficiency, as summarized in
Figure 7 by their relative speeds for four sample
size intervals (less than 2000; greater than 2000,
but less than 10,000; greater than 10,000 but less
than 100,000; greater than 10,000). As (effectively)
serial solutions, both GWmodel and MGWR pro-
vide adequate GWR implementations for (small)
sample sizes < 10,000, as computational costs were
considered acceptable.

For multi-core parallel solutions, GWR-MP
provided a commensurate solution with GWR-
CUDA for dealing with (large) sample sizes
between 10,000 to 100,000 on a computer of com-
mon multi-core configuration, where GWR-MP
demonstrated more efficient computing capacity

Figure 7. Overviews on the computational speeds of GWmodel, FastGWR, MGWR, GWR-MP and GWR-CUDA in terms of three
different sample sizes.

546 B. LU ET AL.

for each core or thread than FastGWR, whose
design is more suited to non-shared memory clus-
ters. For example, Li et al. (2019a) adopted
FastGWR with a dataset of 1.28 million points
on a 512-core computing cluster. However, high-
performance computing clusters are usually too
expensive and too few in number to be accessed
by many researchers.

Conspicuously, GWR-CUDA provided a relatively
cheap but highly efficient solution for analyzing a very
large dataset, of which the size could be much larger
than 1,000,000, the upper number in this study. The
study GPU (NVIDIA GeForce RTX 2060 (Mobile))
only cost around $350, but we found we could imple-
ment a GWR model (including bandwidth optimiza-
tion and model calibration) with one million data
points in around 5 h. A better configuration of the
GPU, like with NVIDIA Tesla V100 could reduce this
time to 3.5 h, but at a cost of around $9000. Note
however, GWR-CUDA should only be preferred when
sample size is very large in terms of balancing cost
with speed (as clearly seen in Figure 7). Note, however
the Figure 7 roughly show the comparative perfor-
mances of these solutions, and could more or less
vary when different devices adopted.

Both GWR-MP and GWR-CUDA were implemen-
ted in R with wrappers on the C++ code, which has
been incorporated into the latest release of GWmodel
(say version GWmodel_2.2–8). Note that, nowadays it
is straightforward to execute R from Python, and vice
versa. Therefore, this is not a black-or-white type of
choice to run these solutions in R or Python.
Moreover, all the C++ code could be easily transferred
to a standalone application, which we are currently
working on. Inspired by Figure 7, an important feature
of this, is to adaptively set a computational strategy
according to sample size and the computing environ-
ment, and this study provides a direct support for such
a strategic optimization. An ultimate solution could be
an application developed under the service-oriented
architecture with powerful computers or clusters, and
the algorithms proposed here would provide funda-
mental support. Moreover, the solutions proposed
here are directly applicable to extended GWR forms
beyond the conventional GWR form, such as GTWR;
and also directly applicable to other geographically
weighted models (Lu et al. 2014b) outside of those
for regression (e.g. GW PCA). Further, more pertinent
issues, such as robust statistical inference in GWR
with a massive data set (Griffith 2015) would also be
worthy of investigation.

Notes

1. Note that the diagnostic information cannot be cal-
culated when an individual set of regression locations
are adopted.

2. Theoretically, the number of threads c could be larger
than the number of cores available, but we would
suggest creating no more than the number of cores
for ensuring the performance of each thread.

Disclosure statement

No potential conflict of interest was reported by the
author(s).

Funding

This research was jointly supported by National Key
Research and Development Program of China [grant num-
ber 2021YFB3900904] and the National Natural Science
Foundation of China [grant numbers 42071368,
U2033216, 41871287).

Notes on contributors

Binbin Lu is currently an Associate Professor at School of
Remote Sensing and Information Engineering, Wuhan
University. His research interests include geocomputation,
spatial statistics, geographically weighted (GW) modeling,
open-source GIS, R coding and spatio-temporal big data
analysis. He is the main developer and maintainer of the
R package, namely GWmodel.

Yigong Hu is currently a PhD student at University of
Bristol, and got his master degree at the School of Remote
Sensing and Information Engineering, Wuhan University.
His research interests include spatial statistics,
geoinformatics.

Daisuke Murakami is an Assistant Professor in the
Department of Statistical Data Science at Institute of
Statistical Mathematics, Tachikawa. His research interests
include spatial and spatiotemporal statistics, Gaussian pro-
cess, and regression modeling.

ChrisBrunsdon is a Professor of Geocomputation and
Director of the National Centre for Geocomputation at
Maynooth University, Ireland. His research interests
include spatial statistics, data science and spatial analysis.

Alexis Comber is a Professor of Spatial Data Analytics at the
University of Leeds and Leeds Institute for Data Analytics
(LIDA). His research activities cover all areas of spatial data:
remote sensing, land cover/use, demographics, public
health, agriculture, bio-energy and accessibility.

Martin Charlton was an Associate Professor at the National
Centre for Geocomputation at Maynooth University. He
was one of the leading pioneers of quantitative geography
and geocomputation whose work helped inspire the recent
resurgence of spatial analysis and geographic data science.

PaulHarris is a Professor of Spatial Statistics at Rothamsted
Research. His research includes methodological develop-
ment with applied studies in agriculture and encompasses
all scales (from the plot and field, to the continent and
global).

ORCID

Binbin Lu http://orcid.org/0000-0001-7847-7560
Yigong Hu http://orcid.org/0000-0002-9553-6275

GEO-SPATIAL INFORMATION SCIENCE 547

Daisuke Murakami http://orcid.org/0000-0002-9544-
9542
Chris Brunsdon http://orcid.org/0000-0003-4254-1780
Alexis Comber http://orcid.org/0000-0002-3652-7846
Martin Charlton http://orcid.org/0000-0002-0622-393X
Paul Harris http://orcid.org/0000-0003-0259-4079

Data availability statement

The data that support the findings of this study are available
with the identifier(s) at the link (https://figshare.com/s/
13f325af1e37c3bc15fc).

References

Bivand, R., and D.L. Yu. 2006. “Spgwr: Geographically
Weighted Regression.” http://cran.r-project.org/web/
packages/spgwr/index.html

Brinskiy, M., M. Lubin, and J. Dinan. 2015. High
Performance Parallelism Pearls:Chapter 16 - MPI-3
Shared Memory Programming Introduction. Boston:
Morgan Kaufmann.

Brunsdon, C., A.S. Fotheringham, and M.E. Charlton. 1996.
“Geographically Weighted Regression: A Method for
Exploring Spatial Nonstationarity.” Geographical Analysis
28 (4): 281–98. doi: 10.1111/j.1538–4632.1996.tb00936.x.

Brunsdon, C., S. Fotheringham, and M. Charlton. 1998.
“Geographically Weighted Regression-Modelling Spatial
Non-Stationarity.” Journal of the Royal Statistical Society.
Series D (The Statistician) 47 (3): 431–443. doi:10.1111/
1467-9884.00145.

Cao, K., M. Diao, and B. Wu. 2019. “A Big Data–Based
Geographically Weighted Regression Model for Public
Housing Prices: A Case Study in Singapore.” Annals of
the American Association of Geographers 109 (1):
173–186. doi:10.1080/24694452.2018.1470925.

Cao, X.S., Y.W. Liu, T. Li, and W. Liao. 2019b. “Analysis of
Spatial Pattern Evolution and Influencing Factors of
Regional Land Use Efficiency in China Based on
ESDA-GWR.” Scientific Reports 9 (1): 520. doi:10.1038/
s41598-018-36368-2.

Cao, J.Y., F.S. Ma, J. Guo, R. Lu, and G.W. Liu. 2019a.
“Assessment of Mining-related Seabed Subsidence
Using GIS Spatial Regression Methods: A Case Study of
the Sanshandao Gold Mine (Laizhou, Shandong
Province, China).” Environmental Earth Sciences 78 (1):
26. doi:10.1007/s12665-018-8022-1.

Charlton, M., A.S. Fotheringham, and C. Brunsdon. 2003.
GWR 3: Software for Geographically Weighted Regression.
Maynooth, Co.kildare: National Centre for
Geocomputation, National University of Ireland
Maynooth.

Comber, A., C. Brunsdon, M. Charlton, G.P. Dong,
R. Harris, B.B. Lu, Y.H. Lü, et al. 2022. “A Route Map
for Successful Applications of Geographically Weighted
Regression.” Geographical Analysis. doi:10.1111/
gean.12316.

da Silva, A.R., and A.S. Fotheringham. 2016. “The Multiple
Testing Issue in Geographically Weighted Regression.”
Geographical Analysis 48 (3): 233–247. doi:10.1111/
gean.12084.

Dalcín, L., R. Paz, M. Storti, and J. D’Elía. 2008. “MPI for
Python: Performance Improvements and MPI-2
Extensions.” Journal of Parallel and Distributed Computing
68 (5): 655–662. doi:10.1016/j.jpdc.2007.09.005.

Eddelbuettel, D. 2013. Seamless R and C++ Integration with
Rcpp. New York: Springer.

Eddelbuettel, D. 2020. “Task View: High-Performance
and Parallel Computing with R.“ METACRAN.
Accessed 17 May. https ://www.r-pkg.org/ctv/
HighPerformanceComputing

ESRI Corp. 2011. ArcGIS Desktop: Release 10. Redlands, CA:
Environmental Systems Research Institute.

Fotheringham, A.S., C. Brunsdon, and M. Charlton. 2002.
Geographically Weighted Regression: The Analysis of
Spatially Varying Relationships. Chichester: Wiley.

Fotheringham, A.S., M.E. Charlton, and C. Brunsdon. 1998.
“Geographically Weighted Regression: A Natural
Evolution of the Expansion Method for Spatial Data
Analysis.” Environment & Planning A 30 (11):
1905–1927. doi:10.1068/a301905.

Fotheringham, A.S., R. Crespo, and J. Yao. 2015. “Geographical
and Temporal Weighted Regression (GTWR).” Geographical
Analysis 47 (4): 431–452. doi:10.1111/gean.12071.

Fujii, Y., T. Azumi, N. Nishio, S. Kato, and M. Edahiro.
2013. “Data Transfer Matters for GPU Computing.” The
2013 International Conference on Parallel and
Distributed Systems, Seoul, December 15-18.

Gollini, I., B.B. Lu, M. Charlton, C. Brunsdon, and P. Harris.
2015. “GWmodel: An R Package for Exploring Spatial
Heterogeneity Using Geographically Weighted Models.”
Journal of Statistical Software 63 (17): 1–50. doi:10.18637/
jss.v063.i17.

Griffith, D.A. 2015. “Approximation of Gaussian Spatial
Autoregressive Models for Massive Regular Square
Tessellation Data.” International Journal of Geographical
Information Science 29 (12): 2143–2173. doi:10.1080/
13658816.2015.1068318.

Harris, P., C. Brunsdon, B.B. Lu, T. Nakaya, and
M. Charlton. 2017. “Introducing Bootstrap Methods to
Investigate Coefficient Non-stationarity in Spatial
Regression Models.” Spatial Statistics 21: 241–261.
doi:10.1016/j.spasta.2017.07.006.

Harris, R., A. Singleton, D. Grose, C. Brunsdon, and P. Longley.
2010. “Grid-enabling Geographically Weighted Regression:
A Case Study of Participation in Higher Education in
England.” Transactions in GIS 14 (1): 43–61. doi:10.1111/
j.1467-9671.2009.01181.x.

Hill, M.D., and M.R. Marty. 2008. “Amdahl’s Law in the
Multicore Era.” Computer 41 (7): 33–38. doi:10.1109/
mc.2008.209.

Huang, B., and J.H. Wang. 2020. “Big Spatial Data for Urban and
Environmental Sustainability.” Geo-Spatial Information
Science 23 (2): 125–140. doi:10.1080/10095020.2020.1754138.

Huang, B., B. Wu, and M. Barry. 2010. “Geographically and
Temporally Weighted Regression for Modeling
Spatio-temporal Variation in House Prices.”
International Journal of Geographical Information
Science 24 (3): 383–401. doi:10.1080/13658810802672469.

Ivan, I., A. Singleton, J. Horak, and T. Inspektor. 2017. The
Rise of Big Spatial Data: Lecture Notes in Geoinformation
and Cartography. Switzerland AG: Springer Nature.

Jin, C., J. Xu, and Z.F. Huang. 2019. “Spatiotemporal
Analysis of Regional Tourism Development:
A Semiparametric Geographically Weighted Regression
Model Approach.” Habitat International 87: 1–10.
doi:10.1016/j.habitatint.2019.03.011.

Kalogirou, S. 2016. “Destination Choice of Athenians: An
Application of Geographically Weighted Versions of
Standard and Zero Inflated Poisson Spatial Interaction
Models.” Geographical Analysis 48 (2): 191–230.
doi:10.1111/gean.12092.

548 B. LU ET AL.

https://figshare.com/s/13f325af1e37c3bc15fc
https://figshare.com/s/13f325af1e37c3bc15fc
http://cran.r-project.org/web/packages/spgwr/index.html
http://cran.r-project.org/web/packages/spgwr/index.html
https://doi.org/10.1111/j.1538%20134632.1996.tb00936.x
https://doi.org/10.1111/1467-9884.00145
https://doi.org/10.1111/1467-9884.00145
https://doi.org/10.1080/24694452.2018.1470925
https://doi.org/10.1038/s41598-018-36368-2
https://doi.org/10.1038/s41598-018-36368-2
https://doi.org/10.1007/s12665-018-8022-1
https://doi.org/10.1111/gean.12316
https://doi.org/10.1111/gean.12316
https://doi.org/10.1111/gean.12084
https://doi.org/10.1111/gean.12084
https://doi.org/10.1016/j.jpdc.2007.09.005
https://www.r-pkg.org/ctv/HighPerformanceComputing
https://www.r-pkg.org/ctv/HighPerformanceComputing
https://doi.org/10.1068/a301905
https://doi.org/10.1111/gean.12071
https://doi.org/10.18637/jss.v063.i17
https://doi.org/10.18637/jss.v063.i17
https://doi.org/10.1080/13658816.2015.1068318
https://doi.org/10.1080/13658816.2015.1068318
https://doi.org/10.1016/j.spasta.2017.07.006
https://doi.org/10.1111/j.1467-9671.2009.01181.x
https://doi.org/10.1111/j.1467-9671.2009.01181.x
https://doi.org/10.1109/mc.2008.209
https://doi.org/10.1109/mc.2008.209
https://doi.org/10.1080/10095020.2020.1754138
https://doi.org/10.1080/13658810802672469
https://doi.org/10.1016/j.habitatint.2019.03.011
https://doi.org/10.1111/gean.12092

Lee, J.G., and M. Kang. 2015. “Geospatial Big Data:
Challenges and Opportunities.” Big Data Research 2 (2):
74–81. doi:10.1016/j.bdr.2015.01.003.

LeSage, J., and R.K. Pace. 2009. Introduction to Spatial
Econometrics. Chapman and Hall: CRC Press/Taylor &
Francis Group.

Leung, Y., C.L. Mei, and W.X. Zhang. 2000. “Statistical Tests
for Spatial Nonstationarity Based on the Geographically
Weighted Regression Model.” Environment & Planning A
32 (1): 9–32. doi:10.1068/a3162.

Li, Z.Q., and A.S. Fotheringham. 2020. “Computational
Improvements to Multi-scale Geographically
Weighted Regression.” International Journal of
Geographical Information Science 1–20. doi:10.1080/
13658816.2020.1720692.

Li, Z.Q., A.S. Fotheringham, W.W. Li, and T. Oshan. 2019a.
“Fast Geographically Weighted Regression (Fastgwr):
A Scalable Algorithm to Investigate Spatial Process
Heterogeneity in Millions of Observations.” International
Journal of Geographical Information Science 33 (1):
155–175. doi:10.1080/13658816.2018.1521523.

Li, Z.Q., T. Oshan, S. Fotheringham, W. Kang, L. Wolf, H.
C. Yu, and W. Luo. 2019b. MGWR 1.0 User Manual. Tempe,
USA: Arizona State University.

Liu, Y., N.Z. Zhao, J.K. Vanos, and G.F.U. Cao. 2019.
“Revisiting the Estimations of PM2.5-attributable
Mortality with Advancements in PM2.5 Mapping and
Mortality Statistics.” Science of the Total Environment
666: 499–507. doi:10.1016/j.scitotenv.2019.02.269.

Lu, B.B., M. Charlton, P. Harris, and A.S. Fotheringham. 2014a.
“Geographically Weighted Regression with a non-Euclidean
Distance Metric: A Case Study Using Hedonic House Price
Data.” International Journal of Geographical Information
Science 28 (4): 660–681. doi:10.1080/13658816.2013.865739.

Lu, B.B., P. Harris, M. Charlton, and C. Brunsdon. 2014b.
“The GWmodel R Package: Further Topics for Exploring
Spatial Heterogeneity Using Geographically Weighted
Models.” Geo-Spatial Information Science 17 (2):
85–101. doi:10.1080/10095020.2014.917453.

Lu, B.B., W.B. Yang, Y. Ge, and P. Harris. 2018. “Improvements
to the Calibration of a Geographically Weighted Regression
with Parameter-specific Distance Metrics and Bandwidths.”
Computers, Environment and Urban Systems 71: 41–57.
doi:10.1016/j.compenvurbsys.2018.03.012.

McMillen, D. 2015. “McSpatial-package.” CRAN.
Murakami, D., N. Tsutsumida, T. Yoshida, T. Nakaya, and B.

B. Lu. 2019. “Scgwr: Scalable Geographically Weighted
Regression.” CRAN.

Murakami, D., N. Tsutsumida, T. Yoshida, T. Nakaya, and B.
B. Lu. 2020. “Scalable GWR: A Linear-Time Algorithm for
Large-Scale Geographically Weighted Regression with
Polynomial Kernels.” Annals of the American Association of
Geographers 1–22. doi:10.1080/24694452.2020.1774350.

Nakaya, T., M. Charlton, S. Fotheringham, and C. Brunsdon.
2009. How to Use SGWRWIN (GWR4.0). Maynooth,
Ireland: National Centre for Geocomputation.

Oshan, M.T., Z.Q. Li, W. Kang, J.L. Wolf, and S.
A. Fotheringham. 2019. “MGWR: A Python
Implementation of Multiscale Geographically Weighted
Regression for Investigating Process Spatial
Heterogeneity and Scale.” ISPRS International Journal of
Geo-Information 8 (6): 1–31. doi:10.3390/ijgi8060269.

R Core Team. 2020. “Memory Limits in R.” Accessed 21
May 2021. https://stat.ethz.ch/R-manual/R-devel/library/
base/html/Memory-limits.html

Tobler, W.R. 1970. “A Computer Movie Simulating Urban
Growth in the Detroit Region.” Economic Geography
46 (2): 234–240. doi:10.2307/143141.

Wang, D.C., Y. Yang, A. Qiu, X.C. Kang, J.K. Han, and Z.
Y. Chai. 2020. “A CUDA-Based Parallel Geographically
Weighted Regression for Large-Scale Geographic Data.”
ISPRS International Journal of Geo-Information 9: 11.
doi:10.3390/ijgi9110653.

Wang, S.B., Y.L. Liu, C.Z. Zhao, and H.X. Pu. 2019.
“Residential Energy Consumption and Its Linkages with
Life Expectancy in Mainland China: A Geographically
Weighted Regression Approach and Energy-ladder-
based Perspective.” Energy 177: 347–357. doi:10.1016/j.
energy.2019.04.099.

Wheeler, D. 2013. “Gwrr: Fits Geographically Weighted
Regression Models with Diagnostic Tools.” R package
version 0.2-1.

Xu, G., W.W. Wang, D.D. Lu, B.B. Lu, K. Qin, and L.M. Jiao.
2021. “Geographically Varying Relationships between
Population Flows from Wuhan and COVID-19 Cases in
Chinese Cities.” Geo-Spatial Information Science 1–11.
doi:10.1080/10095020.2021.1977093.

Yang, N.N., J.S. Li, B.B. Lu, M.H. Luo, and L.Z. Li. 2019.
“Exploring the Spatial Pattern and Influencing Factors of
Land Carrying Capacity in Wuhan.” Sustainability
11 (10). doi:10.3390/su11102786.

Yin, C.H., Q.S. He, Y.F. Liu, W.Q. Chen, and Y. Gao.
2018. “Inequality of Public Health and Its Role in
Spatial Accessibility to Medical Facilities in China.”
Applied Geography 92: 50–62. doi:10.1016/j.apgeog.2
018.01.011.

GEO-SPATIAL INFORMATION SCIENCE 549

https://doi.org/10.1016/j.bdr.2015.01.003
https://doi.org/10.1068/a3162
https://doi.org/10.1080/13658816.2020.1720692
https://doi.org/10.1080/13658816.2020.1720692
https://doi.org/10.1080/13658816.2018.1521523
https://doi.org/10.1016/j.scitotenv.2019.02.269
https://doi.org/10.1080/13658816.2013.865739
https://doi.org/10.1080/10095020.2014.917453
https://doi.org/10.1016/j.compenvurbsys.2018.03.012
https://doi.org/10.1080/24694452.2020.1774350
https://doi.org/10.3390/ijgi8060269
https://stat.ethz.ch/R-manual/R-devel/library/base/html/Memory-limits.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/Memory-limits.html
https://doi.org/10.2307/143141
https://doi.org/10.3390/ijgi9110653
https://doi.org/10.1016/j.energy.2019.04.099
https://doi.org/10.1016/j.energy.2019.04.099
https://doi.org/10.1080/10095020.2021.1977093
https://doi.org/10.3390/su11102786
https://doi.org/10.1016/j.apgeog.2018.01.011
https://doi.org/10.1016/j.apgeog.2018.01.011

	Abstract
	1. Introduction
	1.1. Existing implementations of GWR
	1.2. Existing high-performance solutions
	1.3. Our study’s approach in R

	2. The GWR methodology and high-performance solutions
	2.1. Basics of GWR
	2.2 Reducing memory cost for GWR
	2.3. Parallelization solutions for GWR

	3. Experimental design
	3.1. General information
	3.2. Performance indicators

	4. Results and discussion
	5. Summary
	Notes
	Disclosure statement
	Funding
	Notes on contributors
	ORCID
	Data availability statement
	References

