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ABSTRACT
As an established spatial analytical tool, Geographically Weighted Regression (GWR) has been 
applied across a variety of disciplines. However, its usage can be challenging for large datasets, 
which are increasingly prevalent in today’s digital world. In this study, we propose two high- 
performance R solutions for GWR via Multi-core Parallel (MP) and Compute Unified Device 
Architecture (CUDA) techniques, respectively GWR-MP and GWR-CUDA. We compared GWR- 
MP and GWR-CUDA with three existing solutions available in Geographically Weighted Models 
(GWmodel), Multi-scale GWR (MGWR) and Fast GWR (FastGWR). Results showed that all five 
solutions perform differently across varying sample sizes, with no single solution a clear winner 
in terms of computational efficiency. Specifically, solutions given in GWmodel and MGWR 
provided acceptable computational costs for GWR studies with a relatively small sample size. 
For a large sample size, GWR-MP and FastGWR provided coherent solutions on a Personal 
Computer (PC) with a common multi-core configuration, GWR-MP provided more efficient 
computing capacity for each core or thread than FastGWR. For cases when the sample size was 
very large, and for these cases only, GWR-CUDA provided the most efficient solution, but 
should note its I/O cost with small samples. In summary, GWR-MP and GWR-CUDA provided 
complementary high-performance R solutions to existing ones, where for certain data-rich 
GWR studies, they should be preferred.
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1. Introduction

Geographically Weighted Regression (GWR) 
(Brunsdon, Fotheringham, and Charlton 1996, 1998; 
Fotheringham, Charlton, and Brunsdon 1998; 
Fotheringham, Brunsdon, and Charlton 2002) is 
a technique specifically developed to explore spatial 
heterogeneities in a regression’s “response to predictor 
variable” relationships. Unlike a fixed coefficient regres-
sion, such as an Ordinary Least Squares (OLS) regres-
sion, GWR allows regression coefficients to vary 
spatially; the resultant coefficient maps allow an inves-
tigation into their change (if any) across space. The 
GWR methodology has been extensively developed in 
terms of its usage and extensions (Comber et al. 2022), 
but where inference in GWR is not always as stable as 
that found with say, an OLS regression and as such, 
GWR adaptations exist to counter this (da Silva and 
Fotheringham 2016; Harris et al. 2017). GWR has been 
widely applied in many scientific domains, including 
regional economics (e.g. Jin, Xu, and Huang 2019), 
urban planning (e.g. Cao et al. 2019b), sociology (e.g. 
Yin et al. 2018), ecology (e.g. Liu et al. 2019), public 
health (e.g. Wang et al. 2019; Xu et al. 2021), agriculture 
(e.g. Harris et al. 2017), and environmental science (e.g. 
Cao et al. 2019a; Huang and Wang 2020).

Our increasingly digital world continues to gener-
ate huge volumes of data – many of which are spatially 
indexed (Lee and Kang 2015; Ivan et al. 2017). 
However, in order to attribute process understanding 
to such “Big Spatial Data” almost all spatial models 
require adaptation so they can be efficiently calibrated 
and validated within tolerable time frames. GWR is 
one such model that is computationally demanding 
and in this respect has benefitted from high- 
performance computing solutions (Harris et al. 2010; 
Murakami et al. 2020; Li et al. 2019b). Commonly, 
such solutions only exist for the conventional forms 
of GWR, where many extended GWR models are 
more computationally demanding still – for example, 
multiscale GWR (Lu et al. 2018; Li and Fotheringham  
2020) which requires a complex iterative solution to its 
calibration. Similarly, Geographically and Temporally 
Weighted Regression (GTWR) (Huang, Wu, and 
Barry 2010; Fotheringham, Crespo, and Yao 2015) 
for space-time processes has a higher computational 
demand than that found with conventional GWR.

Unsurprisingly, there are an increasing number of 
(conventional) GWR applications exploring “Big 
Data” (e.g. Cao, Diao, and Wu 2019). Here, we con-
ducted a bibliometric study, searching the keyword 
“Geographically Weighted Regression” via Web of 
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Science (WoS), where in total, 2014 articles were 
found from 1999 to 2019, and their keywords are 
visualized in a word cloud form (Figure 1). Observe 
the frequency (size) of “Big Data”, which 
appears second only to “GWR”. Thus, the demand 
for high-performance solutions for GWR is clear, 
where its application in “Big Data” problems can be 
limited (Murakami et al. 2020), even with the employ-
ment of the existing solutions listed above (sec-
tion 1.2).

1.1. Existing implementations of GWR

There are a number of standalone implementations 
with GWR enabled, such as GWR3 (Charlton, 
Fotheringham, and Brunsdon 2003), GWR4 (Nakaya 
et al. 2009), the GWR tool in ESRI ArcGIS (ESRI Corp  
2011), and Multi-scale GWR (MGWR) (Li et al.  
2019b). GWR is also available through scripting plat-
forms with: the mgwr module of the PySal package in 
Python (Oshan et al. 2019); as part of the econometrics 
toolbox in MATLAB (LeSage and Pace 2009); and five 
R packages – spgwr (Bivand and Yu 2006), 
Geographically Weighted Models (GWmodel) (Lu 
et al. 2014b; Gollini et al. 2015), gwrr (Wheeler  
2013), McSpatial (McMillen 2015) and lctools 
(Kalogirou 2016). The five R packages considered as 
a whole provide the richest suite of GWR forms (e.g. 
conventional, robust, heteroskedastic, multiscale, 
space-time and more) and therefore development 
here is most appropriate. However, all suffer compu-
tationally, particularly given the strict memory limit 
for specific operation systems (R Core Team 2020). 
Workarounds to exceeding computational limits exist, 
such as coarse-scaling the observations, or the use of 
aggregations via upscaling (e.g. Yang et al. 2019) – all 

prior to a GWR fit, but none are ideal given important 
sources of information, fine scale detail and variability 
are lost.

1.2. Existing high-performance solutions

Efforts to improve the computational efficiency of 
GWR exist. Firstly, through Harris et al. (2010) who 
implemented a grid-based (parallelization) approach 
to conventional GWR. More recently, Li et al. (2019a) 
developed a python implementation (FastGWR) that 
optimizes the conventional GWR algorithm together 
with embedding multi-core parallel computing tech-
nology. This computational scheme has also been 
transplanted for use with multiscale GWR (Li and 
Fotheringham 2020). Wang et al. (2020) proposed 
a high-performance solution of GWR with the 
Compute Unified Device Architecture (CUDA), 
namely Fast-Parallel-GWR (FPGWR) which was 
developed with Microsoft Visual Studio 2015 and 
CUDA development kit. Finally, a mathematical 
approach was taken by Murakami et al. (2020) who 
proposed Scalable GWR (ScaGWR) that saves on 
computational overheads via the pre-compressing of 
large matrices and vectors with polynomial kernels. 
For ScaGWR, the computational cost presents a linear 
relationship with the sample size, while a quad- 
quadratic order appears for the usual un-adapted 
GWR form. The ScaGWR routine can be found in 
the R package scgwr (Murakami et al. 2019) and 
GWmodel. ScaGWR provides approximate coefficient 
estimates in comparison with conventional GWR, 
where the results from ScaGWR might vary slightly 
when different parameters are specified – for example, 
the chosen degree or order of the polynomials 
(Murakami et al. 2020).

Figure 1. Word cloud of keywords from 2014 articles on GWR queried via WoS from 1999 to 2019.
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1.3. Our study’s approach in R

In this sense, the computational bottleneck is still proble-
matic for GWR (and its extensions) in the 
R environment, particularly for the geographically 
weighted functions in GWmodel. However, generic high- 
performance computing options have been incorporated 
in many packages since R release 2.14.0 (Eddelbuettel  
2020), where grid computing, cloud computing, multi- 
core and Graphic Processing Unit (GPU) are commonly 
invoked. In this respect, this study investigates high- 
performance solutions for (conventional) GWR within 
the R package GWmodel, where our workflow consists of 
three hierarchies: 1) optimize the algorithm for a GWR 
calibration for accepting out-of-memory issues with “Big 
Data”; 2) adopt multi-thread parallel computing for 
a GWR calibration (GWR-MP), which enables analysis 
on a standard Personal Computer (PC) with a multi-core 
processor; 3) apply parallel computing on the GPU 
devices via CUDA (GWR-CUDA).

For performance evaluation, we compare the perfor-
mances of the new solutions proposed (i.e. GWR-MP 
and GWR-CUDA) with existing solutions found in 
GWmodel, MGWR and FastGWR using varying sample 
sizes, where the latter two are outside of the 
R environment. We haven’t included FPGWR where 
CUDA was also adopted as: 1) the source code or tool 
is not available; and 2) key aspects of FPGWR are not 
clear, such as distance calculation, kernel function imple-
mentation, making FPGWR difficult to fully reproduce. 
This study is organized as follows. Firstly, we provide 
a description of conventional GWR methodology and 
the new high-performance techniques proposed. 
Secondly, competing high-performance solutions to 
GWR are objectively compared through a designed 
experiment. Thirdly, we summarize and suggest future 
research.

2. The GWR methodology and 
high-performance solutions

2.1. Basics of GWR

The conventional GWR model characterizes spa-
tially varying relationships via location-specific 
regressions whose coefficients are estimated by 
(geographically) weighted least squares. The 
model can be expressed as (Brunsdon, 
Fotheringham, and Charlton 1996; Fotheringham, 
Brunsdon, and Charlton 2002): 

yi ¼ β0 ui; við Þ þ
Xl

k¼1
βk ui; við Þxik þ εi (1) 

where yi is the dependent variable at location i on 
a two-dimensional space; xik is the value of the kth 

independent variable at location i; l is the number of 

independent variables; β0 ui; við Þ is the intercept para-
meter at location i; βk ui; við Þ is the local regression 
coefficient for the kth independent variable at location 
i; ui; við Þ are the spatial coordinates of location i; and εi 
is the independent random error at location i.

In line with Tobler’s first law of geography 
(Tobler 1970), extended to consider situations in 
which nearby regression relationships are more 
similar than distant ones, GWR consists of 
a series of local regressions where observations 
are weighted (i.e. given decreasing influence) via 
a distance-decay kernel function (Lu et al. 2014a). 
The estimator of the coefficients at location i has 
the following matrix expression: 

bβ ui; við Þ ¼ XTW ui; við ÞX
� �� 1XTW ui; við Þy (2) 

where X is the matrix of the independent variables 
with a column of 1s for the intercept; y is the 
dependent variable vector; bβ ui; við Þ ¼

β̂0 ui; við Þ; β̂1 ui; við Þ; . . . ; β̂m ui; við Þ
� �T 

is the vector 

of m +1 local regression coefficients; W ui; við Þ is 
a n� n diagonal matrix denoting geographical 
weights of each observation for calibrating the 
local regression at location i, and is defined as: 

W ui; við Þ ¼

wi1 0 :: :: 0
0 wi2 :: :: 0
: : : : :

: : : : :

0 0 : : win

2

6
6
6
6
4

3

7
7
7
7
5

(3) 

where wij j ¼ 1; � � � ; nð Þ is calculated via a kernel 
function decaying with respect to Euclidean dis-
tance, or some other distance metric (Lu et al.  
2014a), between locations i and j, and 
n represents the number of observations. 
Gaussian, exponential, bi-square, box-car, tri- 
cube are among the many kernel functions that 
can be specified (Gollini et al. 2015), where an 
optimal kernel bandwidth is commonly found by 
leave-one-out cross-validation or by a corrected 
Akaike Information Criterion (AICc) procedure. 
The kernel bandwidth relays the chosen spatial 
scale of the regression relationships.

Diagnostics for a GWR model’s fit are essential, 
where R-squared, adjusted R-squared and AICc 
are commonly reported. These can be expressed 
as (Fotheringham, Brunsdon, and Charlton 2002): 

R2 ¼

P
i y_i � �yi

� �2

P
i y_i � �yi

� �2
þ
P

i yi � y_i

� �2 (4) 

R2
adjusted ¼ 1 � 1 � R2� � n � 1

n � 2tr Sð Þ þ tr STS
� �

� 1
(5) 
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AICc ¼ 2n lnðσ̂Þ þ n lnð2πÞ þ n
nþ tr Sð Þ

n � 2 � tr Sð Þ

� �

(6) 

where y_i is the fitted value at location i; �y is the mean 
value of y; σ̂ is the estimated standard deviation of the 
error term: 

σ_
2
¼

P
i y_i � �yi

� �2

n � 2tr Sð Þ þ tr STSð Þ
¼

yT I � Sð Þ
T I � Sð ÞY

n � 2tr Sð Þ þ tr STSð Þ

(7) 

where I is an n� n identity matrix and tr Sð Þ and 
tr STS
� �

denote the traces of the hat matrix S and 
STS. For GWR, each row Si of the hat matrix can be 
found as follows: 

Si ¼ Xi XTW ui; við ÞX
� �� 1XTW ui; við Þ (8) 

where Xi is its ith row of the matrix X of independent 
variables.

Furthermore, t statistics at each individual regres-
sion point can be produced along with the coefficient 
estimates. For each estimated regression coefficient at 
location i, β

_

k ui; við Þ, the t statistic can be calculated by: 

tk;i ¼
β
_

k ui; við Þ

SE β
_

k ui; við Þ
� � (9) 

where SE β
_

k ui; við Þ
� �

is the localised standard error of 

β
_

k ui; við Þ. For each location-specific calibration, the 
standard errors are obtained from: 

SE β
_

i

� �
¼ σ_

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

diag CiCT
i

� �q

(10) 

where 

Ci ¼ XTW ui; við ÞX
� �� 1XTW ui; við Þ (11) 

The given calculations are commonly reported in most 
GWR software tools, where the algebraic matrix opera-
tions are programmed in a straightforward manner. 
However, their computational cost is expensive, parti-
cularly when dataset size (number of observations n) is 
large. Computational burden is primarily 
a consequence of: 1) complex matrix operations, parti-
cularly the n� n matrices involved, like the hat matrix 
S; and 2) a large number of matrix operations are 
repeated in the location-wise calibrations, kernel band-
width optimization and when calculating the model fit 
diagnostics.

2.2 Reducing memory cost for GWR

A variety of GWR forms and extensions are pre-
sent in GWmodel, making it the most comprehen-
sive GWR R package (Comber et al. 2022). In 
early versions of GWmodel, all GWR functions 

were developed directly from the algebraic formu-
lations in Section 2.1 above. This requires 
a number of n� n matrices to be calculated and 
stored, specifically for calculating diagnostic infor-
mation and enabling statistical inference (Leung, 
Mei, and Zhang 2000). Note here, that it is almost 
impossible to allocate as much as 2 GB to a single 
vector in a 32-bit or 64-bit build of R due to 
predefined allocations of address space on 
Windows (R Core Team 2020). Allocating mem-
ory for a 16,000 � 16,000 numeric matrix in 
R will normally be an upper limit. This means 
the maximum n for any of the conventional 
GWR functions in R is around 16,000. However, 
in practice, the maximum number of observations 
a conventional GWR tool can handle is likely to 
be much smaller (i.e. n ≪ 16,000).

It is therefore necessary to first relieve these mem-
ory constraints when developing high-performance 
solutions for GWR, and to support GWR analyses of 
very large datasets. In this respect, Li et al. (2019a) 
optimized the calculations of AICc and localised stan-
dard errors by avoiding the storage of the entire hat 
matrix, which reduced the memory storage size from 
O(n2) to O(nm). This strategy of avoiding any n� n 
matrix operation or storage is effective and makes it 
workable when dealing with a large dataset on any 
basic PC. Therefore, as a potential approach for redu-
cing memory costs, we re-formulized the algebraic 
operations of a GWR calibration, as follows, which 
are essentially the same as the optimizations proposed 
by Li et al. (2019a).

First observe that Equation (2) can be divided into 
the following two parts: 

XTW ui;við ÞX¼ XT
1 ;���;X

T
n

� �
wi1 ��� 0
..
. . .

.
0

0 ���win

0

B
@

1

C
A

X1

..

.

Xn

0

B
@

1

C
A

¼
Xn

j¼1
wijXT

j Xj 

XTW ui;við Þy¼ XT
1 ;���;X

T
n

� �
wi1 ��� 0
..
. . .

.
0

0 ���win

0

B
@

1

C
A

y1

..

.

yn

0

B
@

1

C
A

¼
Xn

j¼1
wijyjXT

j

(12) 

where Xj is the jth row of the X matrix. In this 
sense, the point-wise estimator of GWR can be 
regarded as a cross manipulation between the 
inverse of a mþ 1ð Þ � mþ 1ð Þ matrix and a 
mþ 1ð Þ � 1 vector. Accordingly, the weight matrix 

W ui; við Þ can only be stored as a vector with its 
diagonal elements.
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For diagnostics of GWR, more complicated 
computations are involved, particularly for the n�
n matrices, including hat matrix S, its square STS 
and the matrix Q ¼ I � Sð Þ

T I � Sð Þ. As shown in 
Equations (5–7), the traces of S and STS are 
needed, but where they could be found in these 
two steps: 

tr Sð Þ ¼
Xn

i
Sii ¼

Xn

i
XiCi

i (13) 

tr STS
� �

¼
Xn

i
SiST

i (14) 

where Ci
i means the ith column of matrix Ci. 

Moreover, the matrix Q can also be expressed as 
follows: 

Q ¼ I � Sð Þ
T I � Sð Þ ¼

Xn

i¼1
ei � Sið Þ

T ei � Sið Þ (15) 

where ei is the ith row of the identity matrix I. Observe 
the matrix Q is also required in many statistical tests 
for GWR (i.e. for spatial non-stationarity), such as the 
F-tests proposed by Leung, Mei, and Zhang (2000) and 
Fotheringham, Brunsdon, and Charlton (2002), which 
are similarly included in most GWR software tools 
(GWR3, GWR4, as well as GWmodel). In this sense, 
it is natural for these F-tests to benefit from the high- 
performance solutions proposed.

According to the above equations, the storage 
of all n� n matrices required for a GWR calibra-
tion and associated diagnostics can be avoided, by 
storing only vectors of length n and matrices of 
size n� mþ 1ð Þ in the location-wise computa-
tions. Thus, the memory cost of GWR can be 

similarly reduced to O(nm), essential for working 
with “Big Spatial Data” in R. In the current release 
of GWmodel, the GWR functions have already 
been optimized in this respect. Therefore, for this 
study, the next steps are an assessment of high- 
performance solutions embedded in paralleling 
computing techniques.

2.3. Parallelization solutions for GWR

The two parallelization solutions adopted were: (a) 
multicore Central Processing Unit (CPU) and 
GPU accelerator via multithreading parallel 
(GWR-MP) and (b) CUDA (GWR-CUDA), 
respectively.

As illustrated in Figure 2, the procedure of 
GWR-MP was carried out in the following steps:

(1) Create the coefficient matrix βn� mþ1ð Þ and the 
vectors of n dimensions (S2) for recording the 
diagonal elements of STS if diagnostic informa-
tion is calculated1;

(2) Create c2 threads, and divide the n point-wise 
operations into them, i.e. nt operations are con-

ducted on the tth thread, where 
Pc

t¼1
nt ¼ n;

(3) For each thread, create a vector of n dimensions 
(Si) and a vector Qi

(4) Carry out the following operations for each 
location i:
a. Calculate the weight vector wi ¼

wi1; � � � ;winð Þ from the corresponding dis-
tances of the observations from the location i;

b. For estimating β
_

i calculate Equation (2) in 
two parts, i.e. Equation (12);

Figure 2. Parallel computing flowchart of the GWR-MP algorithm.
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c. Calculate the ith row of the hat matrix and 
assign it to Si in memory, then renew the ith 

element of S2 as Si
2 ¼ SiST

i ;
d. Renew the vector Qi ¼ ei � Sið Þ

2.
(5) Repeat Step 4 until all the location-wise opera-

tions are finished, and the coefficient estimates 

β
_

n�m, tr Sð Þ, tr STS
� �

and ~σ2 are ready for the 
final output.

By contrast, the parallelizing strategy for GWR- 
CUDA is designed specifically to fit GPU devices. As 
illustrated in Figure 3, the detailed procedure of GWR- 
CUDA includes the following steps:

(1) Read the data matrices or vectors (i.e. X,Y and 
coordinates) from memory into GPU;

(2) Divide the n point-wise operations into 
groups, and within each group, g or fewer 
point-wise calibrations are conducted in par-
allel, where g should meet the following 
condition:

bgknþ 2bgkkþ bgk � M � α (16) 

where b is the number of bytes needed for each ele-
ment in the matrix or vector (commonly set as 8), M is 
the GPU memory size, α is the memory reserved for 
intermediate calculations. In practice, the number of 
variables k is far less than the number of observations, 
n (i.e. k� n), the number of g is more dependent on 
the term, bgkn.

(3) Create arrays Δg�k�n, Ωg�k�k and a matrix �g�k, 
and conduct the following location-wise calibra-
tions (i = 1, . . ., g) in parallel within the current 
group:
a. Calculate the weight vector wi ¼ wi1; � � � ;winð Þ

from the corresponding distances of the obser-
vations from the location i;

b. Calculate XTW i ¼
Pn

j¼1
wijXT

j and assign it to 

the ith k� n component of Δ;

c. Calculate XTW ui; við ÞX ¼
Pn

j¼1
wijXT

j Xj and 

assign it to the ith k� k component of Ω, 

and then calculate its inversion;

d. Calculate XTW ui; við Þy ¼
Pn

j¼1
wijyjX

T
j and 

assign it to the ith row of �;

e. Calculate the location-wise coefficient esti-

mate β
_

i, Si, SiST
i and ei � Sið Þ

2.

(4) Repeat Step 3 until parallel computations for all 

the groups are finished, and the coefficient esti-

mates β
_

n�m, tr Sð Þ, tr STS
� �

and σ_
2 

will be ready 

for the final output.

It is important to note that both GWR-MP and 
GWR-CUDA procedures are designed to include 
the GWR model’s diagnostic information calcula-
tions, with the calibration points the same as the 
observations and an assessment of model fit is 
required (which includes kernel bandwidth opti-
misation). Otherwise, the above procedures would 
be greatly simplified with only coefficient estimates 
returned. We implemented GWR-MP and GWR- 
CUDA in R, coded the parallel part via C++ and 
wrapped them via the Rcpp package (Eddelbuettel  
2013).

3. Experimental design

3.1. General information

For this study, we compared the computational 
performances of GWmodel (version 2.1–4), 
FastGWR (updated on 12 August 2019), MGWR 
(version 2.1.1), GWR-MP and GWR-CUDA for 

Figure 3. Parallel computing flowchart of the GWR-CUDA algorithm.
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implementations of conventional GWR only to 
ensure the same results. As shown in Table 1, we 
adopted two devices for running GWR where both 
devices had a GPU specification for running 
GWR-CUDA.

In terms of experimental data, we produced 
a series of simulated datasets of size n ranging 
from 1000 to 10,000 with increments of 1000, 
from 10,000 to 100,000 with increments of 
10,000 and from 100,000 to 1,000,000 with incre-
ments of 100,000. For MGWR, FastGWR and 
GWR-MP, we specified a different number of 
cores ranging from 2 to 48 to run them in parallel. 
We didn’t test them with all the combinations, but 
selectively adopted 2, 3, 4, 5, 6, 7, 8, 12, 24, 36 and 
48 cores for typical tests. Note that the number of 
physical cores on the experimental device is 24, 
but the number of logic cores could be up to 48 
through the hyper-threading technology. Notably, 
the current GWR routine in GWmodel is a serial 
program, so that the setting of multicores will not 
work differently for it. As shown in Figure 3, we 
adopted a different computing strategy for GWR- 
CUDA, where all samples are divided into groups, 
and location-wise calibrations within each group 
are conducted in parallel on the GPU device. 
Thus, the number g is the parallel computation 
counts for executing GWR-CUDA, and we took 
g = 384 (or less if samples were insufficient for the 
final group) according to Equation (16). For each 
sample size n and GWR implementation, 10 
experiments were conducted independently on 
the two devices, respectively. Moreover, samples 
sizes ranging from 100,000 to 1,000,000 are 
adopted only for the extreme performance tests 
of GWR-CUDA, not for tests on the other four 
GWR solutions, as relatively inefficient solutions 
result due to unacceptably long time frames.

3.2. Performance indicators

Two indicators were used to evaluate perfor-
mance – the average time cost and the “speedup” 
of the parallel computations. For each sample size 
n and GWR implementation, the average time cost 
was calculated as follows: 

�Tn;GWRj ¼

Pm
i¼1 Ti

n;GWRj

m
(17) 

where Ti
n;GWRj 

represents the time cost of running the 
jth GWR implementation with a sample size n, m (in 
this case, taken as 10) is the number of individual 
experiments and �Tn;GWRj refers to the average time 
cost. Note that in all cases, the time costs include 
both the (automated) kernel bandwidth optimization 
(by AICc) and the GWR model calibration.

Speedup is an important indicator to evaluate the 
performance of parallel computations (Hill and Marty  
2008). According to its original definition, we take 
a simple expression for its calculation, as.. 

k ¼
TS

TM
(18) 

where k is the speedup, TS is the time cost of serial 
computing and TM is the time cost of parallel 
computing with multi-cores. For this study, we 
repeated 100 independent experiments for each 
scenario, meaning speedup could be calculated 
using average time costs from m individual 
runs, i.e.: 

k ¼
�TS
�TM

(19) 

where �TS and �TM are the average time costs of serial 
and parallel computations, respectively. We can verify 
that the estimation of speedup is significantly valid 
and reliable, by assuming the time cost for each indi-
vidual test is a random variable subject to a normal 
distribution.

4. Results and discussion

In Figure 4, we present the averaged time costs of 
GWmodel, FastGWR, MGWR, GWR-MP and GWR- 
CUDA with a different number of cores with samples 
of sizes ranging from 1000 to 100,000. As the GWR 
implementation in GWmodel is a serial program, the 
time cost will not be affected by increasing cores, but 
averaged time costs grow exponentially as sample size 
increases. This indicates that the basic GWR function 
in the latest release of GWmodel is not working effi-
ciently with a large dataset, even though the function 

Table 1. Device parameters for running study GWR models.
GWmodel, FastGWR, MGWR, GWR-MP, GWR-CUDA

Device model ThinkSystem SR650
CPU Intel(R) Xeon(R) Gold 5118 CPU @ 2.30 GHz, 24 cores
Memory 128 GB
Operating system Ubuntu 20.04
GPU-1a NVIDIA Tesla V100 PCIe, RAM 16 GB
GPU-2 NVIDIA GeForce RTX 2060 (Mobile)

aThis version of GPU is the primary device for testing GWR-CUDA, and the results of running GWR-CUDA by default refer to using it; while the second device 
is only used for providing supplementary evidence.
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benefits from algorithmic optimization and code 
implementation with C++. It can handle a relatively 
large dataset, say greater than 100,000, but its running 

time will be incredibly long, particularly when band-
width optimization is additionally conducted. MGWR 
is applicable for running on multi-cores, but it failed 

Figure 4. Average time costs of GWmodel, FastGWR, MGWR, GWR-MP and GWR-CUDA with a different number of cores.
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to calibrate the GWR models with sample sizes greater 
than 60,000. In the limited number of visible tests, it 
performed similarly to FastGWR, which is also devel-
oped via Python by the same research team (Oshan 
et al. 2019; Li et al. 2019a). Thus, results for MGWR 
can be represented by those for FastGWR and are not 
discussed further.

Both FastGWR and GWR-MP are naturally 
designed for multi-core parallelism. From 
Figure 4, FastGWR and GWR-MP always outper-
form the serial routine in GWmodel, and these 
advantages grow as the number of cores increase 
and as sample size increases. From Figure 4, 
GWR-MP performs similarly to FastGWR in 
most cases, but where GWR-MP tends to out- 
perform FastGWR for samples greater than 
60,000. Relative to GWR-MP, the time costs of 
FastGWR become exponentially large when the 
number of cores exceeds 24 for sample sizes 
greater than 60,000, which means that all the phy-
sical cores will be employed and the logic cores 
will be used via the hyper-threading technology. 
On this condition, the performance and stability 
of each physical core could worsen due to frequent 
switches between two logic cores on each physical 
core. In addition, FastGWR was developed with 
the Message Passing Interface (MPI), a standard 
and portable message-passing system for parallel 
programming (Dalcín et al. 2008). The MPI was 
originally designed for distributed memory sys-
tems, then extended to shared memory parallel 
computing for effectively utilizing node-level 

architecture (i.e. stand-alone machine with multi- 
cores). Its communication efficiency could be 
more or less affected by the memory capacity 
pressure, particularly when all the cores are fully 
occupied (Brinskiy, Lubin, and Dinan 2015). That 
could be the main reason of the relatively weak 
performance of FastGWR when the number of 
cores exceeds 24. From Figure 4, GWR-CUDA 
consistently performs the best of all across all 
scenarios.

For critically testing GWR-CUDA, we extend 
the size of samples up to one million with two 
different versions of GPU devices. In Figure 5, we 
present the average time costs of GWmodel and 
GWR-CUDA. The time consumption of GWmodel 
increases exponentially, particularly when the 
sample size is larger than 8000; in contrast, the 
time cost of GWR-CUDA grows much more 
slowly as sample size gets larger, but a dramatic 
increase occurs for sample sizes of around 800,000 
or more. The two versions of GPU devices present 
different performances for running GWR-CUDA, 
dealing with samples of one million for around 
3.5 h (12,766 s) on GPU-1, and around 5 h 
(17,828 s) on GPU-2. As one of the world’s most 
advanced GPU, NVIDIA® Tesla® V100 (GPU-1) 
renders a great advantage over the GeForce RTX 
2060 Mobile (GPU-2), a mobile graphics chip 
embedded in a laptop. Given that a laptop cannot 
run stably with full capacity for a long period, we 
only tested GWR-CUDA on GPU-2 with samples 
of sizes ranging from 1000 to 100,000, and 

Figure 5. Average time costs of GWmodel and GWR-CUDA with different sample sizes.
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1,000,000 only. Moreover, results indicate that the 
physical parameters of the CPU and the GPU 
device will affect the performances of the chosen   

high-performance solutions. Equipment (laptop or 
PC) with high-end CPU or GPU devices will pro-
vide better performances, and where High- 

Figure 6. Speedup indicators of GWmodel, FastGWR, MGWR, GWR-MP and GWR-CUDA with a different number of cores.
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Performance Computing (HPC) infrastructure 
should provide a better scope for potential 
improvement in this aspect.

The average time costs could be specific for the 
devices adopted, and almost impossible to be 
reproduced with a different device. From an objec-
tive assessment, we used the speedup indicator to 
evaluate how improvements benefitted from the 
parallel strategies implemented in FastGWR, 
MGWR, GWR-MP and GWR-CUDA. A larger 
speedup means the parallel solution for a specific 
GWR implementation makes a greater optimization 
in computational efficiency than running it serially. 
As shown in Figure 6, the performance of GWR- 
MP and FastGWR (and MGWR) improves as more 
cores are used for running them in parallel. Again 
GWR-MP demonstrates better usage of multi-core 
equipment for samples of sizes ranging from 3000 
to 10,000, while performance does not show an 
improvement when the number of cores exceed 
24, i.e. all the physical cores are fully occupied. 
For GWR-CUDA, its superiority in parallel perfor-
mance is apparent when the sample size is greater 
than 10,000, but note that the speedup falls sharply 
to 40 when the sample size reaches 90,000. In 
Figure 5, we can see that the average time costs 
of GWR-CUDA also increase exponentially as the 
sample size becomes large, where a sharper increase 
occurs around a sample size of 80,000.

Note in the inset figure of Figure 5, GWR-CUDA is 
not always the best performer in comparison with the 
serial solution in GWmodel. GWR-CUDA takes more 
time than the serial solution when the sample size is less 
than 3000. To implement GWR-CUDA, all the pre- 
defined data matrices or vectors (i.e. X,Y and coordi-
nates) are transferred from memory into the GPU, and 
the results, including hat matrix S and coefficient esti-
mates bβ are transferred from GPU back to memory – 
widely known as I/O issue important for GPU perfor-
mance (Fujii et al. 2013). In other words, the I/O cost is 
predominant when the sample size is less than 3000, and 
the computational advantage of GWR-CUDA starts to 
emerge when the size is getting larger than 3000. The I/O 

cost could be affected by the physical parameters of GPU, 
CPU and protocol type, so GWR-CUDA will perform 
differently with different devices. Thus, the critical value 
(i.e. 3000 in this study) could fluctuate marginally width 
different computational configurations.

The results also reveal a fact that the high- 
performance solutions would be not be recom-
mended for samples with relatively small sizes, 
say less than 5000, the most common data volume 
in the previous GWR applications. On the flip 
side, GWR applications with a relatively large 
data set (e.g. large than 20,000) were rarely 
found due to the lack of and universal access to 
high-performance tools. The findings in the con-
text of rich scenarios are beneficial to both devel-
opment and optimization of the high-performance 
solutions.

5. Summary

In this study, we have proposed two high- 
performance solutions for GWR via multi-core 
parallel and CUDA techniques: GWR-MP and 
GWR-CUDA, respectively. We objectively com-
pared them with existing GWR implementations 
found in GWmodel, MGWR and another high- 
performance solution FastGWR. Results indicate 
that no solution was always the best in terms of 
computational efficiency, as summarized in 
Figure 7 by their relative speeds for four sample 
size intervals (less than 2000; greater than 2000, 
but less than 10,000; greater than 10,000 but less 
than 100,000; greater than 10,000). As (effectively) 
serial solutions, both GWmodel and MGWR pro-
vide adequate GWR implementations for (small) 
sample sizes < 10,000, as computational costs were 
considered acceptable.

For multi-core parallel solutions, GWR-MP 
provided a commensurate solution with GWR- 
CUDA for dealing with (large) sample sizes 
between 10,000 to 100,000 on a computer of com-
mon multi-core configuration, where GWR-MP 
demonstrated more efficient computing capacity 

Figure 7. Overviews on the computational speeds of GWmodel, FastGWR, MGWR, GWR-MP and GWR-CUDA in terms of three 
different sample sizes.
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for each core or thread than FastGWR, whose 
design is more suited to non-shared memory clus-
ters. For example, Li et al. (2019a) adopted 
FastGWR with a dataset of 1.28 million points 
on a 512-core computing cluster. However, high- 
performance computing clusters are usually too 
expensive and too few in number to be accessed 
by many researchers.

Conspicuously, GWR-CUDA provided a relatively 
cheap but highly efficient solution for analyzing a very 
large dataset, of which the size could be much larger 
than 1,000,000, the upper number in this study. The 
study GPU (NVIDIA GeForce RTX 2060 (Mobile)) 
only cost around $350, but we found we could imple-
ment a GWR model (including bandwidth optimiza-
tion and model calibration) with one million data 
points in around 5 h. A better configuration of the 
GPU, like with NVIDIA Tesla V100 could reduce this 
time to 3.5 h, but at a cost of around $9000. Note 
however, GWR-CUDA should only be preferred when 
sample size is very large in terms of balancing cost 
with speed (as clearly seen in Figure 7). Note, however 
the Figure 7 roughly show the comparative perfor-
mances of these solutions, and could more or less 
vary when different devices adopted.

Both GWR-MP and GWR-CUDA were implemen-
ted in R with wrappers on the C++ code, which has 
been incorporated into the latest release of GWmodel 
(say version GWmodel_2.2–8). Note that, nowadays it 
is straightforward to execute R from Python, and vice 
versa. Therefore, this is not a black-or-white type of 
choice to run these solutions in R or Python. 
Moreover, all the C++ code could be easily transferred 
to a standalone application, which we are currently 
working on. Inspired by Figure 7, an important feature 
of this, is to adaptively set a computational strategy 
according to sample size and the computing environ-
ment, and this study provides a direct support for such 
a strategic optimization. An ultimate solution could be 
an application developed under the service-oriented 
architecture with powerful computers or clusters, and 
the algorithms proposed here would provide funda-
mental support. Moreover, the solutions proposed 
here are directly applicable to extended GWR forms 
beyond the conventional GWR form, such as GTWR; 
and also directly applicable to other geographically 
weighted models (Lu et al. 2014b) outside of those 
for regression (e.g. GW PCA). Further, more pertinent 
issues, such as robust statistical inference in GWR 
with a massive data set (Griffith 2015) would also be 
worthy of investigation.

Notes

1. Note that the diagnostic information cannot be cal-
culated when an individual set of regression locations 
are adopted.

2. Theoretically, the number of threads c could be larger 
than the number of cores available, but we would 
suggest creating no more than the number of cores 
for ensuring the performance of each thread.
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