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ABSTRACT
Oil production estimation plays a critical role in economic plans for local governments and 
organizations. Therefore, many studies applied different Artificial Intelligence (AI) based meth-
ods to estimate oil production in different countries. The Adaptive Neuro-Fuzzy Inference 
System (ANFIS) is a well-known model that has been successfully employed in various applica-
tions, including time-series forecasting. However, the ANFIS model faces critical shortcomings 
in its parameters during the configuration process. From this point, this paper works to solve 
the drawbacks of the ANFIS by optimizing ANFIS parameters using a modified Aquila Optimizer 
(AO) with the Opposition-Based Learning (OBL) technique. The main idea of the developed 
model, AOOBL-ANFIS, is to enhance the search process of the AO and use the AOOBL to boost 
the performance of the ANFIS. The proposed model is evaluated using real-world oil produc-
tion datasets collected from different oilfields using several performance metrics, including 
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (R2), 
Standard Deviation (Std), and computational time. Moreover, the AOOBL-ANFIS model is 
compared to several modified ANFIS models include Particle Swarm Optimization (PSO)- 
ANFIS, Grey Wolf Optimizer (GWO)-ANFIS, Sine Cosine Algorithm (SCA)-ANFIS, Slime Mold 
Algorithm (SMA)-ANFIS, and Genetic Algorithm (GA)-ANFIS, respectively. Additionally, it is 
compared to well-known time series forecasting methods, namely, Autoregressive Integrated 
Moving Average (ARIMA), Long Short-Term Memory (LSTM), Seasonal Autoregressive 
Integrated Moving Average (SARIMA), and Neural Network (NN). The outcomes verified the 
high performance of the AOOBL-ANFIS, which outperformed the classic ANFIS model and the 
compared models.
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1. Introduction

Forecasting oil production is crucial for petroleum 
engineers to alleviate the blind expenditure, ensure 
long-term development and maintain and monitor 
the life cycle of the oil reservoir. In addition, the 
reservoir parameters, including permeability, porosity, 
water saturation, type of crude oil, and reservoir het-
erogeneity, are considered the influence factors affect-
ing the accuracy of forecasting oil production (Haider 
2020). In the oil industry, various traditional 
approaches are employed to forecast oil production, 
including Numerical Reservoir Simulation (NRS) and 
Decline Curve Analysis (DCA) (Cumming 2013; 
Chong et al. 2017; Cancelliere, Verga, and Viberti 
2011). NRS and DCA are the most common utilizing 
approaches to forecast oil production. However, these 
traditional approaches have limitations and obstacles 
to predict oil production accurately (Nwaobi and 
Anandarajah 2018). The application of NRS is pre-
sented as a reliable approach compared to the other 
conventional techniques. The NRS mainly depends on 

the accuracy of the static geological model and the 
quality of history matching in the dynamic model 
(Hutahaean, Demyanov, and Christie 2016; Al Rassas 
et al. 2020; Shao, Wu, and Li 2021). Moreover, the 
achievement of constructing an accurate 3D geological 
model is a cumbersome and challenging task 
(Hutahaean, Demyanov, and Christie 2017; Zhang 
et al. 2016). Furthermore, the DCA approach (Zhang 
et al. 2016; Wachtmeister et al. 2017) can predict the 
hydrocarbon (H.C) production rate by assessing the 
long-term H.C production data. In addition, the DCA 
approach employed the empirical equations to match 
the historical production volumes with different mod-
els, including exponential, hyperbolic, and harmonic 
models (Tomomi 2000). The applications of artificial 
intelligence (AI) in the oil and gas industries have 
grown very dramatically (Alkinani et al. 2019; Dela 
Torre, Gao, and Macinnis-Ng 2021), specifically, in 
predicting oil production (Ahmadi and Bahadori 
2015; Montgomery and O’sullivan’s 2017; Liu, Liu, 
and Gu 2020; Song et al. 2020), predicting 
Petrophysical properties, such as porosity and 
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permeability (Erofeev et al. 2019; Ahmadi and Chen 
2019), optimizing well placement and oil production 
(Ahmadi and Bahadori 2015; NwachukNwachukwu 
et al. 2018), and predicting of Pressure-Volume- 
Temperature (PVT) properties (El-Sebakhy 2009).

Moreover, in the literature, many studies have been 
presented for predicting oil production. For example, 
Fan et al. (2021) presented a new model by integrating 
Autoregressive Integrated Moving Average (ARIMA) 
and Long Short-Term Memory (LSTM) to predict oil 
production. Alalimi et al. (2021) presented an opti-
mized Random Vector Functional Link (RVFL) for 
time series forecasting for Tahe oilfield, China. Liu, 
Liu, and Gu (2020) and Song et al. (2020) employed 
LSTM-based models to predict oil production using 
historical production datasets. Sagheer and Kotb 
(2019) introduced an efficient deep learning approach 
called DLSTM to overcome the cumbersome of con-
ventional forecasting tools. Zhang and Hu (2021) 
introduced a new forecasting model using 
Multivariate Time Series (MTS) and Vector 
Autoregressive (VAR) to predict the oil production 
for water flooding reservoirs. Also, in (Wang, Song, 
and Li 2018), the authors developed a hybrid forecast-
ing model by employing the Nonlinear Metabolism 
Gray Model (NMGM) and ARIMA.

The Adaptive Neuro-Fuzzy Inference System 
(ANFIS) is a well-known technique that has been 
employed in different applications, including time- 
series prediction and forecasting applications, such as 
wind speed prediction (Liu, Tian, and Li 2015), river 
flow prediction (Belvederesi et al. 2020) air- 
overpressure prediction (Harandizadeh and 
Armaghani 2021) and others (Asl, Masomi, and 
Tajbakhsh 2020; Betiku et al. 2016; Singh et al. 2020). 
However, the conventional ANFIS model faces some 
shortcomings in its parameters configuration. The 
configuration process is very important and it has 
significant impacts on the quality of solutions as well 
as the training process. Thus, the applications of opti-
mization methods can enhance the configuration 
process.

In this paper, we propose a modified Aquila 
Optimizer (AO) (Abualigah et al. 2021) using the 
Opposition-Based Learning (OBL), called AOOBL, to 
optimize ANFIS parameters and to boost its forecast-
ing accuracy. In general, the AO algorithm has a high 
exploitation ability. However, its ability to explore the 
search space needs more improvements, so we use the 
OBL. The developed model, AOOBL-ANFIS, is 
applied to forecast oil production from different oil-
fields. In the developed AOOBL optimization algo-
rithm, the OBL is employed to enhance the 
traditional AO algorithm’s search process and avoid 
trapping at local optima. We used real-world oil pro-
duction datasets from two different countries, China 
and Yemen, to evaluate the proposed AOOBL-ANFIS 

model. Additionally, we applied several modified 
ANFIS models using well-known optimization algo-
rithms to assess the performance of the AOOBL 
method.

In this study, our main contributions are:

● An efficient time-series forecasting approach, 
called AOOBL-ANFIS, to forecast oil production 
based on historical production data.

● A new variant of the AO algorithm based on the 
OBL technique, which is used to boost the per-
formance of the AO algorithm.

● Enhance the performance of the traditional 
ANFIS model by using the developed AOOBL 
algorithm.

● Evaluate the developed model with real-world 
data collected from two well-known oilfields in 
China and Yemen. More so, we compare the 
applications of several optimization algorithms 
to the proposed AOOBL-ANFIS, such as the 
ANFIS model, Particle Swarm Optimization 
(PSO)-ANFIS, Genetic Algorithm (GA)-ANFIS, 
Sine Cosine Algorithm (SCA)-ANFIS, Slime 
Mold Algorithm (SMA)-ANFIS, Grey Wolf 
Optimizer (GWO) – ANFIS and Aquila 
Optimizer (AO)-ANFIS.

The rest sections of the study paper are presented 
as follows. A number of related works are pre-
sented in Section 2. The preliminaries of the 
ANFIS, AO, and OBL are given in Section 3. The 
description of the developed AOOBL-ANFIS model 
is introduced in Section 4. Section 5 presents the 
evaluation experiments. The conclusion is pre-
sented in Section 6.

2. Related work

2.1. Different oil production forecasting 
techniques

In this section, we recap a number of the recently 
proposed methods employed for forecasting oil 
production.

Singh, Seol, and Myshakin (2021) introduced 
a new method that could predict gas hydrate 
saturation (Sh) for any well by using different set-
tings such as bulk density, porosity, compressional 
wave (P wave) velocity well-logs neural networks. 
The study results revealed that the accuracy of the 
developed methods in prediction Sh was 83%. Al- 
Shabandar et al. (2021) proposed a new forecasting 
model to predict oil production using a deep Gated 
Recurrent Unit (GRU). The employed GRU com-
prises several hidden layers, in which each layer has 
a set of nodes. The proposed model has a simple 
structure and can identify time series datasets with 
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long intervals. In (Alalimi et al. 2021), an enhanced 
version of the Random Vector Functional Link 
(RVFL) using Spherical Search Optimizer (SSO) 
was proposed to forecast oil production. This 
model was evaluated with oil production datasets 
collected from Tahe oilfield, China. McKenna et al. 
(2020) studied three different forms of uncertainty, 
such as facies geometry, reservoir rock heterogene-
ity, and permeability distribution, to determine 
their impact on the evaluation and prediction of 
reservoirs. Different techniques, including 
Sequential Gaussian Simulation (SGS), Kriging, 
and probability-field (p-field), were employed to 
estimate previous uncertainty levels. Liu, Liu, and 
Gu (2020) introduced a reliable and accurate pre-
diction model of oil production relying on empiri-
cal mode decomposition ensemble and LSTM. In 
(Negash and Yaw 2020), an Artificial Neural 
Network (ANN) based model was employed to 
forecast oil production, which involves a physics- 
based extraction of features for fluid production 
prediction to enhance the prediction effect. 
Zanjani, Salam, and Kandara (2020) used three 
methods to forecast oil production, including 
ANN, Linear Regression (LR), and Support Vector 
Regression (SVR). The results revealed that all 
three methods achieved acceptable prediction 
results, where the best results were obtained by 
the ANN method. Abdullayeva and Imamverdiyev 
(2019) developed an oil forecasting model using 
a hybrid approach of Conventional Neural 
Network (CNN) and LSTM. Fan et al. (2021) devel-
oped a hybrid model using ARIMA and LSTM to 
forecast oil production. Moreover, different meth-
ods have been utilized for oil production forecast-
ing, including LSTM (Liu, Liu, and Gu 2019; 
Sagheer and Kotb 2019), nonlinear Autoregressive 
Exogenous Model (NARX) (Heghedus, Shchipanov, 
and Rong 2019), and Higher-Order Neural 
Network (HONN) (NC et al. 2013).

However, the applications of traditional machine 
learning and advanced deep learning models require 
more data to train the model. Therefore, the ANFIS 
model performs better when the size of the data is 
small.

2.2 Applications of ANFIS model in time series 
forecasting approaches

This section summarizes some of the ANFIS applications 
in different time series approaches and the oil industry.

Shojaei et al. (2014) applied the ANFIS model to 
estimate reservoir oil bubble point pressure. They used 
750 time-series data collected from different locations 
to evaluate two modified versions of the ANFIS. Also, 
they compared the ANFIS to several techniques to 
approve its performance. Yavari et al. (2018) applied 

Hareland-Rampersad and Bourgoyne and Young 
models with ANFIS for drilling rate prediction. They 
used datasets from the South Pars gas field, Iran.

Additionally, they compared this approach to sev-
eral well-known rates of penetration prediction meth-
ods. They found that ANFIS-based methods 
outperformed other methods. Kumar (2021) investi-
gated Karanja oil using different conditions, namely, 
volume, catalyst, time, oil molar ratio, and microwave 
power for producing biodiesel. The ANFIS was 
applied to the prediction and modeling processes, 
which showed significant performance. In (Al- 
Qaness, Abd Elaziz, and Ewees 2018), the Sine 
Cosine Algorithm (SCA) was adopted to optimize 
ANFIS parameters to be applied for oil consumption 
forecasting. This model was applied to estimate oil 
consumption in two countries, the USA and Canada. 
In (Abd Elaziz, Ewees, and Alameer 2020), a modified 
ANFIS method was proposed using the genetic algo-
rithm and salp swarm algorithm. The developed 
ANFIS model was applied to predict crude oil prices. 
In (Al-qaness et al. 2019), another developed ANFIS 
model was proposed to forecast oil consumption in 
different countries. The Multi-Verse Optimizer 
(MVO) was applied to enhance ANFIS forecasting 
capability. In (Al-qaness et al. 2021), an enhanced 
version of the Slime Mold Algorithm (SMA) was 
used to optimize ANFIS. The developed ANFIS 
model was applied to forecast the air quality index in 
Wuhan City, China.

There are also different ANFIS applications in the 
time series prediction field. For example, Pousinho, 
Mendes, and Catalão (2011) proposed a modified 
ANFIS model to predict wind speed. They applied 
the particle swarm optimization algorithm for enhan-
cing ANFIS prediction capability. Mohammadi et al. 
(2015) used the ANFIS model to estimate daily global 
radiation.

3. Preliminaries

The backgrounds of the applied methods, ANFIS 
model, AO algorithm, and OBL technique are 
described in detail in this section, as follows.

3.1. Adaptive neuro-fuzzy inference system 
(ANFIS)

In 1993, Jang (1993) proposed the ANFIS model as 
a combination of neural networks and fuzzy systems. 
The fuzzy system is a well-known technique that can 
be utilized to map the prior knowledge into constraint 
sets. In general, in the ANFIS model, the “IF-THEN 
rules“ can be used to generate a mapping for the inputs 
and outputs. They are identified as the ”Takagi– 
Sugeno inference model”.
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Figure 1 shows the basic structure of the ANFIS 
model. The inputs of Layer 1 are represented by x and 
y. The output of the node i is represented by O1i. The 
ANFIS model can be represented as follows: 

O1i ¼ μAi
xð Þ; i ¼ 1; 2;O1i ¼ μBi� 2

yð Þ; i ¼ 3; 4 (1) 

μ xð Þ ¼ e� ð
x� ρi

αi
Þ

2

(2) 

here, μ represents the generalized Gaussian member-
ship function, where Ai and Bi are the membership 
values of μ. Additionally, the premise parameter set is 
represented by αi and ρi.

The output of the second layer can be formu-
lated as: 

O2i ¼ μAi
xð Þ � μBi� 2

yð Þ (3) 

The third layer output can be defined as: 

O3i ¼ �wi
ωi

P2
ði¼ 1Þ ωi

(4) 

wi is the i th output from the second layer.
Moreover, the output of the fourth layer is com-

puted as: 

O4i ¼ �wifi ¼ �wi pixþ qiyþ rið Þ (5) 

where f represents a function, which depends on the 
input of the network (i.e. x and y) and its parameters. 
ri, qi, and pi are consequent parameters of the i node.

Lastly, the output of the fifth layer is generated 
using F and �wi (that is defined in Equation (4)) and 
this is formulated in Equation (6): 

O5i ¼
X

i
�wifi (6) 

3.2. Aquila Optimizer (AO)

The basic formulation of the Aquila Optimizer 
(AO) (Abualigah et al. 2021) is introduced in this 
section. In general, AO algorithm simulates the 

social behavior of Aquila to catch its prey in nat-
ure. Similar to other Metaheuristic (MH) techni-
ques, AO is a population-based optimization 
technique that started by forming the initial popu-
lation X that has N agents. This process has been 
performed using the following equation. 

Xij ¼ r1 � UBj � LBj
� �

þ LBj; i ¼ 1; 2; . . . ::;Nj
¼ 1; 2; . . . ;Dim (7) 

where UBj and LBj are limits of the search domain. 
r1 2 0; 1½ � is a random value and Dim is the dimension 
of the agent.

The next step of the AO technique is to perform 
either exploration and exploitation until finding the 
optimal solution. Followed (Abualigah et al. 2021), 
two strategies are used to conduct exploration and 
exploitation.

The first strategy is used to perform the exploration 
depending on using the best agent Xb and the average 
of agents (XM). The mathematical formulation of this 
strategy is given as: 

Xi t þ 1ð Þ ¼ Xb tð Þ � 1 �
t
T

� �

þ XM tð Þ � Xb tð Þ� randð Þ; (8) 

XM tð Þ ¼
1
N

XN

i¼1
X tð Þ;"j ¼ 1; 2; . . . ;Dim (9) 

In Equation (8), 1 � t
T

� �
controls the search during the 

exploration phase. T denotes the maximum number of 
iterations, and rand refers to a random value between 
0 and 1.

In addition, the second strategy uses the Levy flight 
(Levy Dð Þ) distribution and Xb to update the explora-
tion ability of the solutions, and this strategy is for-
mulated as: 

Xi t þ 1ð Þ ¼ Xb tð Þ � Levy Dð Þ þ XR tð Þþ y � xð Þ� rand
(10) 

Figure 1. The basic ANFIS structure.
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Levy Dð Þ ¼ s�
u� σ
jυj

1
β
; σ ¼

Γ 1þ βð Þ � sine πβ
2

� �

Γ 1þβ
2

� �
� β� 2

β� 1
2ð Þ

0

B
@

1

C
A

(11) 

where s ¼ 0:01 and β ¼ 1:5, while u and υ are random 
values, and Γ is a constant value. In Equation (10), XR 
is an agent randomly selected. Moreover, y and x are 
applied to emulate the spiral shape, and they are for-
mulated as: 

y ¼ r � cos θ; x ¼ r � sin θ (12) 

r ¼ r2 þ U � D1; θ ¼ � ω� D1 þ θ1; θ1 ¼
3� π

2
(13) 

where ω ¼ 0:005 and U ¼ 0:00565. r2 2 0; 20½ �

denotes a random value, and D1 refers to integer 
numbers from 1 to the length of search space.

In (Abualigah et al. 2021), the first strategy is 
applied to update agents inside the exploitation 
phase depending on Xb and XM , similar to explora-
tion, and it is formulated as: 

Xi t þ 1ð Þ ¼ Xb tð Þ � XM tð Þð Þ � α � rand
þ UB � LBð Þ � rand þ LBð Þ � δ (14) 

where α and δ represent the exploitation adjust-
ment parameters. rand 2 0; 1½ � is a random value.

In the second strategy of exploitation, the agent 
can be updated using Xb, Levy, and the quality 
function QF. The mathematical definition of this 
strategy is given as: 

Xi t þ 1ð Þ ¼ QF � Xb tð Þ � G1 � X tð Þ � randð Þ � G2
� Levy Dð Þ þ rand � G1 ð15Þ

QF tð Þ ¼ t
2�randðÞ� 1
ð1� TÞ2 (16) 

In which randðÞ refers to a function that gener-
ates random values. Additionally, G1 indicates dif-
ferent motions that are employed for tracking the 
best individual solution, as in the following 
equation: 

G1 ¼ 2� randðÞ � 1; (17) 

rand indicates a random value. More so, G2 indi-
cates decreasing values from 2 to 0, and it is com-
puted as: 

G2 ¼ 2� 1 �
t
T

� �

(18) 

Algorithm 1 shows the fundamental steps of the AO 
algorithm. 

Algorithm 1. Aquila Optimizer (AO);

1: Input: Determine the number of solutions N, total 
number of iterations T, and dimension of each 
solution Dim.

2: Set the initial value for the parameters of the AO.
3: Generate initial population X.
4: while (The end condition is not met) do
5: Compute the fitness values for each Xi.
6: Find the best individual Xb (t)
7: for (i = 1,2 . . .,N) do
8: If t � ( 2

3 ) �T
9: Update the Xi using Equation (8).
10: if the Fitness function (Fit)(X1(t +1)) < 

Fit(X(t)) then
11: X(t) = (X1(t +1))
12: if Fit(X1(t +1)) < Fit(Xb(t)) then
13: Xb(t) = X1(t +1)
14: end if
15: end if
16: Update the Xi using Equation (10).
17: if Fit(X2(t +1)) < Fit(X(t)) then
18: X(t) = (X2(t +1))
19: if Fit(X2(t +1)) < Fit(Xb(t)) then
20: Xb(t) = X2(t +1)
21: end if
22: end if
23: else
24: Update the Xi using Equation (14).
25: if Fit(X3(t +1)) < Fit(X(t)) then
26: X(t) = (X3(t +1))
27: if Fit(X3(t +1)) < Fit(Xb(t)) then
28: Xb(t) = X3(t +1)
29: end if
30: end if
31: Update Xi using Equation (15).
32: if Fit (X4(t +1)) < Fit (X(t)) then
33: X(t) = (X4(t +1))
34: if Fit (X4(t +1)) < Fit (Xb(t)) then
35: Xb(t) = X4(t +1)
36: end if
37: end if
38: end if
39: end for
40: end while
41: Output return (Xb).

3.3. Opposition-based learning (OBL)

Tizhoosh (2005) proposed the OBL as a machine 
intelligence technique. OBL received wide attention, 
and it has been adopted in various applications as 
a search mechanism to boost the performance of 
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different optimization algorithms (Ewees, Abd Elaziz, 
and Houssein 2018). It creates new opposition solu-
tions based on current solutions to improve the 
search process.

To formulate the OBL, suppose XO is an opposite 
value for the real value. Then, X 2 [LB,UB] is com-
puted as: 

XO ¼ UBþ LB � X (19) 

The opposite value: the X = (X1, X2, . . ., Xn) is a value in 
the search space, X1;X2; . . . ;XD and Xj [UBj; LBj], j 2
1, 2, . . ., D. This can be employed as in Equation (20): 

XO
j ¼ UBj þ LBj � Xj;where j ¼ 1 . . . :D: (20) 

Moreover, in the optimization process, XO and X 
solutions are evaluated using the fitness functions. 
Thereafter, the best solution is reserved, and the 
other one is ignored.

4. Proposed AOOBL-ANFIS model

Within this section, the developed AOOBL-ANFIS 
model used to predict oil production is introduced. 
The parameters of ANFIS are updated using the mod-
ified AOOBL algorithm that enhances the perfor-
mance of the traditional AO technique.

The first step is to divide the time-series data of oil 
production into two sets, namely training and testing 
tests. The training set contains 70% of all data samples, 
and the testing set has 30% of the total samples. More 
so, the number of clusters can be defined by the Fuzzy 
C-Mean (FCM) to build the ANFIS.

Then, a set of solutions X is generated and using 
each of them to constrict the ANFIS network. Then 
applying the training set to the ANFIS based on Xi and 
compute the predicted output (P) of the training with 
evaluating it using the following equation: 

MSE ¼
1

Na

XNs

i¼1
ðTi � PiÞ

2 (21) 

In Equation (21), P is the predicted output, T is the 
real data, Na the total number of training samples, and 
Ns refers to the sample length.

Third, the developed AOOBL is employed to 
update the current population X by using the opera-
tors of the AO algorithm and the OBL operators in 
Equation (19). The OBL technique is only applied in 
the exploration phase due to its computational cost. 
After that, the terminal condition is checked; updating 
steps will be repeated if the condition is not satisfied. 
Otherwise, the best configuration Xb will be returned. 
Finally, the testing set is applied to the best 

configuration Xb by determining the weights between 
Layers 4 and 5. In addition to assess the model quality 
for oil production time-series data. The steps of the 
developed AOOBL-ANFIS are presented in Figure 2.

5. Experimental evaluation

5.1. Study areas

5.1.1. Sunah oilfield, Yemen
Masila oilfield is situated in the Hadramout region, 
in the south part of Yemen, and is considered the 
most productive onshore oilfield (Lashin, Marta, 
and Khamis 2016). Block-14 is located in the 
Masila oilfield with a total area of 1250 km2. 
Block-14 consists of several oilfields, including 
Tawila, Sunah, N- Sunah, Camaal, N-Camaal, etc. 
Sunah oilfield is located in the Northeast corner of 
Masila oilfield. Sunah oilfield is the second-largest 
oilfield in Block-14, and it is subdivided into three 
reservoirs, namely S1, S2, and S3. Moreover, S1 is 
a sandstone reservoir, and it consists of three main 
reservoir units, namely S1A, S1B, and S1C; how-
ever, S1A is the target area of this study (Hakimi 
et al. 2017; Al-Areeq and Maky 2015).

5.1.2. Block 9, Tahe Oilfield, China
The location of Block-9, Tahe oilfields is situated in 
Tahe oilfield, Luntai region, Xinjiang province, 
China. It was explored in the 1990s by China 
National Petroleum Corporation (CNPC) with 
a total proven reserve of 600 × 106 tones. Taha 
oilfield is divided into several, including block-9. 
Block-9 is placed at east longitude as 84°13′9″-84° 
18′52″ degree, and north latitude as 41°15′56″~41° 
16′4, nearly 60 km southwest of Luntai region of 
Xinjiang, China (Wu et al. 2018).

5.2. Performance metrics

Four evaluation metrics are employed in this study as 
shown in Table 1, namely, Mean Absolute Error 
(MAE), Root Mean Square Error (RMSE), Standard 
deviation (Std), and Coefficient of Determination R2. 
Where �Y is the mean of Y, also Y and Py are output 
and its predicted value.

5.3. Results

5.3.1. Masila oilfields, Yemen
First, we evaluate the proposed AOOBL-ANFIS using 
the production datasets of Masila oilfields, Yemen. 
More so, we considered several models to be 
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compared the proposed AOOBL-ANFIS, including 
the conventional ANFIS, in addition to several mod-
ified ANFIS models using well-known optimization 
algorithms, such as the traditional AO algorithm, 
Particle Swarm Optimization algorithm (PSO), sine 

cosine algorithm (SCA), genetic algorithm (GA), 
gray wolf optimization algorithm (GWO), and slime 
mold algorithm (SMA).

Table 2 records the results of all models in terms of 
RMSE, MAE, Std, R2, and the computation time. We 
can see that the AOOBL-ANFIS achieved the best 
RMSE value, followed by AO-ANFIS, GA-ANFIS, 
PSO-ANFIS, SMA-ANFIS, GWO-ANFIS, SCA- 
ANFIS, and the conventional ANFIS model, respec-
tively. The AOOBL-ANFIS also got the best MAE 
value, where AO-ANFIS obtained the second rank. 
Other models came in the following order, GA- 
ANFIS, PSO-ANFIS, SMA-ANFIS, GWO-ANFIS, 
SCA-ANFIS, and conventional ANFIS model. More 
so, the AOOBL-ANFIS achieved the best R2 value of 
0.957, and three models obtained the second rank, 
AO-ANFIS, GA-ANFIS, and PSO-ANFIS. The SMA- 
ANFIS obtained the fourth rank, followed by GWO- 
ANFIS, SCA-ANFIS, and the conventional ANFIS 
model. Also, the AOOBL came in the first rank in 
terms of Std, followed by AO-ANFIS, GA-ANFIS, 
PSO-ANFIS, the conventional ANFIS model, GWO- 
ANFIS, SMA-ANFIS, and SCA-ANFIS. Furthermore, 
the AOOBL-ANFIS outperformed other models in 
terms of computation time.

Table 1. Evaluation metrics.
Performance metric Definition

MAE MAE ¼ 1
Ns

PNs
i¼1 Pyi � Yij j

RMSE
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=Ns
PNs

i¼1 ðPyi � yiÞ
2

q

R2
R2 ¼ 1 �

Pn

i¼1
ðYi � PyiÞ

2

Pn

i¼1
ðYi � �yiÞ

2

Standard deviation (Std)
Std ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
k¼1 ðYk � �YÞ2

q

Table 2. Results of Sunah oilfields. (Bold indicates the best 
results).

RMSE MAE R2 Std Optimization time

ANFIS 286.157 200.912 0.896 21.024 –
AOOBL 131.360 76.502 0.957 1.714 31.017
AO 132.666 77.447 0.956 2.859 69.428
SMA 144.034 82.938 0.951 40.913 75.629
GA 133.055 78.287 0.956 3.464 101.814
PSO 133.280 78.405 0.956 3.998 88.428
GWO 149.961 87.405 0.949 32.602 131.020
SCA 210.291 119.967 0.930 140.354 116.825

Figure 2. Workflow of the developed AOOBL-ANFIS.
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Furthermore, Figure 3 shows the results of oil pro-
duction prediction of the AOOBL-ANFIS against 
other compared models. It is clear that AOOBL- 
ANFIS is better than other models with the nearest 
values to the original data.

5.3.2. Results of Tahe oilfield
In this section, we evaluate the AOOBL-ANFIS 
using oil production data for 10 wells in Tahe 
oilfield, China. Table 3 tabulated the results of all 
compared models in terms of RMSE. The proposed 

Figure 3. Prediction results of Sunah oilfields datasets.
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AOOBL-ANFIS outperformed other compared 
models in terms of RMSE values in nine wells. 
Where in Well 10, the PSO-ANFIS obtained the 
first rank.

In terms of MAE value, as illustrated in Table 4, the 
AOOBL-ANFIS also obtained the best (smallest) MAE 
values in nine out of ten oil wells data. The PSO- 
ANFIS obtained the best MAE value in one out of 

Figure 3. Continued.
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ten. The AO-ANFIS came in the second rank in the 
average MAE values for all wells. Additionally, Table 5 
shows the R2 values of all compared models in all 10 
wells. As shown from this table, AOOBL-ANFIS 
obtained the best R2 in nine out of ten wells data, 
where the PSO-ANFIS obtained the best R2 value for 
one well (Well 10).

Additionally, Figure 4 shows the prediction 
results of the AOOBL-ANFIS against the compared 
model. As noticed from this figure, the proposed 
AOOBL-ANFIS achieved the nearest values to the 
target data.

5.4. Statistical tests

For further assessments for the proposed AOOBL- 
ANFIS, we performed the Friedman test to high-
light the differences between the proposed model 
and other compared models. The Friedman test is 
a type of non-parametric test. It is widely applied 

to detect differences between methods over multi-
ple test runs. It ranks the methods and provides 
rank values for them, which can help determine 
the proposed method’s effectiveness.

Table 6 lists the Friedman test for Sunah oilfields 
data. As shown from the table, the AOOBL obtained 
the best results. Additionally, Table 7 lists the results of 
the Friedman test for Tahe oilfield data. Also, the 
AOOBL-ANFIS recorded the best results in nine 
wells, where the PSO-ANFIS obtained the best results 
in Well 10.

6. Discussion

In this section, we also present further discussions to 
elaborate the performance of the developed AOOBL- 
ANFIS. For example, Figures 5 and 6 shows the spot 
plot of all compared methods for Sunah oilfields, 
Yemen and Well 1 of Tahe oilfield, China, respec-
tively. It is clear that the AOOBL has significant per-
formance compared to other optimizers.

Moreover, we compare the developed AOOBL- 
ANFIS to several well-known methods used for time 
series forecasting in literature, namely, ARIMA, 
LSTM, Seasonal Autoregressive Integrated Moving 
Average (SARIMA), and Neural Network (NN).

Table 8 shows the comparison results for all com-
pared models for Sunah oilfield datasets. It is clear that 
the proposed AOOBL-ANFIS model obtained the best 
results in terms of RMSE, MAE, and R2. The ARIMA 
model came in the second rank, followed by SARIMA, 
LSTM, and NN, respectively.

Table 9 displays the results of the compared time 
series methods for Well 1 in Tahe oilfields datasets. 
Also, the results in the table indicate that the devel-
oped AOOBL-ANFIS obtained the best performance 
in all measures, RMSE, MAE, and R2. The NN came in 
the second rank, followed by SARIMA, LSTM, and 
ARIMA, respectively.

In summary, according to the evaluation experi-
ments, we conclude that the application of the 
AOOBL has a significant impact on the perfor-
mance of the conventional ANFIS model. More 
so, the OBL also enhanced the performance of the 

Table 3. The results of 10 oil wells, Tahe oilfield, China, in 
terms of RMSE. (Bold indicates the best results).

Station ANFIS AOOBL AO SMA PSO GA SCA GWO

Well 1 0.821 0.644 0.646 0.778 0.653 0.671 1.866 0.844
Well 2 0.915 0.833 0.847 0.889 0.853 0.848 1.412 0.875
Well 3 0.199 0.176 0.178 0.192 0.233 0.211 0.334 0.209
Well 4 0.926 0.831 0.832 0.872 0.832 0.834 1.106 0.847
Well 5 1.317 1.274 1.275 1.274 1.285 1.286 1.306 1.318
Well 6 0.369 0.274 0.279 0.304 0.336 0.341 0.315 0.291
Well 7 0.811 0.583 0.589 0.599 0.591 0.591 0.630 0.593
Well 8 0.235 0.115 0.118 0.141 0.134 0.140 0.233 0.137
Well 9 0.378 0.315 0.323 0.330 0.329 0.340 0.546 0.327
Well 10 1.233 1.133 1.135 1.142 1.132 1.135 1.283 1.146

Table 4. The results of 10 oil wells, Tahe oilfield, China, in 
terms of MAE. (Bold indicates the best results).

Station ANFIS AOOBL AO SMA PSO GA SCA GWO

Well 1 0.527 0.328 0.341 0.464 0.362 0.389 1.571 0.542
Well 2 0.568 0.488 0.522 0.537 0.530 0.522 0.992 0.523
Well 3 0.148 0.119 0.129 0.145 0.207 0.173 0.255 0.149
Well 4 0.599 0.393 0.395 0.406 0.399 0.401 0.644 0.407
Well 5 0.687 0.597 0.636 0.641 0.640 0.650 0.657 0.638
Well 6 0.247 0.148 0.156 0.181 0.263 0.267 0.158 0.169
Well 7 0.423 0.292 0.296 0.301 0.320 0.329 0.305 0.302
Well 8 0.207 0.080 0.085 0.110 0.108 0.114 0.193 0.106
Well 9 0.253 0.211 0.212 0.235 0.231 0.247 0.401 0.221
Well 10 0.726 0.634 0.632 0.633 0.629 0.655 0.769 0.632

Table 5. The results of 10 oil wells, Tahe oilfield, China, in terms of R2: (Bold indicates the best results).
Station ANFIS AOOBL AO SMA PSO GA SCA GWO

Well 1 0.8691 0.8949 0.8948 0.8817 0.8938 0.8937 0.7582 0.8699
Well 2 0.9107 0.9248 0.9226 0.9173 0.9198 0.9226 0.8445 0.9166
Well 3 0.8872 0.9116 0.9114 0.9055 0.9116 0.9115 0.8367 0.8784
Well 4 0.9203 0.9301 0.9298 0.9232 0.9292 0.9291 0.8990 0.927
Well 5 0.9721 0.9742 0.9741 0.9739 0.9735 0.9734 0.9733 0.9722
Well 6 0.6983 0.7782 0.7780 0.7290 0.7758 0.7753 0.6782 0.7370
Well 7 0.9244 0.9633 0.9632 0.9620 0.9630 0.9632 0.9563 0.9611
Well 8 0.6012 0.7445 0.7431 0.7220 0.7402 0.7401 0.6426 0.7148
Well 9 0.9549 0.9665 0.9672 0.9666 0.9672 0.9668 0.9387 0.9647
Well 10 0.9306 0.9418 0.9411 0.9398 0.9418 0.9413 0.9335 0.9397
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traditional AO algorithm since the AOOBL-ANFIS 
outperformed the AOOBL-ANFIS model. However, 
the developed AOOBL-ANFIS has some limitations 
that influence its performance. For example, 

determining the ratio of solutions that will be 
updated using the OBL is a critical parameter that 
causes an increase in the time complexity of the 
developed method.

Figure 4. Prediction results of Well 1, Tahe oilfields.
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Figure 4. Continued.

Table 6. The results of the Friedman test for the Sunah oilfield dataset. (Bold indicates the best results).
AOOBL AO ANFIS SMA PSO GA SCA GWO

Sunah oilfield 2.300 5.000 6.867 4.267 3.667 3.700 4.667 5.533
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7. Conclusions

This study proposed a modified ANFIS model as 
a time-series forecasting approach for oil production. 
The traditional ANFIS was developed using an 
enhanced version of the Aquila Optimizer (AO) 
based on OBLtechnique. The developed model, 
AOOBL-ANFIS, was evaluated with different real- 
world oil production datasets collected from Masilah 
oilfield (Yemen) and Tahe oilfields (China). Also, it 
was compared to the conventional ANFIS model, and 
a modified ANFIS model using the conventional AO 
algorithm (AO-ANFIS), in addition to several modi-
fied ANFIS, namely, PSO-ANFIS, SMA-ANFIS, GA- 
ANFIS, SCA-ANFIS, and GWO-ANFIS. More so, it 
was compared to other well-known models, such as 

Table 7. The results of the Friedman test for Tahe oilfields dataset using RMSE measure. (Bold indicates the best results).
Station AOOBL AO ANFIS SMA PSO GA SCA GWO

Well 1 1.643 2.786 6.000 4.643 4.143 3.500 7.643 5.643
Well 2 2.214 3.143 7.071 4.786 4.429 3.214 5.929 5.214
Well 3 2.429 3.500 4.857 4.214 6.286 4.214 5.643 4.857
Well 4 2.071 3.214 7.429 3.500 3.786 4.571 6.643 4.786
Well 5 2.643 3.071 7.643 3.071 5.286 5.429 5.786 3.071
Well 6 1.857 1.929 7.000 4.286 6.071 5.929 5.000 3.929
Well 7 1.929 3.143 8.000 5.000 3.786 4.643 5.500 4.000
Well 8 1.929 2.071 7.571 4.000 4.286 4.857 6.429 4.857
Well 9 1.643 2.429 7.214 4.857 4.500 5.500 5.857 4.000
Well 10 2.286 4.214 7.643 5.929 2.357 2.143 6.214 5.214

Figure 5. Spot plot of all methods for Sunah oilfields datasets.

Figure 6. Spot plot of all methods for Well 1, Tahe oilfields datasets.

Table 8. Comparaiosn to state-of-art methods results for 
Yemen oilfields. (Bold indicates the best results).

Model RMSE MAE R2

LSTM 161.26 109.58 0.9512
ARIMA 139.25 82.25 0.9541
AOOBL 131.36 76.50 0.9570
SARIMA 148.68 86.05 0.9430
NN 184.23 113.84 0.9523

Table 9. Comparison to state-of-art methods results for Well 1, 
Tahe oilfields. (Bold indicates the best results).

Model RMSE MAE R2

LSTM 0.7101 0.4071 0.8830
ARIMA 0.7551 0.3914 0.8701
AOOBL 0.6443 0.3284 0.8950
SARIMA 0.6987 0.3387 0.8718
NN 0.6536 0.3327 0.8942
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ARIMA, SARIMA, LSTM, and NN. We applied sev-
eral performance evaluation metrics, including RMSE, 
MAE, Std, and computational time to assess the per-
formance of the AOOBL-ANFIS and the compared 
models. Experimental results have verified the out-
standing performance of the developed AOOBL- 
ANFIS. We concluded that the AOOBL-ANFIS has 
significantly improved the conventional ANFIS per-
formance. Additionally, we concluded that the OBL 
has a significant impact on the performance of the 
AOOBL-ANFIS compared to the conventional AO 
that was applied to modify the ANFIS model (AO- 
ANFIS) since the OBL boosted the search process of 
the conventional AO algorithm.

According to the significant performance of the 
AOOBL-ANFIS, it could be utilized in other time- 
series forecasting applications. Also, the AOOBL 
optimization method could be employed in other 
optimization tasks, such as image processing, cloud 
and fog computing, and others.
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