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Abstract

In many astrophysical environments the plasma is only partially ionized, and therefore the interaction of charged
and neutral particles may alter both the triggering of reconnection and its subsequent dynamical evolution. We
derive the tearing mode maximum growth rate for partially ionized plasmas in the cases of weak and strong
coupling between the plasma and the neutrals. In addition, critical scalings for current sheet aspect ratios are
presented in terms of Lundquist number and ion–neutral collision frequencies for which the tearing mode becomes
fast, or ideal. In the decoupled regime the standard tearing mode is recovered with a small correction that depends
on the ion–neutral collision frequency; in the intermediate regime collisions with neutrals are shown to stabilize
current sheets, resulting in larger critical aspect ratios for ideal tearing to occur. In the coupled regime, the growth
rate depends on the density ratio between ions and neutrals through the collision frequency between these two
species.

Unified Astronomy Thesaurus concepts: Solar magnetic reconnection (1504); Plasma astrophysics (1261); Space
plasmas (1544); Collision processes (2065)

1. Introduction

Magnetic reconnection is considered to be an important
dynamical mechanism in a variety of astrophysical plasmas
(Zweibel & Yamada 2009; Yamada et al. 2010). Without
magnetic reconnection, stars and accretion disks would not
have coronae, magnetic dynamos would not work, and there
would most probably be no supersonic solar wind (e.g.,
Zweibel & Yamada 2009; Yamada et al. 2010). A complete
understanding of magnetic reconnection in astrophysical
settings therefore requires explaining how energy accumulates
in the magnetic field, how current carrying fields becomes
unstable, and how magnetic energy release occurs on short
timescales once the reconnection process has been triggered.
One of the major difficulties in understanding magnetic
reconnection in astrophysical plasmas stems from the fact that
classical models of reconnection, starting from the steady-state
Sweet–Parker mechanism (Parker 1957; Sweet 1958), or the
nonsteady, resistive instabilities (Furth et al. 1963), appeared to
be inadequate to explain the observed, transient and explosive
release of magnetic energy. More recently, the thin Sweet–
Parker current sheets have been shown to be unstable to a fast
tearing instability (Biskamp 1986; Shibata & Tanuma 2001;
Loureiro et al. 2007). Pucci & Velli (2014, hereafter PV14)
showed that, in a resistive framework, current sheet inverse
aspect ratios scaling as a/L∼S−1/3 separate slowly evolving
systems from ones that are so unstable they should never form.
In the expression, a is the thickness and L is the length of the
current sheet; h=S LV mA , with ηm the magnetic diffusivity, is
the Lundquist number (note that S may also be written as
S=τR/τA with τR the resistive diffusion time and τA the
Alfvén crossing time over the scale L). They called this regime
ideal tearing (IT). While PV14 focused on the problem of the
asymptotic limit  ¥S , in which case it is easy to see that the
fastest-growing mode of the tearing instability dominates and

determines the inverse aspect ratio scaling, Uzdensky &
Loureiro (2016) provided a derivation for finite S following
the full range of unstable modes, ultimately confirming
the PV14 result in the large S limit. Comisso et al. (2016)
rely on the effects of initial noise in the development of the
instability (which we note might not be correctly represented
by tearing eigenfunctions in a simulation transient phase),
obtaining a logarithmic correction in S on the sheet disruption
time that again does not modify the PV14 scaling at large S.
Indeed the PV14 scaling was confirmed in numerical simula-
tions by Landi et al. (2015), Tenerani et al. (2015b), Landi et al.
(2017), Huang et al. (2017), and extended to recursive
reconnection and general plasmoid number scalings by Singh
et al. (2019). Subsequently, kinetic effects that play a role once
small enough scales are reached were incorporated into the IT
scenario as well (Singh et al. 2015; Del Sarto et al. 2016; Pucci
et al. 2017).
There are also environments (e.g., solar photosphere and

solar chromosphere, solar filaments/prominences, the inter-
stellar medium, dense molecular clouds, protoplanetary disks)
where the astrophysical plasmas undergoing reconnection are
only partially ionized (see, e.g., Ballester et al. 2018). The
ionization degree depends upon the electron–neutral and the
electron–ion collision frequencies (Alfvén 1960), while the
resulting drag force acting on each species must satisfy
momentum conservation for the whole plasma. This means
that depending on the ratio between the density of the ions and
neutrals (or electrons and neutrals, if their collisions are not
negligible), the associated collision frequencies may establish
additional characteristic times scales of the system. Depending
on the strength of the coupling between ion and neutrals and
the dynamical times of magnetic reconnection, the reconnec-
tion rate can be affected. There are a number of theoretical
studies on tearing mode instability that show the dependence of
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the growth rate of the instability on ion–neutral collisions
(Zweibel 1989; Zweibel et al. 2011; Singh et al. 2015).

Multifluid MHD simulations show that, as a result of current
sheet thinning and elongation, a critical Lundquist number Sc,
is reached in a partially ionized plasma, at which point
plasmoid formation starts (Leake et al. 2012, 2013). In such
multifluid simulations, during the current sheet thinning, a
stage is reached where the neutrals and ions decouple, and a
reconnection rate faster than the single-fluid Sweet–Parker
prediction is observed. The ion and neutral outflows are well
coupled in the multifluid MHD simulations in the sense that the
difference between ion and neutral outflow is negligible
compared to the magnitude of the ion outflow. Assuming
incompressibility and the same pressure gradient for ion and
neutrals, in a reduced MHD frame, Zweibel (1989) calculated
the growth rate of the classic tearing instability in the so-called
constant-psi regime (Furth et al. 1963). In this Letter, starting
from the model described in Zweibel (1989), we calculate the
maximum growth rate for the tearing mode instability in
partially ionized plasmas, assuming as a primary source of drag
the collisions between ions and neutrals (retaining Coulomb
collisions between ions and electrons). We calculate the scaling
of the growth rate depending on the coupling, the relative speed
of collisions and the growth rate itself. Then, applying the IT
criterion, we find, for each regime, the scaling of the critical
aspect ratio for which the growth rate depends neither on the
Lundquist number nor on the density ratios.

2. Tearing Modes in a Partially Ionized Plasma

Consider a one-dimensional current sheet structure in which
the magnetic field reverses sign:

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ˆ ˆ ( )= =B y B y i B F

y

a
i , 10

where B0 is the asymptotic amplitude of the field, F is an
arbitrary odd nondimensional function, whose first derivative
provides the current profile. A specific example is given by the
Harris current sheet ( )=F y atanh . The dispersion relation for
the reconnecting tearing instability depends, in the resistive
magnetohydrodynamics (MHD) framework, on the magnetic
diffusivity η, the shear-scale a defining the current sheet
thickness, and the wavenumber ka. As discussed in Del Sarto
et al. (2016) and Pucci et al. (2018) for general equilibrium
profiles, specifying the function F results in a different
dependence on the wavenumber ka. This arises from the fact
that at a large Lundquist number two regions define the
solution structure: a boundary layer of thickness 2δ around the
center (y= 0) of the current sheet, and outer regions where
diffusivity and growth rate may be neglected. Such outer
solutions lead to a discontinuity of the first derivative of the
perturbing magnetic field at the neutral point (regularized by
diffusion in the inner layer): the jump in the gradient of the
reconnecting field component is called Δ′. Two asymptotic
expressions summarize the dispersion relation, depending on
whether dD¢ a 1 (small Delta prime, or Δ′, subscript SD),
where

¯ ¯ ( ) ¯ ( ¯ ¯) ( ) ( )g t dD¢ ~ D¢- -A k S a Sk , 2SD A SD
4
5

2
5

4
5

3
5

2
5
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where A is a nondimensional constant, or dD¢ a 1 (large
Delta prime, or Δ′, subscript LD),

¯ ¯ ¯ ( ¯ ¯) ( )g t d ~- -k S a Sk , 3LD A LD
2
3

1
3

1
3

in which case the growth rate no longer depends explicitly on
Δ′ (Del Sarto et al. 2016). Here, barred quantities are
normalized to the current sheet thickness. t̄ = a VA A is the
Alfvén crossing time, ¯ =k ka, and the Lundquist number
¯ ¯ ¯t t h= =S aVR mA A where t̄R is the ohmic diffusion time
over the thickness a. The expressions above may be used to
find the scaling of the fastest-growing mode by assuming that
both relations remain valid at the wavenumber of maximum
growth ( ¯)k Sm for sufficiently large S̄ . For the Harris current
sheet for which D¢ ~ ka2 this implies

¯ ¯ ¯ ¯ ( )gt
d

~ ~ ~- - -S
a

S k a S, , . 4mA
1
2

1
4

1
4

The relation for the “ideal” tearing instability, i.e., for an
instability where the growth rate survives independently of the
Lundquist number in the ideal limit (Pucci & Velli 2014), is
obtained by rescaling the dispersion relation to the current sheet
length rather than the thickness

⎜ ⎟⎛
⎝

⎞
⎠ ( )gt ~ -
-

S
a

L
. 5A

1
2

3
2

Assuming an inverse aspect ratio of the form ~ a-a L S , any
value of α<1/3 leads to a divergence of growth rates in the
ideal limit, while any value of α>1/3 leads to growth rates
that tend to zero as the Lundquist number grows without
bounds (Pucci & Velli 2014). This result is very general: any
additional effect, such as viscosity (Tenerani et al. 2015a) or
Hall current (Pucci et al. 2017), will result in a different critical
aspect ratio scaling at which fast reconnection is triggered.

2.1. Modifications due to Ion–Neutral Interactions

In a partially ionized plasma, the effect of electron–neutral
and electron–ion collisions on the plasma dynamics is the
generation of an ohmic-type diffusion. In the presence of three
different species undergoing collisions, the single-fluid descrip-
tion may apply in the partially ionized limit, with an
appropriately modified magnetic induction equation.
Considering three different species (electrons, ions, and

neutrals) the momentum conservation for each of the three
species may be written separately, including interspecies
collision terms, neglecting ionization and recombination
effects. In Zweibel (1989) the Coulomb collisions between
ions and electrons reflect in an ohmic diffusion coefficient in
the induction equation that remains the same as in the fully
ionized case. We notice here that, as shown in Singh & Krishan
(2010), the actual value of the resistivity is enhanced if the
electron–neutral collisions are taken into account, but the
ohmic resistivity is substantially calculated in the same way,
yielding a magnetic diffusivity

( ) ( )h
w

n n= +
c

, 6m

2

pe
2 ei en

where ωpe is the electron plasma frequency, the electron–ion
and electron–neutral collision frequencies are nei,en and c is the
speed of light. In Zweibel (1989) the interaction of the plasma
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with neutrals occurs through ion–neutral collisions, while
electron–neutral collisions are not taken into account. In this
way, the tearing equation for the momentum conservation of
ion and neutrals combined writes (primes denote derivatives
with respect to the a-scaled variable y/a)

⎛
⎝⎜
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⎠⎟( ¯ ) ( ¯ )

( ¯ )

¯
¯ ¯

( ¯ ) ( )
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+

 -

= -  - + 

= +  -

k

F k F

kF
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k

1

1
, 7

Ai
2 in

ni

2

2

Ai

2

and t̄Ai is the Alfvén time calculated with the ion density (still
normalized to the sheet thickness a), γ is the tearing growth rate
associated with a mode with wavevector ¯ =k ka along the
equilibrium magnetic field. The collision frequencies are
calculated assuming binary elastic (energy and momentum
conservation) collisions between electrons and neutrals so that
n n n n=  <

n m

n m
ni

i i

n n
in ni in at most heights in the solar

atmosphere (see Table 1 in Singh et al. 2015). Note that the
opposite limit νni ? νin leads to the standard tearing of a
completely ionized plasma. Following Zweibel (1989) we may
redefine a starred Alfvén time and Lundquist number

⎛
⎝⎜

⎞
⎠⎟¯ ≔ ¯ ¯ ( )t

n
g n

t t+
+

f1 , 8MAi
in

ni

1 2

Ai
1 2

A*

¯ ≔ ¯ ¯
¯

( )t
t

S S . 9Ai

A

*
*

Inserting t̄A* into Equation (7), and substituting ¯t̄S Ai with ¯ t̄S A* *
and ¯gtAi with ¯gtA*, the tearing mode equations regain their
standard form, so that all the properties of the dispersion
relation discussed previously now apply to the starred
quantities. In Zweibel (1989) the modified tearing mode
analysis is carried out only in the small Δ′ regime; see
Equation (2). Here we analyze the tearing mode equations
considering the maximum growth rate of the tearing instability
of Equation (4), because the fastest-growing mode is the most
relevant in the context of triggering fast magnetic reconnection
in natural plasmas. In particular, from Equation (4) we have
that ¯gtA* follows the same scaling with S̄* as in the standard
tearing theory:

⎛
⎝⎜

⎞
⎠⎟¯ ( ¯ ) ¯ ( ¯) ¯

¯
( )gt gt

t
t

~  ~- -S S . 10A
1 2

Ai
1 2 Ai

A

1 2

* *
*

When the growth rate is negligible compared to both collision
frequencies, the factor fM

1 2 becomes

⎛
⎝⎜
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r
r

r
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= + = + =f 1 1 , 11M
1 2 in

ni

1 2
n

i

1 2

i
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where r r r= +i n is the total mass density. Introducing
Equation (11) in (8) in this limit (growth rate negligible
compared to both collision frequencies), ¯ ¯t t=A A* , i.e., the
Alfvén time based on the Alfvén speed VA calculated with the
total (ion plus neutral) mass density. The Lundquist number S̄*
also reduces to the Lundquist number based on the Alfvén
speed calculated with the total density.

As in Zweibel (1989) and Singh et al. (2019), one may still
define three different regimes for the maximum growth rate of
the tearing mode including ion–neutral couplings. Though in
Zweibel (1989) these are ordered by the magnitude of the
growth rate relative to the neutral–ion and ion–neutral collision
frequencies, it is better to provide an ordering based directly on
the plasma parameters, since the growth rate of an instability
depends exclusively on the scale lengths associated with the
equilibrium, and it is the plasma parameters that determine the
appropriate instability regime.
With the two ion–neutral collision frequencies, two intrinsic

length scales are introduced into the resistive MHD equations
that would otherwise remain scale free (that is why, in resistive
MHD, it is the aspect ratio that appears as a crucial quantity
defining current sheet instability). The length scales ac c1, 2 are
defined as

( ) ( )h n=a V . 12c c m1, 2 A,Ai ni,in
2 1 3

These scales may be understood by comparing the growth
rate of the fastest-growing tearing mode to the two collision
frequencies, nni,in. From Equation (4), the fastest-growing
tearing mode has a dimensional growth rate

⎜ ⎟⎛
⎝

⎞
⎠(¯ ¯ )

g
t t

h
= =

V

a

1
.

R

m

A
1 2

A

3

1 2

The tearing growth rate increases with shrinking current sheet
thickness a. When starting from a thick sheet, the tearing mode
will initially be so slow that the plasma will behave as a single
fluid, with an Alfvén speed dictated by the total density. As the
sheet thins and its thickness approaches ac1, the growth rate
approaches the frequency νni, when the ions and neutrals begin
to decouple. As the sheet thins further, the growth rate
continues to increase, and when the thickness decreases to ac2
the growth rate reaches νin. At this point, the ions and neutrals
are completely decoupled and the growth rate grows scaling
only with the ionized plasma parameters.
Therefore, the scales determine the extent to which the ion–

neutral couplings affect the dynamics of the problem. As
detailed below, there are therefore three regimes: a coupled
regime, for current sheets whose thickness a is larger than ac1,
for which the plasma behaves as a resistive fluid where the
density is given by the total density; an intermediate regime,
ac1>a>ac2, when there is partial coupling of the ions to
neutrals; and an uncoupled regime for smaller scale sheets,
a<ac2, when the neutral and ion fluids decouple entirely. The
corresponding tearing mode growth rates follow the same
ordering, the growth rate increasing from one regime into the
next as the scales decrease.
For each domain in current sheet thickness, we may define

an appropriate timescale with which to normalize the growth
rate. This is a matter of convenience, at this level, but becomes
important later when taking the limit of very small resistivity
(magnetic diffusivity) while keeping the ion–neutral collision
frequencies finite. For the coupled regime, we will see that the
natural timescale is the Alfvén time predicated on the total
density. For the uncoupled regime, it is the timescale predicated
on the ion density only. In the intermediate regime, we will
show there is also an appropriate intermediate timescale.
1. Coupled regime: a? ac1, i.e., γ=νni: in this regime,

Equation (10) simply means that the fastest tearing mode
growth rate, normalized to the total density-based Alfvén time,
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scales in the standard way with the total density-based
Lundquist number (i.e., calculated using the Alfvén speed
based on the total density and indicated now with subscript n),

¯ ¯gt ~ -SA n
1 2. The result may also be written

⎛
⎝⎜

⎞
⎠⎟¯ ¯ ( )gt

r
r

~ -
-

S . 13Ai
1 2

i

1 4

Table 1 in Singh et al. (2015) shows that the ratio r rn i can be
up to 106 in some of the solar atmospheric layers. For such
cases of interest the dispersion relation

becomes
⎛
⎝⎜

⎞
⎠⎟¯ ¯gt

r
r

~ -
-

SAi
1 2 n

i

1 4

.

2. Intermediate regime:  a a ac c1 2 or, equivalently,
 n g nni in: ion–neutral collisions only partially couple the

ionized and neutral fluids, and the growth rate now scales as
⎛
⎝⎜

⎞
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⎛
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⎞
⎠⎟¯ ¯ ¯ ¯

¯
gt

n
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-

-
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S S ,Ai
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1 4
1 2 in Ai

Ai

1 4

implying

¯ ¯ ( ¯ ) ( )gt n t~ - -S . 14Ai
2 3

in Ai
1 3

Note, however, that we have normalized the growth rate here
with the ion-based Alfvén time. A better way of writing this is

[¯ ( ¯ )] [ ¯ ( ¯ )] ( )g t n t n t~ -S , 15Ai in Ai in Ai
2 3

showing that the appropriate normalization time for the growth
rate is now the modified Alfvén time ¯ ¯ ( ¯ )t t n t=int Ai in Ai , since it
normalizes γ and redefines the Lundquist number ¯ ¯ ¯t t=S Rint int

in a homogeneous way with the same modified Alfvén time t̄int.
3. Uncoupled regime: a ac2 or, equivalently, g nin:

ion–neutral collisions are too slow to couple the ionized and
neutral fluids, so to lowest order ¯ ¯gt gt~A Ai* . Corrections of
order n gin can be found:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
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n
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n
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1 2 in
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where ≔ n
g

 1in and we neglected terms of order  2,

leading to

¯ ¯ ¯ ( )gt n t~ --S
1

4
. 16Ai

1 2
in Ai

The ordering of the growth rate in the three regimes is
completely equivalent to the corresponding ordering in the
scales. This may be easily verified by direct substitution in the
appropriate limiting cases, with the reminder that the ratio of
the two critical thicknesses is ( ) r r=a a 1c c1 2 n i

1 2 .
In the next subsection we describe the initiation of

reconnection within a framework of a dynamics driven by
the corresponding fast normalizing timescale, making use of
the results just obtained.

2.2. The Ideal Tearing Mode in Partially Ionized Plasmas

Following PV14, we now ask how thin a current sheet must
become for its instability to be competitive with the typical
dynamical timescale of the system, predicated now not on the
thickness of the sheet but on a macroscopic length L, and
therefore renormalizing all quantities using L in place of the
equilibrium magnetic field scale a, i.e., ¯=S L a S* *
and ¯t t= L aA A* *.

Considering the ideal limit involves studying the asymptotics
at large Lundquist numbers, i.e., small magnetic diffusivities,

and searching for the mode whose growth rate survives, but
does not diverge, as ηm is allowed to go to zero while keeping
the ion–neutral collisions finite. The limit means that both
intrinsic scales ac1 and ac2 tend to 0, as does the current sheet
thickness under study, a (via the aspect ratio a/L). But the
regime at which ideal tearing sets in will depend on the relative
values of a, ac1, and ac2.
The formal identity of the asterisked equations with the

original tearing mode equations would lead to the renormalized
dispersion relation

⎜ ⎟⎛
⎝

⎞
⎠ ( )gt ~ -
-

S
a

L
. 17A

1
2

3
2

* *

Taking the limit of small resistivity while requesting the
growth rate to remain finite would then lead to a solution

( ) ( )gt ~ =O S 1 18A
0* *

with the critical current sheet thickness ac and aspect ratio
scaling

( )~ -a

L
S . 19c 1 3*

This approach would seem to imply a normalization of the
growth rate that depends on the growth rate itself. We have,
however, already provided the solution to the full dispersion
relation, as a function of the current sheet thicknesses a, in the
previous section. So we can define, depending on which of the
three regimes the critical sheet thickness falls in, the
appropriate scale-independent timescale, i.e., renormalized
with L. When a ac c c1, 2, the timescale will be the Alfvén
time based on the total density, ¯t t= a L;A A when

> >a a ac c c1 2, the timescale will be the intermediate timescale
¯t t= a Lint int , and when a ac c c1, 2 the timescale becomes the

shortest ion-only Alfvén time, ¯t t= a LAi Ai . This is very
similar to what was done in Pucci et al. (2017), which deals
with the effects of the Hall term on ideal tearing.
1. Coupled regime: In the coupled regime, as before, we

assume that the critical aspect ratio, as defined by
Equation (17), remains sufficiently large that a ac c1. In this
regime, then,  nV LA ni. When this is the case, we find an IT
criterion based on the Lundquist number and Alfvén times
based on the total (ion plus neutral) densities. This leads
directly to the critical aspect ratio scaling

( ) r r~ - -a L S S ,c n
1 3 1 3

n i
1 6

(recall that S is the Lundquist number based only on the ionic
component). For the solar atmosphere the density dependence
means the inverse aspect ratio can be up to 10 times larger than
the fully ionized IT critical inverse aspect ratio (Singh et al.
2015).
2. Intermediate regime: If the inequalities identified above

are not satisfied, then one enters the intermediate regime,
 nV LAi in, and in this regime,  a a ac c c1 2. The renorma-

lized dispersion relation now reads

( ) ( )gt ~ - -S a L , 20int int
2 3 2

where ( ) ¯t t n= =S SR Aiint
2

in int does not change on renorma-
lization (both the resistive diffusion time and the Alfvén time in
the denominator contain a length squared). Ideal tearing now
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requires

( ) ( )n t~ =- -a

L
S S , 21c

int
1 3 1 3

in Ai
1 3

( ) ( ) ( )gt gt n t gt n t= ~  ~ -1 . 22int Ai in Ai Ai in Ai
1

The dependence of the aspect ratio on the Lundquist number
is the same as the classical IT. The additional factor gives a
slightly larger critical inverse aspect ratio scaling than in the
fully ionized case, yet thinner than in the fully coupled regime.
In this intermediate regime the critical current sheet remains
thicker than in the fully ionized case.

3. Uncoupled regime: In this regime  nV LAi in, the critical
current sheet is very thin, i.e., a ac c2. The corrections to the
standard IT tearing criterion depend only weakly on the small
values of n tin Ai. The IT assumption now translates into

( )gt ~ O 1Ai , so in this regime fast reconnection is triggered
with the neutrals not really noticing.

2.3. The Inner Resistive Layer

The region around the neutral sheet, where the perturbations
to the background field are significant, is the inner resistive
layer δ (see, e.g., Pucci et al. 2018). This parameter is
particularly important for two different reasons: on the one
hand, when δ becomes of the order of the kinetic scales, kinetic
effects play a role in the reconnection dynamics (see, e.g.,
Terasawa 1983; Pucci et al. 2017). On the other hand, previous
work has shown that, at least in planar configuration, the
reconnecting current sheet (if sufficiently long) disrupts in a
series of self-similar steps, and δ determines the thickness of
the subsequent secondary current sheet thickness, and so on,
recursively (Tenerani et al. 2015b). In Zweibel (1989) an
estimation of δ is given and the dependence on the ion–neutral
collision frequency is recovered. In our case the expression for
the maximum growth rate is given in Equation (4), where in the
partially ionized case

¯ ( ¯ ) ¯d t t~ = =- - - -a S S fD M
1 4

A
1 4 1 4 1 8* * . Since fM is invar-

iant for the IT rescaling, the solution is the same as for the
classic IT with corrections depending on the
regime, d = - -L S fM

1 2 1 8.
We can surmise that, as a current sheet thins in the solar

atmosphere, though in the coupled regime the inner resistive
layer is slightly larger than in the fully ionized case (Singh &
Krishan 2010), the subsequent current sheets will rapidly
transition to scales where reconnection is occurring only on the
ionized component, and then down to kinetic effects. Future
numerical simulations should confirm this result.

3. Summary and Conclusion

In this Letter we have discussed the onset of fast
reconnection in partially ionized plasmas, considering three
species undergoing collisions: ions, electrons, and neutrals. The
ionization degree depends on the relative collision frequencies
and we neglected the effect of ionization and recombination.
Assuming as in Zweibel (1989) that the interaction with
neutrals is dominated by binary ion–neutral collisions, we
considered the combined ion and neutral equation of motion
and the magnetic induction equation as the system describing
the tearing instability of a generic equilibrium configuration.
The magnetic diffusivity is also implicitly modified due to the
additional collisions between neutrals and electrons. We
derived the scalings for the tearing maximum growth rate for

three different regimes: coupled, intermediate, and decoupled,
showing how the three regimes depend on current sheet
thickness. We then calculated the inverse aspect ratio for which
the growth rate does not depend on the Lundquist number.
In the coupled regime, the critical aspect ratio depends on the

ratio between the neutral density and the ion density. The
dependence is weak, but since ρn/ρi may be as large as 106 in
the solar corona (Singh & Krishan 2010), the critical current
sheet thickness can be up to 10 times larger than in the fully
ionized case.
In the intermediate regime, the scaling with the Lundquist

number remains the same as in the fully ionized case. A
dependence on n tin Ai arises. However, the intrinsic thickness of
the sheet remains thicker than in the decoupled regime, as
shown by the inequalities between ac, ac1, and ac2.
Finally, in the decoupled regime a small correction ( n t~ in A)

arises with respect to the fully ionized case. This results in
small corrections (factor <10) to the critical aspect ratio.
On the basis of the above discussion one may outline the

behavior of the tearing instability in a simple current sheet that
is slowly thinning. At first, the tearing mode will develop on
the global, ion–neutral coupled, Alfvénic timescale. Previous
papers have shown that a recursive reconnection regime may
appear (e.g., Tenerani et al. 2015b) that successively forms
thinner sheets. These will transition to the intermediate and
then fully decoupled regime, as the thicknesses of the sheets
become thinner, accelerating the nonlinear evolution of the
tearing mode.
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