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Abstract 
 
Two mathematical crystallization models describing structure formations in instability zones are proposed 
and justified. The first model, based on a phase field system, describes crystallization processes in binary 
alloys. The second model, based on a modified Biot model of a porous medium and the convective Cahn– 
Hilliard model, governs oriented crystallization. Physical interpretation and numerical analysis are discussed. 
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1. Introduction 
 
Unlike the main properties of oriented crystallization, 
properties responsible for the alloy structure have not yet 
been studied well. At the same time, owing to recent 
experimental results, many details of crystallization be-
come known. In this paper, we propose the so-called 
“reconstruction” of oriented crystallization processes, i.e., 
a detailed theoretical description based on the known 
main properties.  

To reconstruct a process of binary alloy crystallization, 
one should begin with the question why the process “can 
live” in the stochastic instability. Perhaps, like in the case 
of complicated systems [1], the crystallization process 
can exist for a long time only due to solid structure for-
mations in instability zones. Moreover, taking into ac-
count such structure formations, we are able to explain 
the solid phase growth – the crystallization mechanism.  

It is known [2] that the structure formation in an alloy 
obtained by the oriented crystallization method is char-
acterized by the following properties. 

1) The process proceeds in a solid–liquid domain – a 
dynamic porous medium–where the solid phase is repre-
sented by growing dendrites, whereas the liquid phase 
occupies the space between these dendrites. According to 
experimental results, the solid phase growth is of order 

 O t , where t is time. 
2) In the case of overlapping dendrites (in particular, 

their secondary branches), the melt solidification can 
lead to the contraction of melt and formation of internal 
stresses and micropores. 

3) In turn, a solid-liquid crystallization zone appears 

because of the instability of the crystallization front 
which can be caused by the following reasons: 
 concentration overcooling, 
 segregation of the melt components in view of the 

spinodal decomposition (i.e., phase transition with 
instable states) when the melt deeply penetrates 
into the metastable (or even labile) domain under 
high-speed (high-gradient) cooling in the inter-
phase zone. 

4) Properties of a new alloy are encoded in a seed 
crystal (a small piece of the solid phase) which, like the 
genetic code, determines the required properties of the 
crystallized part. 

The experimental results concerning the distribution of 
crystallization centers over the blank surface are repre-
sented in Figure 1, where it is seen that crystallization 
centers are concentrated on convex parts of the surface, 
but not on its concave parts. In both cases, one of the 
phases grows in time, whereas the other decreases. We 
also note that the picture demonstrates the structure or-
dering. 

The goal of this paper is to construct mathematical 
models reflecting Properties 1–4 and simulating the 
structure formation in alloys and, first of all, in instability 
zones. We propose two models (cf. Sections 3 and 4) 
with banding structure in the zone of instability. 

But, first, we emphasize that, within the frameworks 
of models where structure formations in the instability 
zone are not taken into account, it is impossible to obtain 
the experimental order  O t  of the solid phase growth 
(cf. Property 1). We illustrate this fact by considering the 
well-known statistical Kolmogorov model [3] describing     
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Figure 1. The experimental results are represented the distribution of crystallization centers over the blank surface. 
 
the process of metal crystallization (cf. Section 2). 
 
2. Kolmogorov’s Model of Metal  

Crystallization 
 
2.1. Physical Interpretation 
 
In metallurgy, it is important to know the crystal growth 
velocity under a random formation of crystallization cen-
ters. Under rather general assumptions, Kolmogorov [3] 
derived an expression for the probability p(t) that a ran-
domly taken point P gets into the crystallized mass dur-
ing the crystallization time-interval. With rather good 
approximation, we can assume that the mass crystallized 
in time t is equal to p(t). Then it is possible to find the 
number of crystallization centers formed during the 
whole process of crystallizaton. 
 
2.2. Mathematical Statement 
 
Consider a domain dV   , d = 2,3. Assume that at the 
initial time t = 0, the domain V is occupied by the 
so-called mother phase. At time t, some part V1(t) of V is 
occupied by a crystallized matter. Moreover, V1(t) enlarges 
in t as follows. 

1) In a free part V/V1 of V, new crystallization centers 
appear, so that for any domain 1/V V V   the probabil-
ity of appearing a single crystallization center in V' dur-
ing time  t is equal to 

   t V t o t    , 

whereas the probability of appearing more than one cry- 
stallization centers is of order o( t ), where o( t ) is 
infinitesimal in comparison with t . These probabilities 
are independent of the distribution of crystallization cen-
ters that are formed before time t (the process is Mark-
ovian) if only the freedom of V' from the crystallized 
mass at time t is not guaranteed. 

2) Around the new-formed crystallization centers and 
around the entire crystallized mass, the mass grows with 
linear velocity 

     ,c t n k t c n  

depending on time t and direction n, n = 1. It is as-
sumed that the endpoints of vectors c(n)n started at the 
origin and directed towards n form a convex surface. 

Note that the homogeneous dependence of the linear 
velocity c(t, n) on the direction n at all points is an essen-
tial restriction. In other words, we obtain formulas that 
are valid either 
 in the case where the growth is uniform along all 

directions, or 
 in the case of crystals of arbitrary shape but with 

the same spatial orientation. 
We also mention the case where all crystallization 

centers are formed at initial times, in mean,   per 
volume unit. We obtain the corresponding formulas by 
taking into account that, in this case,  t  is the Dirac 
function  0  concentrated at the origin. 
 
2.3. Formulas 
 
We introduce the mean (over all directions) velocity of 
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the growth of crystallized mass c  by the formula 

1
= ( ) , = 2,3,

| |
d d

s

c c n ds d
S   

where the integral is taken over the surface of unit sphere 
S in d  with center at the origin, 4S   if d = 3 and 

2S   if d = 2. Then the following assertions hold. 
1) For a sufficiently large (in comparison with the size 

of a crystallization center) domain V the domain V1(t) 
occupied by the crystallized phase takes the form 

   1 1
d

d ddA cV t V e             (1) 

If  (t) and c(t, n) are time-independent, we can set 
 (t) = , k(t) = 1. In this case, 

1

1

d

d

t

d

 

 


,                (2) 

which implies 

 
1

1
1 = 1

A d dd c tddV t V e
 


 
  

 
           (3) 

2) If all crystallization centers are formed at initial 
times, then 

     
0 0

d dt t t

d
t

t k d dt k d     


   
      
   

     (4) 

If, in addition, k = 1, i.e., c (t, n) is independent of t, 
then 

d
d t  ,                 (5) 

which implies 

   1 1
d d

d dA c tV t V e             (6) 

We see that the mass growth is of power-like order 
 O t ,  = 1, 2, 3, d = 1, 2, 3. 

 
2.4. Conclusions 
 
The Kolmogorov model is not suitable for describing 
crystallization of twocomponent mixtures. Indeed, within 
the frameworks of the Kolmogorov model, the fact that 
the mass growth is of power order implies that the veloc-
ity is finite at t = 0, which contradicts the initial stage of 
the spinodal decomposition generating an initial distribu-
tion of crystallization centers. 
 
3. Model of Binary Alloy Crystallization 
 
Based on the phase field system proposed in [4] and [5], 
we construct a model of binary alloy crystallization with 

structure formation in the zone of instability. 
A crystallization model based on the phase field con-

ception was constructed in [6], where, in particular, a 
sawtooth solution to the temperature distribution prob-
lem in the phase transition domain was obtained. This 
result agrees with the qualitative description of autocrys-
tallization phenomena in [7,8]. 

The goal of this section is to obtain a sawtooth solu-
tion to the temperature distribution problem for the fol-
lowing phase field system: 

 , ,x t Q
t t

   
   

 
,         (7) 

,= 322  



t
        (8) 

   0 0
0 0, , ,t tx x        ,     (9) 

,=|1,=| b              (10) 

where   is the temperature;   is the specific concen-
tration of the order function, equal to 1 in the liquid 
phase and to 1  in the solid phase; const= ; Q = (0, 
T) ×  , where n    is a bounded domain with 
C - boundary, n ≤ 3;  0,T  ; the functions 

0  and 0  are sufficiently smooth for  ≥ const > 0, 
and the function b  is also sufficiently smooth. 

The system (7)–(10) describes slow crystallization 
processes [9] with an instable domain of intermediate 
aggregate state, where a structure formation appears. 
 
3.1. Wave Train Type Solutions and Singular 

Limit Problem 
 
Here, we consider a more general case where 0 B V  , 
but 0 BVC  1 (cf. [6]). In the case of diffusion, we say 
that   is a domain of intermediate aggregate state (an 
IAS-domain) if 0 ),(0  x  weakly as 0   in 
some subdomain 0

cr    of nonzero measure. 
In accordance with [6], an IAS-domain is formed by a 

large number M of domains of pure (solid and liquid) 
phases of small volume of order  (i.e.,  M M    
and 0   as 0  ). The macroscopic description 
of an IAS-domain can be obtained by computing the 
weak limit of wave train type solutions as 0  . 

We formulate conditions imposed on IAS-domains. 
1) The weak limit of the order functions ( , , )x t   as 

0   vanishes identically in the transition zone *
t  . 

2) In the domain *
,t  corresponding to the regula- 

rization of the IAS-domain, the solution to the phase 
field system can be described in terms of the wave train 

1A function 0  belongs to the class BVC if 0  is a function of 

bounded variation ( 0 BV  ) and 0  = 1. 
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structure. In this case, the domain   is divided into a 
large number of domains of “small” volume occupied by 
“pure phases” and transition zones between them. 

Remark 3.1 Condition (1) means, in particular, that 
for almost all t  the limit order function   belongs to 

)(BV , but ( )BVC   . Condition (2) is based on 
the conception proposed in [6]. According to this 
conception, the wave train structure is described by a 
chain of modified Stefan problems in domains of “small” 
volume occupied by “pure phases” and can be used for 
approximating the temperature in an IAS-domain. Such a 
structure is called the diffusion of the IAS-domain.  

Remark 3.2 A situation where the limit order function 
  vanishes on a set of nonzero measure is not good 
since this case corresponds to instable solutions to the 
isothermal diffusion equation. It is clear that such 
solutions can exist only under rather special conditions. 
Therefore, we need to impose rather restrictive con- 
ditions on the geometry of domains  , *

t , as well as 
on the initial and boundary conditions.  

Remark 3.3 From the point of view of the theory of 
distributions, free boundary problems are problems about 
singularity propagation. Indeed, in the rigid-front 
situation, the limit order function is a Heaviside type 
function ( = 1  on  t  and = 1   on  t ) and the 
limit temperature remains continuous, but with weak 
discontinuity on the free boundary   ttt = . 

To formulate the singular limit problem, we suppose that 

0  is a smooth surface of codimension 1 ,  =0 , 

dividing   into two parts 0  so that  

0 0 0=       

Let 0  and 0  be the initial data such that  

)(1=0    

outside an  -neighborhood of the surface 0  and 
)(0 C  (cf. details in [6,9]). The singular limit 

problem is written as 

0,>,,= tx
t t






 

        (11) 

,=|,),(=| 0
0

0= bt xx  



        (12) 

| = 0, | = 2 ,
t t

V






 

       
       (13) 

.=|1  Vtt


              (14) 

This problem is the well-known modified Stefan prob-
lem with the Gibbs-Thomson condition (14) on the free 
boundary. Here, 

   0 0
0= , ,x x x  

   

where [ ] |
t

f   denotes the jump in f  across the free 

boundary t ;   is the outward (relative to  t ) 
normal to t , V  is the normal velocity of the front t , 

tt div  |)(=   is the mean curvature of the surface 

t , and 2/3=1  . 
We assume that  

0, = tt   

i.e., the front does not intersect the fixed boundary  . 
Remark 3.4 The boundary conditions (13) and (14) 

can be interpreted as the Hugoniot type conditions 
corresponding to the problem of propagation of strong 
discontinuities of the limit order function   and the 
problem of propagation of weak discontinuities of the 
limit temperature  . This interpretation can be justified 
as follows. As is known, the necessary conditions for the 
existence of a shock wave type solution to a quasilinear 
hyperbolic equation generate an instable chain of Hu- 
goniot type conditions. The same instability conditions 
(cf. [6]) are obtained for the boundary conditions on the 
free boundary if we use the classical definition (in  ) 
of a weak solution to the phase field system. The 
boundary conditions in the interpretation of an IAS- 
domain as the limit of wave train type solutions are 
referred to as Hugoniot type conditions.  

Let us describe the geometric structure. Assume that, 
at 0=t , the domain   contains domains of pure 
(liquid or solid) phase 0,

  and also the melt domain 
*
0,  occupied by a large number of pure phase domains 

of small volume i
0, , Mi ,1,2,=  , where M  is 

even. For the sake of simplicity, we consider the case of 
quasispherical symmetry. Let i

0, , 1,1,= Mi  , be 
interfaces of domains i

0,  so that  
1

0, 0, 0,= ,i i i
  

    

0
0, 0, 0, 0,= , = .M
   

       

We denote by iD 0,  the domains bounded by i
0,  

and assume that  

,,0,=,1
0,0, MiDD ii    

where  

.,= 1
0,0,

0
0,   MDD   

Assume that i
0,  are smooth surfaces of codimension 

1 such that  

 
 

1
1 0, 0, 2

1 0, 2 0, 3

, ,  

,  , ,

k k

M

c dist c

c c dist c

 
 

 

 

  

   

     
    (15) 

where Mk ,1,=  , (0,1)  and the constants 
0>, jl cc  are independent of  . 

Assume that i
0, , Mi ,0,=  , satisfy the following 

geometric condition. 
3

0, Ci    uniformly in ][0, 0  , M  and 
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= constM L   as 0 ; moreover, the surfaces 
obtained after the limit passage occupy the mixture 
domain *

0  bounded by 3C -surfaces 0
  and 0

 . 
Remark 3.5 If Condition (A) holds, then there exists a 

function )(),( 30 Cxs   such that any i
0,  is a level 

surface of this function. 
Formula (15) shows that there are no interactions (up 

to )(  ) between neighboring waves such that the 
distance between them is not less than )( 1    with 
any constant 0> . Thus, for sufficiently small t  an 
asymptotic solution is expressed as the superposition of 
local solutions to the rigid-front problems (with one front 

i
0, ) (cf. [6,8]) (as shown in Formula (16)). 
As in the case of rigid-front solution, ci,  is a smooth 

extension of the auxiliary function ),,(= htxii  ,  

         0 0= , , , = , 0, .
n ni i

i s x t ih s h          

We recall that the family of functions }{ i  and )(
0

js , 
1,2=j , is defined as a solution to the chain of modified 

Stefan problems with the Gibbs-Thomson condition 

,= , , > 0,ii
i tx t

t 





 


        (17) 

1 1 10 0, ,
| = | ,i i i i

t t 
      

           (18) 

10 0, ,
| = | ,i i i i

t t 
     

           (19) 

11
1 1 10 0, ,1 1

| | = ( 1) 2 ,ii i
i i it ti i

V
 

 
 


     

 

 
 

 
   (20) 

1

0 0, ,
| | = ( 1) 2 ,ii i

i i it ti i

V
 

 
 



   

 
 

 
    (21) 

,=|1)(
1

1

01
,

1
1







 
i

i
ti

t
i

i V


        (22) 

,=|1)(
0,

1 i

i
ti

t
i

i V


 

         (23) 

with the initial and boundary (on  ) conditions. Here, 
1,0,= Mi  . We set  

1 1
, ,= = ,M

t t 
     

so that the condition (18) (the condition (21)) vanishes 
for 0=i  ( 1= Mi ). Furthermore,  

i
t

i
i
ti

t

in

in

i
div

t

s
sV


 

,,

)(
01)(

0 |=,||)(|=


 



   

  ,
0
, = tt  denotes the domain bounded by 0

,t  and 
   ,

1
, = t

M
t  denotes the domain bounded by M

t ,  and 
 . The small corrections ),,()(

1 htxc j  are simulta- 
neously corrections of order )(  for temperature 
which can be computed as solutions to the linearized 
chain of modified Stefan problems with the Gibbs- 
Thomson condition (cf. [6]). 

For the sake of convenience, we impose the following 
condition (cf. [6]). 

(A’) There exist functions ),,((1) txs  and ),,((2) txs   
that describe respectively the surfaces i

t ,  with even 
and odd superscripts for 0t . We denote by i

t ,  the 
domain bounded by the surfaces 1

,
 i

t   and , ,i
t   

Mi ,1,=  , and introduce the notation 

*
, ,

=1

= .
M

i
t t

i
    

Constructing formal asymptotic solutions, we find  
( ) ( ) ( )

0 1( , , ) = ( , , ) ( , , ),j j js x t s x t h c x t h   

 0= , 0, , = 1, 2,h j    

so that 0|>| )( j
x s  uniformly with respect to *

,tx   
for any ]=[0, 00

hh  and  

    , 0= , , , = , = 1, = 2 , 

= 2, = 2 1, 0 .

ni i
t i

i

x s x t h ih n i k

n i k i M



  
 

It is obvious that  
(1) (2) 0

=0 =0| = | = ( , )t ts s s x   

and, with accuracy )( ,  
( n ) ( n )i i

i 0 0 i
t ,

= s / | s ||
 

    

are outward normals to i
tD , . 

For fixed 0>  and sufficiently small 0>t  the 
classical solvability of the chain of modified Stefan 
problems with the Gibbs–Thomson condition is esta- 
blished in the same way as in [10]. At the same time, 
based only on the limit problem below, it is impossible to 
formulate the initial conditions for the temperature 

),(0  x  in such a way that these conditions have sense 
as 0  because the classical solvability of the 
modified Stefan problem with the Gibbs-Thomson con- 
dition assumes conjugate conditions on the initial surface 

i
0,  for any M . However, we can overcome these  

 

.),()(
2

1
)(

2

1
=),,(

)},,(),,(
2

{)(1)(=),,(

,
1

,,1,,1,0

0=
0

0=
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difficulties if find a model problem for a weak limit of 
temperature as 0 . Thus, we choose the initial data 

),(),0,(=| 2
10=  xas

t          (24) 

),(),0,(=| 00=  xas
t           (25) 

( ) 0
=0| = ( , ),j

ts s x               (26) 

where ),0,(0  xas , ),0,(1  xas , and the smooth funct- 
ions ),(0 xs  are such that conjugate conditions are 
satisfied for fixed 0> . We will be able to specify 
these conditions by obtaining the limit problem. 
 
3.2. Limit Problem 
 
The evolution of solutions can proceed in two different 
ways depending on the initial data: 

(1) (2)
=0 =0|  | < 0,t t t ts s            (27) 

(1) (2)
=0 =0|  | > 0,t t t ts s            (28) 

where ( )js , = 1,2,j  are the functions in Condition 
(A’). 

In the case (27), the boundaries move in the opposite 
directions. Consequently, the wave train type structure 
exists only during a small time interval since the domain 

2
,
k

t   or 2 1
,
k

t 
  vanishes for t  . A similar situation 

for the classical Stefan problem was treated in [6]. In teh 
case of the phase field system, from (27) it follows that 
an “overheated” or “overcooled” domain appears in *

t . 
To find conditions for the existence of wave train type 

solutions in some finite time interval independent of  , 
we consider the case (28), where the boundaries move in 
the same direction. Assume that the following condition 
holds. 

(B) There exists > 0T  such that for any 0 t T   
there exist functions ( , , )i x t h , = 0, , 1i M  , such 
that the function  , ,x t   (defined by i   for 

,
i
tx   ) is continuous and is uniformly bounded for 

0[0, ]  . Furthermore, 1( )i
i C Q   uniformly for  

0[0, ]  , where ,
[0, ]

=i i
t

t T

Q 


 , and 3
,

i
t C  . 

We list some consequences of Condition (B). Since 
the functions i  are smooth, it is obvious that 

).(=||
01

,0,
hi

t
ii

t
i 





  

Therefore, taking into account the Gibbs--Thomson law 
(22), (23), we find 

).(=
1

1 hVV
i

i
ti

i
t 



    

Since the surfaces ,
i
t   are smooth and 

1
> 0

i i
V V 

, 
we have 

         0 0 0, , , , , , 1, 2j js x t h s x t hs x t h j      (29) 

where the functions 0s ,  
0

js  and their third order de-
rivatives are uniformly bounded for 0[0, ]h h . As a 
consequence, we find 

).(= hV i
ti
                (30) 

By (30) and (22), (23), we have 
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1
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


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i
ti

t
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,=|1)(
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1 i

i
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t
i

i V


 

  

which implies 

).(=|
,

hi
t

i 





 

From Condition (B) it follows that  

     1 1
,, , , 1 , , 0, ,tx t h x t T            (31) 

where 1 1
i    for ,

i
tx  . 

By the Gibbs-Thomson law, 

 1
1

0 0, ,

1
1 1

11 | | .i i
i i

t t

i i
iv vt t

i i

V V

h h  

 


 



 

  
    

 
  

  

Since 3
,

i
t C   uniformly with respect to h , we 

find  1 1 i
i C Q  . 

We need the following assertion. 
Lemma 3.1 1) Let i  be partition points in the interval 

[0, ]L , 0 1< < < M   , and let  1= max i i ih    . 
Suppose that M  is even,     0,F C L  , and 
    1

1,i iF C    for any = 1, ,i M . Then 

   
=0

1 const   2.
M

i

i
i

F uniformly for M    

2) Assume that ( ) ([0, ])F C L   and ( )F   
2

1([ , ])i iC    for any = 1, ,i M . Then 

          0
0

1
1

2

 2.

M
i

i M
i

F F F h

uniformly for even M

  


   



 �
 

To prove the lemma, it suffices to group the terms in 

1( ) ( )i iF F    in such a way that to represent them as 
differences of derivatives. 

Note that for passing to the limit in the wave train as 
0  , we need a suitable well-defined notion of a weak 

solution. We give such a definition in accordance with 
[6]. 

Definition 3.1 A pair of functions 

     2 1 2
20, ; 0, ; ,L T W L T L      

      2,1 1 4
2 20, ;W Q L T W L       
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is called a weak solution to the problem (49) if for any 
test functions ( , )x t , 1( , ) = ( ( , ), , ( , ))ng x t g x t g x t  
satisfying (38) the functions   and   satisfy the 
equation 

  

   0 0

= ,

,0 ) = 0

t
Q

I dxdt

x dx

     

  


   

 




      (32) 

and the integral identity (33) 
where 

       22 21 1
= , = 1 4,

2
e W W      


    

and xg  is the matrix with entries ( ) = /x ik i kg g x  . 
We set  

,,0,=,= ,
][0,

Mii
t

Tt

i   


  

and ].[0,=11 TMM      

Then we substitute (34) in the integral identity (33). 
We need the following assertion. 

Lemma 3.2 Suppose that ( , )x  S, 2( ) ( )x C   , 
| |= 0  , and 

 , > 0.tdist const    

Then for any function  1g C Q  

 

     

1

0

1

, ,lim

= , ,

Q

T

s
x g x t dxdt

A x x g x dx





 


 









 
 
 






 

where 1= ( )s t s    , 1=| |   ,  

 = , ,A x d   



  

and T  is the domain bounded by 0  and T . 
By Lemma 3.2, 

))(,)(,(= 20
0=

i

i

i
t

M

i
AVsgJ   


  

0.=)())(,,(1)( 1
0

0=
hhAsg ii

M

i
     

Applying assertion (a) of Lemma 3.1 to the second  

sum and using (31) together with Condition (B), we find 

0.=)())(,)(,(= 1
20

0=
hhAVsgJ i

i

i
t

M

i
   



(35) 

We again obtain the relation (30) since the first sum in 
(35) has order )( 1h . Taking into account (29) and 
passing to the limit as 0 , we see that (35) implies 
(30) in the entire domain 

* *
,

0
= .limt t 


   

Consequently, 

1 *0 0
0

0

= , , > 0.t

s s
s div x t

t s

   
     

   (36) 

We consider the integral identity (32). We first com-
pute the weak limit of wave train in the derivative t  
in the heat equation. 

Lemma 3.3 Let 

),(),,(=),,( 2
1  txtx as  

where 1
as  is defined by Formula (34), and 

1,,0,=,),( 2
1

1  Mihcdisthc ii     

where the constants 1c  and 2c  are independent of  . 
Then 

)())},(1)(2({=),( 1
1

1

0=
hhCV

t
j

j

j
M

j



  

   

(37) 

for any functions  1C Q   such that 

 1
= =, , | = | = 0, | = | = 0t T t Tg C Q g g      (38) 

Here,  

     1 2
1 0 0 0hC s s     

is a possible contribution of the terms depending on the 
first corrections to the phase 0s  relative to h . 

We set 

  .
k

k
k v kF V d



  


 

Applying assertion (b) of Lemma 3.1 to (37), we find  
 

    , , 0t x
Q Q Q

J g dxdt e divgdxdt g div g dxdt                    ,              (33)

         1 0
0 0

, , 1 , , , .
2

M M
ias as

i i i
i i

x t x t h x       
 

     
 
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                       (34)
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).(=),( 1
1000

hhCdVdV
t MMM



 












(39) 

We recall that, by Condition (B), the family 
  , ,x t   is bounded in 1 *

2(0, ; ( ))tL T W  , uniformly 
with respect to   and, consequently, * -weakly con-
verges in 1 *

2(0, ; ( ))tL T W  ; moreover, by (31), we have 
0   as 0   for *

tx  in the sense of the 
2 *((0, ) )tL T  -convergence. Thus, 

   
0

, lim , , 0, .
def

tx t x t x


   


    

It is obvious that (31) does not contradict (39) if only the 
sign of the leading term of corrections (depending on 

 
0

js ) of velocities is independent of j  and then 

1 = 0C . On the other hand, in the domain *
t , the limit-

ing heat equation has the free term 1C . To verify this 
fact, one should prove that 

     1 2
0 0s s h    . 

The proof is given below in the spherically symmetric 
case. Now, we continue computations in the integral 
identity (32). Integrating by parts 

    0, ,0 ,
def

t
Q

I dxdt x dx      


        (40) 

we find (41)  
where 

( ) = | .i iQ
   

By (31) the integrals over ,
i
t   and i

 , 
= 1, ,i M , converge to zero as 0  . We recall that, 

by Definition 3.1,  

 0 ,0 0.t
Q

I I dxdt x dx    


         (42) 

Taking into account (30), (39), and (41), we arrive at 
the required result as 0  : 

0,>,\,= * tx
t t

 

       (43) 

*= 0, , 0,tx t             (44) 

*0 0
0

0

= , , > 0,t

s s
s div x t

t s

  
     

    (45) 

* *| = 0, | = , 0,n
t t

V t
n


 





        (46) 

0 *
=0 0

0 *
0 =0 0

| = ( ), \ ,

| = ( ), , | = ,

t

t b

x x

s s x x

 

 

 


     (47) 

where 

  
  

*

0
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= ,

= , , = 0 ,

= , , = ,

t t t

t

t

x s x t

x s x t L

 





  
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 

 

n  denotes the outward normal to *
t , =nV  

1
0 0 *| | / |

t
s s t


   , and 0 0( ) ( ,0)s x s x . 

Thus, the problem (43)-(46) can be interpreted as two 
classical one-phase Stefan problems joined by Equation 
(45). Such an interpretation leads to the problem about 
the mixture domain for processes with surface tension (cf. 
[6,8]). The conditions (45), (46) and = 0  on *

t  are 
conditions of Hugoniot type since they should be satis-
fied for the existence of the solution under consideration. 
The operator on the right-hand side of (45) degenerates 
along the direction 0s , i.e., along 1y  if we introduce 
the new coordinates 1 0 2= , , , ny s y y , where 2 , , ny y  
are the coordinates on the surface 0 =s const . Equation 
(45) is ultraparbolic. As is known [11], a homogeneous 
ultraparabolic equation has no real analytic solutions 
with respect to t  and 1y , except for the case where the 
solution is independent of the tangent variables. Further, 
we need to solve the Cauchy problem (46) for the heat 
Equation (43) relative to 1y  with the initial conditions 
on the surface *

t . For sufficiently small 1y  and t  
this ill-posed problem has a solution only for real ana-
lytic surfaces and initial data [11]; moreover, in this case, 
the values of   on the external boundary and at the 
initial time are uniquely determined by the values on  
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3.3. Example of a Structured Domain 
 
Assume that n = 3, = { , < < }x R r R  , where =| |r x , 

> 0R , and *
0 = { (0) < < (0)}r r r  . Then Equation 

(45) becomes the first order equation 

 *0 02
= , = ( ) < < ( ) , > 0.t

s s
r r t r r t t

t r r  

 


 
  (48) 

It is easy to solve the problem (48) with the initial con-
dition 

0
0 =0| = ( ).ts s r  

Namely, 

   0 0
0 , =s r t s r  

along the characteristics 

       
20 0 0, = 4 , 0 0r r t r t r r r     

for any smooth function 0 ( )s r  such that 0 > 0rs . 
Now, (43), (46) with 

*= 2 / |n
t

V r


 

is the Cauchy problem (with respect to r) in two domains 

  
  

1

2

= < < , > 0 ,

= < < , > 0 .

Q R r r t t

Q r t r R t

 

 

 

To formulate the solvability conditions for this ill- 
posed problem, we recall the well-known fact (cf., for 
example, [11]): for the local existence of a solution to 
(43), (46) it is sufficient that the curves ( )r t  be real 
analytic functions with respect to t , i.e., (0) > 0r  and 

2< (0) / 4t r . Consequently, for sufficiently small 0 > 0  
and 0 0 0= ( )T T  , in the domains  

    
    
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1 0 0
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2 0 0
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= < < 0 , <

Q r r r t t T

Q r t r r t T




 

 




 

there exists a real analytic solution   to the corre-
sponding Cauchy problem. Thus, in order to solve the 
limit problem (43)-(46), we need to impose the following 
condition. 

(C) Suppose that   is a spherically symmetric layer 
in 3 , the initial and boundary data of the problem 

b

tt

t

tt

xx







=|  1,=|

),,(=|  ),,(=|

=

,=

0
0=

0
0=

322







       (49) 

are spherically symmetric, and 

 0
0, = ,| |= ,i

ix x r   

where  RrrrR M <<<<<<0 00
1

0
0  . Assume that 

0 0
1 =j jr r h   and the differences 0

0r R  and 0
MR r   

are sufficiently small; moreover, 0 ( )s r  is real analytic, 
0 / > 0s r  , 0 ( )x  and b  are special data corre-

sponding to the solution to the Cauchy problem for the 
heat Equations (43), (46). 

We show that Condition (C) implies Condition (B) 
and the equality 1 = 0C  in (39). For this purpose, we 
return to the main problem (cf. (17)-(23)) 

,= , , > 0,ii
i tx t

t 





 


          (50) 

1 1 10 0, ,
| = | ,i i i i

t t 
      

            (51) 

10 0, ,
| = | ,i i i i

t t 
     

            (52) 

11
1 1 10 0, ,1 1

| | = ( 1) 2 ,ii i
i i it ti i

V
 

 
 


     

 

 
 

 
    (53) 

1

0 0, ,
| | = ( 1) 2 ,ii i

i i it ti i

V
 

 
 



   

 
 

 
     (54) 

,=|1)(
1

1

01
,

1
1







 
i

i
ti

t
i

i V


         (55) 

.=|1)(
0,

1 i

i
ti

t
i

i V


 

         (56) 

Let = ( , )i i t h   be functions such that , =i
t   

{ , = ( , )}ir r t h . In the spherically symmetric case, we 
have 

.2/= i
i
t   

Therefore, taking into account (30) and choosing i  
directed in the opposite direction relative to the normals 
(with respect to ,

i
tD  ), we find 

).(2/= hV ii
   

We make the change of variables = /i iw r . Then 
the equality 

,= ,  ,  > 0i
t tx t     

takes the form  

    
2

12
= , , , > 0.i i

i i

w w
r t t t

t r
 

 


 
   (57) 

Since 

,)/2(=),(12= 1 hVvhvV
i

i
ti

def

iiii       

the conditions (51), (54) can be written as follows: 

   1
1 1 10 0, ,

| | = 1 4 1 ,
ii i

i i it t

w w
hv

r r 
 


     

 
  

 
  (58) 

   11

0 0, ,
| | = 1 4 1 ,
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i i it t

w w
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r r 
 



   

 
  

 
  (59) 
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1 1 10 0, ,
| = | ,i i i i

t t
w w

 
     

           (60) 

10 0, ,
| = | .i i i i

t t
w w

 
   

           (61) 

We show that the problem (57), (58) has a solution 
satisfying the following properties: 

1) )(= hwi   uniformly with respect to i , 

2) for any t  the values  ˆ 1
i

i

i i r pw w    are deter- 
mined, with accuracy )( 2h , by the values of some 
function  1

0ˆ ,i Mw C    on the grid 0{ , , }M  . 
We note that the first property is related to (56) and 

(30). 
We look for a solution iw  to the problem (57), (58) 

in the form  

     1= , , ,i i i i iw a r b t u t r h         (62) 

where the first two terms correspond to the Stefan condi-
tion (58) and iu  is a solution to the following chain of 
problems: 

2

12
= , = 1, , ,i i

i i i

u u
a b i M

t r
 

 
 

 
       (63) 

  1
1 = =| = 0, | = 0,

= 0, , .

j j
j j r rj j

u u
u u

r r

j M

 




  
    


  (64) 

We note that this chain is similar to that considered in 
[12] and differs by only the dependence of 1=i i i if a b     
in (63) on t . However, because of this dependence, it is 
obvious that the contribution of this chain to the solution 
is of order )( 2h . 

To solve Equation (63), we first compute the coeffici- 
ents ia  and ib . From (58) and (63) it follows that 

   1

1= 2 1 1 , = 0,
i

i i
a hv b

   

     1 21 2
=2

= 2 1 1 1 ,

= 2, , .

j
k

j k kk k
k

b hv hv

j M

    
     


 

Assume that 

       0 1, , , , 1, 2,js x t h s x t h j        (65) 

where the functions  
0

js  are defined in (29). At the first 
glance, this assumption can lead to a contradiction in the 
equation for velocity correction (the linearized Gibbs- 
Thomson equation for  

0
js ) if the functions i  com-

puted under this assumption do not satisfy Conditions 1) 
and 2) However, it turns out that there is no contradic- 

tion. 
Denote by ( , , )R z t h  a solution to the equation 

   0 1, , = .s R t hs R t z  

By construction, = ( , , )i R ih t h  and, uniformly with 
respect to i  up to order )(h , the functions 

i
v  are 

traces of some 1C -function v  on the surfaces = ir  . 
We note that / > 0R z  . Furthermore, 

).(=)(|1)(2= 2
2)(=

2=
hh

z

R
hb khz

k
j

k
j 




   

By Lemma 3.1, the last estimate is uniform with re-
spect to j . Further, 

),(=)()2(1)2(= 23
11

1
2 hhbb jjj

j
jj  


 

(66) 

and this estimate is also uniform with respect to j . Now, 
we see (67) 

Furthermore, from (66) and Lemma 3.1 it follows that 

)(= 2
2 hbb jlj   

uniformly with respect to j  and l . In particular, from 
this estimate, the equality (67), and the condition 1 = 0b  
we find 

).(=),(|2= 2
12

2
1)(2=2 hbh

z

R
hb lhlzl   



 

We consider a broken line   such that its linear 
parts are defined as 1( )i i ia r b    on the segments 

1[ , ]i i  . It is obvious that ib  are the values of   at 
the points 1= ir   . Consequently,   is not symmetric 
with respect to the zero line (it is directed toward to the 
domain of positive values). However, the broken line can  

be centered by decreasing its values = ( 1)|z h i

R
h

z 



 in  

each segment 1[ , ]i i  . It is obvious that this is 
equivalent to the existence of functions 

),,(=|= htrzzz

R
hm



 

in  . Here, = ( , , )z z r t h  satisfies the equation 
( , , ) =R z t h r . 
We set 

.=,=1 muUm ii   

Then for iU  we have the problem of the form (63) 
with the right-hand sides 
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1 12
= , , .i i i i i i
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To construct an asymptotic expansion of iU , we 

solve a chain of problems. We look for a solution in the 
form 

    
    

2

1 1 1

2

1 1

=

,

i i i i i i

i i i i

U c r r c r

r c r r

  

  

 



   

    
 

where dots denote polynomials of higher degree. We 
note that polynomials of degree higher than 2 admit the 
estimate 3( )O h  and the coefficients ic  are determined 
by the relations 

.,1,=),(1)2(= 1
1 Mihc i

i
i   

   

The contribution to the solution iU  of terms of order 
)(hO  in iG  is estimated by )( 3h . Consequently, 

  3
iiU U h   

and the function 

   1i i i iU c r r     

is defined by a sequence that is symmetric with respect 
to the zeros of parabolas of order )(mod 3h  because 

).(=11 haa iiii      

Hence  2= ( )iU h  for ),( 1 iir    and the values 
of 1  at the points j  are given by the relation 

.,1,=),(|1)(=| 2
1)(==1 Mjh

z

R
h hjz

j

jr  



   

(69) 

Thus, the problem (57), (58) has a solution with prop-
erties 1) and 2). 

It remains to construct   in the domains R r    

0 ( )t  and ( )M t r R   . We note that constructing  

1 , we defined )(mod h  the values of   and 
r




  

at the points )(= 0 tr   and )(= tr M . As in the case 
(43)-(46), this fact completes the construction of  . 
Now, it is again required to solve the Cauchy problem 
with respect to r  for the heat equation. Nevertheless, 
by Condition (C), the analyticity condition (necessary for 
solvability) is already valid. 

Thus, by (69), the functions 

    1
i

i
i rt     , 

with accuracy )( 2h , are traces on the surfaces i
t ,  

of some function 

    , ,x t h h   

of class 1C . Owing to this fact, we can compute the first 
correction for the phase 0 ( , )s r t . Indeed, substituting (29) 
into (56), we obtain the linearized Gibbs-Thomson 

conditions  

   
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j i
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  
 . 

(70) 

Our analysis shows that, with accuracy )(h , the 
right-hand side of (70) is the trace of a function of class 

1C . Therefore, from (69) and the conditions 

   1 2
0 0 0 0 0t ts s     

we find 

   01 1 1
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2
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ss s R
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
  (71) 

Let 

     , ,i i it h r t hr t h    , 

so that 

 
   
,

1i

i

r t h

r t



  

uniformly with respect to = 0, ,i M . Taking into ac-
count Equation (48), we obtain 

 2= 4 ,ir g ih t  

where )(zg  is the inverse of 0s , i.e., zzgs =))((0 . 
Thus, ignoring terms of order )(h , we can transform 
(71) as follows: 

0,=|,
2

= 0=1
111
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







 

i.e., our assumption about 1( , )s r t  is valid. 
We note that, in view of (65), the value 1C  in (37), 

(39) is equal to zero and consequently, right-hand side of 
the heat equation in *

t  vanishes. 
Thus, Condition (C) implies the validity of Condition 

(B). As a result, we find (43)-(46) as the limit of the 
chain of Stefan problems with the Gibbs-Thomson con- 
dition. 

We formulate the initial conditions. We assume that 
Conditions (A) and (C) are satisfied. Let 

     2 0
=0 1 =0| = ,0, , | = , ,as j

t tx O S s x      

where )(=),( 00 rsxs  . Let 0=|t  in the domains 
}<<{= 00

10, ii
i rrr   , Mi ,1,=  , is defined by 

)),()(
)2(

(
2

1)(=| 20
10

1
0=)( hrr

s

h

r i
r

i
ti 


 

  

and, in the domains 0
0<< rrR  and RrrM <<0 , we 

set 

=0 =0| = | ,t t   
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where   is a solution to a special Cauchy problem 
(relative to r ) for the heat Equation (43). 

Theorem 3.1 Under the above assumptions, there 
exists an asymptotic solution to the phase field system 
satisfying Condition (B), and it is possible to pass to the 
limit in (49) as 0  in the sense of Definition 3.1. 
The limit problem 

*= , \ , > 0,tx t
t

 
  


        (72) 

*= 0, , 0,tx t             (73) 

*0 0
0

0

= , , > 0,t

s s
s div x t

t s

  
     

    (74) 

* *| = 0, | = , 0,n
t t

V t
n


 





       (75) 

 
 

0 *
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| = , , | = ,
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t b

x x

s s x x

 

 

 


   (76) 

where 
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= ,

= , , = 0 ,

= , , = ,

t t t

t
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x s x t L

 




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n  denotes the outward normal to *
t , =nV  

1
0 0 *| | / |

t
s s t


    and 0 0( ) ( ,0)s x s x , possesses a 

solution, at least for sufficiently small (but independent 
of  ) time. 

The above case can be explained by the fact that, 
outside the layer 0 Mr r r  , the order function of the 
original problem takes different values: 1   for 

0< rr  and 1   for Mrr > . It is obvious that all the 
arguments remain valid in the case where   takes the 
same values ( 1   or 1  ) for ],[ 0 Mrrr . This 
means that M  is odd. Then we again obtain a limit 
problem of the form (72)-(75). The limit passage can be 
justified in the same way as above, by solving a chain of 
problems which can be reduced to the chain of problems 
(63). In both cases ( M  is even or odd), the problems are 
ill-posed. However, as was noted in [6], such a wave 
train type structure appears in numerical experiments as 
solutions to the phase field system with the initial data 

0=0  for R r R    and 

 

 

0

=0
0

0

=0

1 1 , M is odd,

=

1 , M is even.

M
j j

j

M
j j

j

r r
th

r r
th






  
      


 

      




 

Figure 2(b) presents the graphs of solutions to the 
phase field system with spherically symmetric initial data 
for = 19M  and 2= 10   at different times. One can 
see that the temperature in the mixture domain is of 
sawtooth form. Such a function is the leading part of the 
asymptotic expansion (62) of the solution to the chain of 
modified Stefan problems with the Gibbs-Thomson con-
dition. In the numerical analysis performed by O. A. Va-
sil’eva, = 0  on the external boundaries. This leads to 
an effect presented in the figure for time = 0.02t : the 
sawtooth structure begins to break down under the in-
fluence of boundary data. However, the order function is 
more stable and preserves its shape. 

Figure 2(a) presents the graphs of solutions to the 
phase field system with spherically symmetric initial data 
for = 7M  and 2= 10   at different times. The tem-
perature has sawtooth shape in the IAS-domain, whereas 
it is periodic with amplitude = 1l  at center. Such a 
function is the leading part of the asymptotic expansion 
(62) of the solution to the chain of modified Stefan prob-
lems with the Gibbs−Thomson condition. The sawtooth 
structure “moves” to the center and begins to break down 
under the influence of nonspecial boundary data. The 
order function preserves its shape in this case. 

Figure 3(a) presents the graphs of solutions to the 
phase field system with spherically symmetric initial data 
for = 7M  and 2= 10   at different times. Figure 3(b) 
presents the graphs of solutions to the phase field system 
with spherically symmetric initial data for = 19M  and 

2= 10   at different times. 
 
3.4. Comments and Conclusions 
 
Based on the phase field system, it is possible to detect a 
banding structure formation in instability zones. How-
ever, to construct the mathematical model, we need to 
impose some restricted conditions. 

1) The existence conditions are very restrictive, which 
can be explained by the geometry of domain   and the 
initial and boundary conditions. Note that the initial and 
boundary data are determined by the solution to the limit 
problem. 

2) A standard definition of a weak solution can turn 
out to be not suitable. However, we can avoid these di- 
fficulties by introducing a special definition of a weak 
solution, which is important for nonlinear problems. 

3) As was shown, a wave train type solution exists 
only for special boundary and initial data providing the 
existence of an asymptotic solution to the chain of Stefan 
problems with the Gibbs-Thomson condition for suffi-
ciently small (but independent of  ) times. This fact 
allows us to pass to the limit of the chain of Stefan prob-
lems with the Gibbs−Thomson condition (in the sense of  
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Figure 2. (a) Presents the graphs of solutions to the phase field system with spherically symmetric initial data for = 7M  and 
2= 10   at different times; (b) Presents the graphs of solutions to the phase field system with spherically symmetric initial 

data for = 19M  and 2= 10   at different times. 

 
Definition 3.1) and derive the limit problem (43)-(46). 

4) As we shown in the above examples, the tempera-
ture ( , , )x t   is small ( 0   as 0  ) and has 
special “periodic” structure in the stratified domain. 

5) Even in the rigid-front case, the solid phase growth 
is of order ln(1/ )t , which is lower than the order ob-
tained in experimental way. 

Thus, a banding structure in the phase stratification 
domain of a binary alloy was constructed under ex-
tremely restrictive conditions on the geometry of domain 
  and the initial and boundary conditions. Furthermore, 
the order ( )O t  of the solid phase growth obtained in 
experiments is not achieved in this model. In view of 
these facts, it is necessary to look for other mathematical 
models describing qualitative experimental properties of 
crystallization. In the following section, for such a model 
we consider the convective Cahn-Hilliard equations in a 

porous medium of an overcooled melt. 
 
4. Oriented Crystallization Model 
 
There is a huge experimental literature on various struc-
ture formations in melt crystallization. Based on experi-
mental results, one can conjecture that complex structure 
formations in crystallization are caused by the evolution 
of instabilities during phase transition processes which, 
in turn, is caused by different reasons and can be realized 
in different ways. We list some of such reasons. 

1) concentration overcooling, 
2) convective flows deforming the temperature field 

(gravity and thermocapillary convection), 
3) phase stratification. 
In addition, elastic properties of the solid phase, thin 

phase boundary, and adsorption phenomena can also 
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contribute to this effect. 
 
4.1. Modified Convective Cahn-Hilliard Model 

in a Porous Melt 
 
To construct a mathematical model governing the recon-
struction of oriented crystallization (cf. [7,8]), a modified 
Biot model of a porous medium [13] was used for de-
scribing a liquid-solid zone and the convective Cahn- 
Hilliard model of spinodal decomposition [14,15] was 
used for describing segregation. In the model, we con-
sider a binary eutectic alloy. For variables we take 

the concentration of the component A or the compo-
nent B of the binary alloy, 

the temperature, 
the growth velocity of the solid phase, 
the contraction, 
the convection velocity of the liquid phase. 
The model includes the laws of conservation of mass 

and impulse for liquid and the law of conservation of 
total impulse for liquid and solid phases. 

In accordance with the physical interpretation, the 
model also includes a modified Cahn-Hilliard equation 
[14] and the heat equation [7], regarded as a generaliza-
tion of the Stefan problem [9]. Using a nonisothermic 
modification of the Cahn-Hilliard model, proposed in [7], 
we can construct a model that take into account the fol-
lowing physical effects. 

Because of crystallization and melting, the tempera-
ture can vary. In turn, variations of temperature lead to 
variations of velocity and changes of the medium com-
position. 

An equilibrium phase transition is realized at the 
melting temperature, whereas a nonequilibrium phase 
transition can be realized at different temperatures de-
pending on the depth of penetration into metastable or 
labile regions. This fact shows that the modified 
Cahn-Hilliard model should include temperature-depen- 
dent parameters. Then both heat-mass transfer equations 
will govern mutually dependent processes. 

The model reflects the structure of a liquid-to-solid 
transition zone of the crystallization front. It consists of 
an outer viscous layer (the hydrodynamic Prandtl layer) 
and a diffuse layer (the Nernst diffusion layer). In the 
case of a condensed system, the thickness of the Nernst 
layer is less than the thickness of the Prandtl layer by 
three orders and the heat-mass transfer laws can be as-
sumed to be linear (the Fick and Fourier laws). On the 
boundary of the diffuse layer, near the solid phase, the 
volume strongly varies while a liquid-to-solid transition. 
Therefore, it is necessary to take into account elastic 
forces, which can be done within the framework of con-
tinuum mechanics. 

We introduce the following notation: 
c  is the mole concentration of the component B  in 

the binary alloy (In our case, the mole concentration of 
Sn  in the liquid phase), 

z  is the contraction, 

lw  is the convection velocity of the liquid phase, 
u  is the averaged displacement in the solid phase, 

sw  is the mean growth velocity of the solid phase, 
v  is the averaged fictitious displacement in the liquid 

relative to the solid phase, 
T  is the temperature. 
Furthermore, we set 

= .l sw w w  

 
4.2. One-Dimensional Case 
 
In this case, the model is represented (cf. [8]) by a sys-
tem of differential equations which can be divided into 
the three subsystems: 

   
   

2

= , = ,

= 2 ,

=  ,

s
t t

s l
t x xt x

l s l
add t x x xt

u w v w

w w M u Mv g

w w Dw Mu Mv g

      

   



        


    

 

(77) 

      = 0,l l s s

t x x
w w             (78) 














, =)(

,]))),(()),((

)2(),(([=)(

0

2
4

1
2

2

xxt

xxxxxxxx

cxDxkrt

TDcT

cTcFcTcF

uTcFMcccwc






(79) 

This system describes processes in the diffuse and 
Prandtl layers in dimensionless variables c , T , lw , 

sw , u , v , z . 
The system (77) is a model of wave propagation in a 

porous skeleton filled with a liquid (a simplified version 
of the Biot model). 

The system (78) is the continuity equation and de-
scribes the evolution of contraction. 

The system (79) presented by the convective Cahn- 
Hilliard model and the heat transfer equation describes 
the formation and growth of Gibbs grains. 

Note that we use equations of continuum mechanics to 
describe processes in the Prandtl layer, whereas for dif-
fusion and heat processes we use the modified Cahn- 
Hilliard model where hydrodynamic processes and elas-
tic-plastic state of the solid phase are taken into account. 
Let’s note that all constructions of the previous chapter 
were maded for this one-dimensional case but more 
technically. 
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The model contains a number of dimensionless para- 
meters. The elasticity modulus of the solid phase 

 2=   is assumed to be a function of concentration 
and temperature: ),(= Tc . 

The parameter z  is expressed by the formula 

= ,
s iV V V

z
V

 
 

where V  is the total melt volume, sV  is the current 
volume of the solid phase, and lV  is the current volume 
of the liquid phase. 

The concentration c  is expressed as 

= ,
s
B B
l

l

m M
c

m M
 

where AM  ( BM ) is the atomic mass of the component 
A ( B ) and lM  is the averaged atomic mass of the 

melt: BA
l cMMcM  )(1= . 

The extra variable )(cy  of the form B
l
B mmy /=  is 

expressed in terms of concentration as follows: 

   
= ,

1

qc
y c

c Q
              (80) 

which implies 

   
  

, =  ,
1 1

l q y c
c z R

z R y c




  
 

where 2/3)))((1  cy  is a bound for the surface of the 
solid phase in the liquid-solid region, 1  is a parameter, 

= = 0,74, = = 0,25, = = 1,75Sn Pl Pl

s Sn Sn

m m M
R q Q

V m M
 

are constants, and we adopt the normalization condition 

= = 1.s
B   

Further, 
  is the mean density. 

6,2=M  is the mobility (fluidity) of the liquid. 
2  is the inverse of the relaxation time of fluidity 

(estimated as 310  ), 
1/30= g  is the acceleration of gravity, 

D  is the interphase friction coefficient, estimated as 

      2/3/ 1/
1= 1 1 ,T TD e e y c

     

where 1= , 5,=1  

DM  is the diffuse mobility of the component B  
(estimated as TM D 1/= ), 
  is the ratio of the melting enthalpy to the heat 

capacity of the solid phase at a constant pressure. 
The function F  determines steady, metastable, and 

labile states of the system “melt-alloy” depending on the 

composition and temperature. The function F  can be 
approximated by a cube polynomial in c  at a fixed 
temperature: 

 
   

 
0

3

0

,
, =

, ,

cr

cr

c c c c c T T
F c T

c c T T

    


 
 

where KT 400=0  and crcc ,  are functions of temp- 
erature T  which will be specified below, 

min max min max, = 233,15 , = 456,15 .T T T T K T K   

We define three concentration values: 

minc  equals to )( minTc , 

midc  equals to )( minTccr , 

0c  equals to midc  in our experiment. 
We set 

min = 0,04, = 0, 43.midc c  

We introduce )(Tc  as the roots of the equation 
2= ,clust clust clustT c c     

where 

 
min 0

02

min 0

2
0 0

= , = 2 ,

=

clust clust clust

clust clust

T T
c

c c

T c

  

 








 

and define )(Tccr  as a linear function. 
The function 1000),,(1 TzcF  is interpreted as vi- 

scosity. At the first step, it is assumed to be constant. The 
structure of the interphase boundary at atomic level is 
characterized by the function 2F . We set 02 F  and 

410=   in the numerical experiment. 
The model also contains some additional relations 

dictated by the physical interpretation of the problem. In 
particular, the model contains the “extra” density add  
such that 

 
  1/3

= ,
1

l

add

z

y c

 



            (81) 

where 0,055=  and, as a rule, )(z  is small for 
small z . 
 
4.3. Numerical Analysis of the Model  

Describing Oriented Crystallization. 
One-Dimensional Case 

 
The numerical results obtained by Rykov and Zaitsev [16] 
are presented in Figures 3(a-c). Note, that the spatial 
x -axis is directed upward, whereas the t -axis is 
directed rightward along the horizontal line. 

The systems presented in Figures 3(a-c) differ by the 
value of the parameter  . The numerical results show     
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 (a)                                       (b)                                      (c) 

Figure 3. Numerical simulation of the model describing oriented crystallization (one-dimensional case). The spatial x-axis is 
directed upward, whereas the t-axis is directed rightward along the horizontal line. 
 
that the balance of convective and diffusive terms 
generates a modulated wave of formation of crystal 
grains, which differentiate the spinodal decomposition 
mechanism from the classical case where the Cahn- 
Hilliard model possesses a periodic solution. 
 
4.4. Comments 
 
1) In our model, for the sake of simplicity, we assume that 
porosity is constant, passing its functions to the contrac-
tion z. On this stap of the model construction we will elu-
cidate the change range of the porosity when the modifica-
tion of Biot model don’t lose the hyperbolicity. It allow us 
on the next stap to pass to porosity as a problem variable, 
expressed the contraction as the function of porosity. 

2) In the model (77)-(79), the convention is equal to 
zero at the initial time, 0=| 0=tw , and then it can be 
regarded as reaction to 1) the force of interphase friction 
between liquid and solid phases and 2) the gravity force. 
Thereby we specify the effective force in the convective 
Cahn-Hilliard model [14,15]. 

3) The initial distribution of crystal grains (which, 
unlike [14], is not given here) depends on only contraction, 
whereas the further distribution is determined by the proc-
ess. So, no restrictive conditions are imposed on the ini-
tial-boundary data, unlike the case of the phase field system 
and the one-dimensional convective Cahn-Hilliard model. 

4) In the subsystem (79), we took into account the re-
sults of [17]. Note that the above constructions remain 
also valid for the modified model (77)-(79) obtained 
from the two-dimensional model (cf. below) in the ra-
dial-symmetric case. 
 
4.5. Two-Dimensional Case 
 
Introduce the notation: 

c  is the mole concentration of Sn  in the liquid 
phase, 

z  is contraction, 
lw  is the liquid phase velocity 

lu  is the averaged displacement in the solid phase, 
sw  is the mean growth velocity of the solid phase 

(the averaged velocity of microfronts), 
= s lw w w  is the averaged fictitious displacement in 

the liquid phase relative to the solid phase, 
T  is the temperature. 
The system of two-dimensional equations can be writ-

ten in the form 

   1 1 2 2= , = ,s s s st t
u w u w            (82) 

   1 1 2 2= , = ,
t t

u w u w             (83) 

1 1

2
1

2
2

1 2

1 2

( ) ( )

= [( ( , ) 2 ( , ) ( ))( )

( ( , ) ( ))( )

( )(( ) ( ) )]

[ ( , )(( ) ( ) )] ,

s t l t

s x

s y

x y x

s y s x y

w w

c T c T M T u

c T M T u

M T u u

c T u u

 

  

 







 

 

 

 

    (84) 

2 2

1 2

2
1

2
2

1 2

( ) ( )

= [ ( , )(( ) ( ) ]

( ( , ) ( ))( )

[( ( , ) 2 ( , ) ( ))( )

( )(( ) ( ) )] ,

s t l t

s y s x x

s x

s y

x y y

w w g

c T u u

c T M T u

c T c T M T u

M T u u
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

 

  



 



 

  
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   (85) 

1 1 1

1 2 1 2

( ) ( ) = ( , )

[ ( )( (( ) ( ) ) ( ) ( ) )))] ,
l s t add l t

s x s y x y x

w w D c T w

M T u u u u

  

 

   
  (86) 

2 2 2

1 2 1 2

( ) ( ) = ( , )

[ ( )( (( ) ( ) ) ( ) ( ) )))] ,
l s t add l t l

s x s y x y y

w w g D c T w

M T u u u u

   

  

   
  (87) 
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1 2 1 2( ) ( ) ( ) ( ) ( ) = 0l t l x l y s s x s s yw w w w         (88) 

1 2

2
1

2 6 (6)
1

2
1

2 6 (6)
1

( , ) ( , )

= { ( )[ ( , ) ( ( , , ) )

( ( , , ) ) ] }

{ ( )[ ( , ) ( ( , , ) )

( ( , , ) ) ] }
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x
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y
s y y el el x x

x
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y
s y y el el y y

c w f c T w f c T

M T F c T F c u T c

F c u T c E
c

M T F c T F c u T c

F c u T c E
c


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

  

   




   


 


   



 (89) 

0( ) ( )t xx yyT c D T T             (90) 

where 
2 2

1 2

1 1 2 2 1 2

2 2 2
1 1 2 2

= ( ( , ) ( )(( ) ( ) )

     ( )[( ) ( ) ](( ) ( ) )

1
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el s x s y

s x s y s x s y

s x s y s x s y

E c T M T u u
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     (6)
2 2= , , , , .x y

s xx s yy
xx yy

F c u T c F c u T c   

The system is considered in the rectangle =  
[0,1] [0, 2] . The boundary conditions are specified by 
numerical experiments. Here, we write out general 
boundary conditions. 

1) The vector-valued functions u  and w  satisfy the 
initial conditions 

   0, , = 0, , = 0,su x y u x y  

which corresponds to 

   0, , = 0, , = 0.sw x y w x y  

Based on the one-dimensional model, we impose the 
boundary conditions 

= = 0 for  = 0 and  = 0,s su w x y  

= = 0 for  = 1 and  = 2.s sn nu w x y   

We assume that the displacements and velocities sat-
isfy the following conditions on all four boundaries: 

= = 0.n nu w   

At the same time, it is natural to impose the imperme-
ability condition on all the boundaries. Therefore, the 
boundary conditions can be modified as follows: 

   = = = = =

= = = 0 for 0 and 1,

x x s s x y x yx x

x sy x sy

u w u w u w

u w x x

 

   
 

   = = = = =

= = = 0 for 0 and 2

y y s s y x y xy y

y sx y sx

u w u w u w

u w y y

 

   
 

or, in the other notation of the axes,  

1 1 1 1 2 2 2

2

= = = = = =
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s s x x x s

x s

u w u w u w u

w x x

  
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2 2 2 2 1 1 1

1

= = = = = =

= = 0 for 0 and 2.

s s y y y s

y s

u w u w u w u

w y y
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2) The initial and boundary conditions on z have the 
form 

 0, , = 0, | = 0.nz x y z   

3) The initial conditions on c are as follows: 

 0, , =c x y c  

for 1 2( , ) ( , ) (0, )z z zx y x x y  , 1 = 1/ 3zx , 2 = 2 / 3zx , 
= 1/ 3zy  and 

   , , = ,cr intc o x y c T  

where 300=intT , in the remaining domain. The boun- 
dary conditions on C  are written as 

*| = 0, | = 0,n nc     

where 
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i.e., for 0=x  and 1=x  the second condition takes 
the form 

 

    
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and 
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   2

0, = 3 for ;cr
x cr x x

dc
F c T c c c T T T

dT
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2

1
=  ,
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dc
m

dT T  


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min0

0 =
=

TT
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dc midcr


 

Similarly, for = 0y  and = 2y  the second bound-
ary condition on c  takes the form 

* = 0.y  

4) For the temperature T  we impose the initial con-
ditions 

   min max min0, , = , = 2end endT x y T T T y y y   

and the boundary conditions 

       min max min

=0, =

,0, = ,1, = 1 ,

| = 0,n y y yend

T t y T t y T T T t

T

  


 

where min = 233.15T K , max = 456.15T K , = 100  is a 

parameter. 
 
4.6. Numerical Analysis of the Model of Oriented 

Crystallization, Two-Dimensional Case 
 
N. A. Zaitsev, Yu. G. Rykov, and V. Lysov, based on the  

methods of [16,18], performed a numerical analysis of 
the model. The numerical results are reproduced here 
under their kind permission. 

Figures 4(a-d) and 5(a-d) illustrate the numerical re-
sults and show a complicated dynamics of the crystalli-
zation process.  

To test the crystallization model (82)-(89), the follow-
ing dimensionless values of the main parameters were 
taken on the basis of their physical sense: 

= 6,73; = 0,74; = 0,25;R q  

3= 1,75; = 6, 2; = 1 10 ;Q M    

;101=7,2;=1;=1;=0;= 4
0

 Dg s  

3
2 1( , ) 0; ( , ) = 1 10 .F x y F x y   

Time-development of crystallization process in the 
case of isotropic surface tension of crystal grains. The 
banding structure is transformed to the equiaxial struc-
ture. (a) = 4t , (b) = 8t , (c) = 18t , (d) = 22t  (Fig-
ure 4). 

Figures 4(a-d) presents the situation where the surface 
tension of crystal grains is isotropic. In this case, the 
chemical potential has the form 

 * 2= , .F c T c              (91) 

The banding structure is formed at initial times and  
 

 
(a)                                           (b) 

 
(c)                                            (d) 

Figure 4. Time-development of crystallization process in the case of isotropic surface tension of crystal grains. The banding 
structure is transformed to the equiaxial structure: (a) t = 4; (b) t = 8; (c) t = 18; (d) t = 22. 
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(a)                                           (b) 

 

 
(c)                                            (d) 

Figure 5. Time-development of crystallization process in the case of anisotropic surface tension of crystal grains (formation of 
a dendrite liquid-solid damain): (a) t = 1; (b) t = 2; (c) t = 4; (d) t = 8. 
 
then is developed to an equiaxial like structure. There is 
a certain analogy with the crystallization of eutectics 
when one of the phases splits into small cells [19] or the 
dendrite growth [20] when the distance between secon-
dary branches of dendrites in a perfectly solidified mass 
is much larger than that at initial times. We also can 
imagine a similar situation where a jet breaks down into 
drops when the absolute value of the surface tension is 
rather large. 

Time-development of crystallization process in the 
case of anisotropic surface tension of crystal grains 
(formation of a dendrite liquid-solid domain): (a) 1=t , 
(b) 2=t , (c) 4=t , (d) 8=t  (Figure 5). 

Figures 5(a-d) illustrates the numerical experiment in 
the case of an anisotropic surface tension, In this case, 
the following formula is used instead of (91): 

   * 2= , ,x x

c c
F c T A A A c

c c
 


  

 

  
         

 

1 0
= 1,5 ; = ;

0 14
A E A   

 
 

 

where E  is the identity matrix. In this case, the band-
ing structure, deformed because of overcrystallization, is 

developed to the dendrite structure. 
 
4.7. Conclusions 
 
The aforesaid shows that the proposed mathematical 
model of crystallization can be viewed as a mathematical 
reconstruction of various experiments. In particular, the 
following result of numerical analysis agrees with ex-
perimental observations: it is seen in Figures 4(a), (b) 
and Figures 5(a), (b) that the banding structure is the 
first structure formation to appear in the instability zone 
and the subsequent reformation of structure proceeds 
because of arising waves similar to the Marangoni insta-
bility wave at the boundaries of bands (cf. [2,4,5,21,22]). 
We also note that the numerical results concerning the 
influence of the crystallographic orientation of a growing 
crystal on the structure formation in alloys (cf., for ex-
ample, [19]) can be regarded as confirmation of the veri-
fiability of our mathematical crystallization model. 
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