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Abstract 
The manuscript presents an augmented Lagrangian—fast projected gradient 
method (ALFPGM) with an improved scheme of working set selection, 
pWSS, a decomposition based algorithm for training support vector classifi-
cation machines (SVM). The manuscript describes the ALFPGM algorithm, 
provides numerical results for training SVM on large data sets, and compares 
the training times of ALFPGM and Sequential Minimal Minimization algo-
rithms (SMO) from Scikit-learn library. The numerical results demonstrate 
that ALFPGM with the improved working selection scheme is capable of 
training SVM with tens of thousands of training examples in a fraction of the 
training time of some widely adopted SVM tools. 
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1. Introduction 

A support vector machine (SVM) [1] [2] is a supervised machine learning tech-
nique used for classification and regression [3]. SVM were initially designed for 
binary classification and have been expanded to multiclass classification that can 
be implemented by combining multiple binary classifiers using the pairwise 
coupling or one class against the rest methods [4]. The main advantage of the 
support vector machines is in their ability to achieve accurate generalization and 
their foundation on well developed learning theory [2]. 

Training dual soft margin SVM requires solving a large scale convex quadratic 
problem with a linear constraint and simple bounds for variables. To solve large 
scale SVM problems, decomposition methods such as sequential minimal opti-
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mization (SMO) [5] gained popularity due to their efficiency and low memory 
usage requirement. Each iteration the SMO keeps all the variables except two of 
them fixed and solves a small two-dimensional subproblem. In an effort to in-
vestigate a performance of decomposition based algorithms with larger working 
sets, one of the previous manuscripts [6] presented an augmented Lagrangian 
fast projected gradient method (ALFPGM) with working set selection for finding 
the solution to the SVM problem. The ALFPGM used larger working sets and 
trained SVM with a size up to 19020 training examples. The current study ex-
tends the previous results by presenting an updated working selection method 
pWSS and testing the improved algorithm on larger data sets with up to tens of 
thousands of training examples. 

The paper is organized as follows. The next section describes the SVM train-
ing problem, the ALFPGM and SMO algorithms. Section 3 describes a new 
working set selection principle responsible for an efficient implementation of 
ALFPGM. Section 4 provides some details of the calculations. Section 5 provides 
numerical results. Section 6 contains concluding remarks and Section 7 discusses 
some future directions of further improving the efficiency of the developed algo-
rithm. 

2. SVM Problem 

To train the SVM, one needs to find ( )T* * *
1 , , mα α= α  that minimizes the fol-

lowing objective problem: 
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Here ( ) ( ){ }1 1, , , ,m my yx x  is a set of m labeled data points where n
i ∈x  

is a vector of features and { }1,1iy ∈ −  represent the label indicating the class to 
which ix  belongs. The Matrix Q with the elements ( ),ij i j i iq y y= K x x  is posi-
tive semi-definite but usually dense. 

The sequential minimal optimization (SMO) algorithm developed by Platt [7] 
is one of the most efficient and widely used algorithms to solve (1). It is a low 
memory usage algorithm that iteratively solves two-dimensional QP subprob-
lems. The QP subproblems are solved analytically. Many popular SVM solvers 
are based on SMO. 

There have been several attempts to further speed up the SMO [8] [9] [10]. In 
particular, there have been attempts on parallelizing SMO [10]. However, selec-
tion of the working set in SMO depends on the violating pairs, which are con-
stantly changed each iteration, making it challenging to develop a parallelized 
algorithm for the SMO [6]. Other attempts have focused on parallelizing selec-
tions of larger working sets of more than one pair. The approach presented here 
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follows the latter path. 

2.1. SVM Decomposition 

Matrix Q is dense and it is inefficient and often memory prohibitive to populate 
and store Q in the operating memory for large training data. Therefore decom-
position methods that consider only a small subset of variables per iteration [11] 
[12] are used to train an SVM with a large number of training examples. 

Let B be the subset of selected l variables called the working set. Since each 
iteration involves only l rows and columns of the matrix Q, the decomposition 
methods use the operating memory economically [11]. 

The algorithm repeats the select working set then optimize process until the 
global optimality conditions are satisfied. While B denotes the working set with l 
variables, N denotes the non-working set with ( )m l−  variables. Then, α , y 
and Q can be correspondingly written as: 
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The optimization subproblem can be rewritten as  
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with a fixed Nα . The problem (2) can be rewritten as  
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where BN N B Bqχ = − = −Q e eα  and T
k N NG y=α . 

The reduced problem (3) can be solved much faster than the original problem 
(1). The resulting algorithm is shown as Algorithm 1. 

 

 

2.2. Augmented Lagrangian—Fast Projected Gradient Method for  
SVM 

A relatively simple and efficient algorithm capable of training medium size SVM 
with up to a few tens of thousands of data points was proposed in [13]. The al-
gorithm takes advantage of two methods: one is a fast projected gradient method 
for solving a minimization problem with simple bounds on variables [14] and 
the second is an augmented Lagrangian method [15] [16] employed to satisfy the 
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only linear equality constraint. The method projects the primal variables onto 
the “box-like” set: 0 , Bi C iα≤ ≤ ∈ . 

Using the following definitions  

( ) ( ) ( )
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and the bounded set:  

{ }: 0 , B ,l
iBox C iα= ∈ ≤ ≤ ∈α                    (5) 

the optimization problem (3) can be rewritten as follows: 
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                        (6) 

The augmented Lagrangian is defined as  

( ) ( ) ( ) ( )2

, ,
2

g
f gµ

µ
λ λ= − +

α
α α α                  (7) 

where λ ∈  the Lagrange multiplier that corresponds to the only equality 
constraint and 0µ >  is the scaling parameter. 

The augmented Lagrangian method is a sequence of inexact minimizations of 
( ),µ λ α  in α  on the Box  set:  

( ) ( )ˆ arg min ,
Box

µ
α

λ λ
∈

≈ = α α α                     (8) 

followed by updating the Lagrange multiplier λ :  

( )ˆ ˆ .gλ λ µ= − α                          (9) 

The stopping criteria for (8) uses the following function that measures the vi-
olation of the first order optimality conditions of (8):  
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The minimization (8) (the inner loop) is performed by the fast projected gra-
dient method (FPGM). The inner loop exits when ( ),ν λ ε<α . The final stop-
ping criteria for the augmented Lagrangian method uses  
( ) ( ) ( ){ }, max , , gµ λ ν λ=α α α , which measures the violation of the optimality 

conditions for (6). 
Algorithm 2 describes the ALFPGM (see [6] for more detail). The conver-

gence of Algorithm 2 is established in [17]. 
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3. PWSS Working Set Selection 

The flow chart describing pWSS is shown in Figure 1. An important issue of any 
decomposition method is how to select the working set B. First, a working set 
selection (WSS) method WSS2nd that uses the second order information [18] is 
described. 

Consider the sets:  

( ) { }
( ) { }

| 1, or 1, 0 ,
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( ) ( ) .t t tq y f= − ∇α α  

In WSS2nd, one selects  
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Figure 1. pWSS Working set selection. 
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where τ is a small positive number. 

3.1. Limiting the Search Space for Iup and Ilow 

One of the challenges of the previously developed dual decomposition WSS2nd 
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is that a particular data set point can be selected multiple times in different 
iterations of decomposition in the working set, often increasing the SVM 
training time. The previously developed algorithm [6] is improved, and the 
changes to pWSS are made by limiting the search space of Iup and Ilow as de-
scribed below. 

3.2. MinMaxLimiter Algorithm 

The MinMaxLimiter algorithm with the following changes to pWSS is proposed: 
• Some elements of α  that no longer change after many iterations, are elim-

inated: 1t t δ−− < αα α , where 1t−α , t B∈α  are two consecutive iterates, and 
δα  is a user defined threshold.  

• Another introduced parameter is minAlphaOpt, which is the minimum 
number of times a data index is used in working set. After this threshold, if the 
value of , 1, ,i i m= α  is 0 or C, then that data point index is no longer consi-
dered  

• The last introduced parameter is maxAlphaOpt, which is the maximum 
number of times a training examples is used in the decomposition rounds. 

minAlphaOpt = ∞  and maxAlphaOpt = ∞  will result in considering every 
α  in every iteration. 

 

 
 

 

3.3. Optimizing j Search Using MinAlphaCheck  

Another modification to WSS2nd is the introduction of parameter minAlpha-
Check. This is used to reduce the search space of j in (13) to the first minAlpha-
Check in the sorted Ilow set. The experimental results show that this converges 
and is faster than WSS2nd. 
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4. Implementation 
4.1. Kernel Matrix Computation  

The cache technique is used to store previously computed rows to access them 
when the same kernel value needs to be recomputed. The amount of cached 
kernel is a selectable parameter. The same Least Recently Used (LRU) LRU 
strategy that SMO implemented in Scikit-learn (Sklearn) was used, and it is a 
good basis for comparing the results obtained using the SVM training methods. 
Previous discussions [8] [10] have been held on the ineffectiveness of the LRU 
strategy. However, that is beyond the scope of this work. 

To compute the kernel matrix, Intel MKL is used. The kernel matrix can be 
computed efficiently using 2

ix  and the elements of matrix XX', where X is 
the matrix with the rows made of the data vectors ix . Intel MKL’s cblas_dgemv  

is used to compute 1 e
2

T Tf Qα α α= − . 

4.2. Computing the Lipschitz Constant L  

The Fast Projected Gradient Method (FPGM) requires estimation of the Lip-
schitz constant L. Since µ  is of quadratic form with respect to α ,  

( )2 T ,L αα µ µ= ∇ ⋅ = + B B BQ y y  

where the matrix spectral norm is the largest singular value of a matrix. 
To estimate L first BQ  was estimated. Since BQ  is symmetric and posi-

tive semidefinite, 1λ=BQ  is the largest eigenvalue of BQ . 
The largest eigenvalue 1λ  can be efficiently computed using the power me-

thod. After estimating 1λ  with a few power iterations, the upper bound esti-
mates L as follows:  

1 .L mλ µ≈ +                         (16) 

5. Experimental Results 

For testing, 11 binary classification training data sets (shown in Table 1) were 
selected with a number of training examples ranging from 18201 to 98528 from 
University of California, Irvine (UCI) Machine Learning Repository [19] and 
https://www.openml.org/. One of the tests, Test 2, was the largest test used in the 
previous work [6]. All simulations were done using a desktop with dual Intel 
Xeon 2.50 GHz, 12 Cores processors sharing 64 GB of computer memory. In all 
cases, 100C =  was used for all tests. The data was normalized and radial basis 
kernel was used with γ  shown in Table 1. The scaling parameter µ  used for 
all the experiments is 0.1µ =  as suggested in [13]. The parameters in pWSS 
were taken as 610δ −=α , 5minAlphaOpt = , 20maxAlphaOpt = . The accuracy 
of solution was selected 210ε −= . The SVM training times by ALFPGM were 
compared with results obtained using SMO implemented in Scikit-learn 
(Sklearn) [20] for the SVM training. The same data inputs were used in SMO 
and ALFPGM. 
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Table 1. Data used for testing. 

 Test m n # -1 # 1 γ Description 

1 Riccardo 18201 4295 3201 15000 0.500 https://www.openml.org/d/41161 

2 Magictelescope 19020 11 12332 6573 0.500 
Data are MC generated to simulate registration of 
high energy gamma particles in an atmospheric  
Cherenkov telescope. 

3 2d_planes 26714 10 13369 13345 2.000 https://www.openml.org/d/727 

4 Nomao 32062 118 22251 9811 5.000 
The dataset has been enriched during the Nomao 
Challenge: organized along with the ALRA workshop. 

5 Webdata_wXa 36974 123 8874 28100 1.000 https://www.openml.org/d/350 

6 Fried 40768 10 20341 20427 5.000 https://www.openml.org/d/901 

7 Bank-marketing 45211 16 5289 39922 2.000 

https://www.openml.org/d/1461. The data is related 
with direct marketing campaigns of a Portuguese 
banking institution. The marketing campaigns were 
based on phone calls. Often, more than one contact to 
the same client was required, in order to access if the 
product (bank term deposit) would be (or not)  
subscribed. 

8 Electricity 45312 8 19237 26075 5.000 

This data was collected from the Australian New 
South Wales Electricity Market. In this market, prices 
are not fixed and are affected by demand and supply 
of the market. https://www.openml.org/d/151 

9 Run_or_walk_information 88588 6 44365 44223 1.000 
This dataset describes whether a person is running or 
walking based on deep neural networks and sensor 
data collected from iOS devices. 

10 Numerai28.6 96320 21 48658 47662 1.000 
Encrypted Stock Market Training Data from  
Numer.ai. 

11 VehicleNorm 98528 101 49264 49264 1.000 
Vehicle classification in distributed sensor networks. 
https://www.openml.org/d/1242. 

ALFPGM—Investigating of Using Different Number of Pairs p  

The optimal number of pairs p needed for the training with ALFPGM is deter-
mined with numerical experiments using training Tests 2, 6 and 10, which are 
representatives of small, medium size, and large training sets. In all cases, the 
pWSS method was employed for the pairs selection. The results are presented in 
Figures 2-4. The results suggest that for ALFPGM the optimum number of pairs 
is 50 100p≤ ≤ . 

There are several factors that come into play when varying the number of 
pairs p.  

1) The size of p determines the amount of time it takes to find the size of the 
working set. The larger the size of p, the longer it takes to find the working set.  

2) The smaller the size of p, the more the number of decompositions needed 
to solve the SVM problem.  

3) The larger the size of p, the longer it takes to solve the SVM subproblems.  
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Figure 2. ALFPGM—Classification time for different number of pairs p Test 2.  
 

 

Figure 3. ALFPGM—Classification time for different numbers of pairs p Test 6.  
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Figure 4. ALFPGM—Classification time for different numbers of pairs p Test 10.  
 
4) The larger the size of p, the greater the probability that the Hessian matrix 

of the SVM subproblem may be degenerate. 
Table 2 provides numerical results for training SVM with the ALFPGM and 

SMO. For each testing dataset, the table shows the number of training examples, 
the number of features. Then for both ALFPGM and SMO algorithms the table 
shows the training errors (the fractions of misclassified training examples), the 
training times, the number of performed decompositions (working set selec-
tions), the number of support vectors, and the optimal objective function values. 
To calculate training times, each simulation scenario was averaged over 5 runs. 
The results also are visualized in Figures 5-7. The training sets are arranged in 
the order of increasing the number of training examples. The figures demon-
strate that for most of the cases the ALFPGM outperformed the SMO in training 
time for similar classification error. 

Figure 6 shows that the training errors are similar demonstrating that both 
algorithms produced similar results. The same conclusion can be drawn by ob-
serving the similar values of the optimal objective functions for both algorithms 
in Table 2. Finally, Figure 8 shows the normalized training times i.e. the train-
ing times divided by the number of training examples. As one can see, the 
ALFPGM produces a smaller variance in the normalized times than that of the 
SMO algorithm.  
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Figure 5. Comparison ALFPGM and SMO results timings. 
 

 

Figure 6. Comparison ALFPGM and SMO results-training classification error. 
 

 

Figure 7. Comparison ALFPGM and SMO results. 
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Table 2. ALFPGM and SMO comparison. 

   ALFPGM SMO 

Test numData numFeat train_err 
wall_time  

(sec) 
nDecomp nSv objval train_err wall_time nDecomp nSv objval 

1 18201 4295 0 139.096 275 18201 −5175.65 0 7870.151 49244 18201 −5175.65 

2 19020 11 0 22.13577 294 18905 −8577.31 0 52.3462 62399 18905 −8577.31 

3 26714 10 4.41 46.60157 485 26714 −231591 4.41 55.2686 39953 26714 −244605 

4 32062 118 0.27 59.22488 630 20998 −15232.9 0.15 399.0199 49785 21016 −20231.4 

5 36974 123 4.59 100.483 843 36974 −347874 4.59 1215.305 110026 36974 −350686 

6 40768 10 0.2 81.7774 659 11701 −16033.5 0 166.716 79748 11123 −17599.1 

7 45211 16 0 77.09719 508 45211 −9340.53 0 213.2611 96930 45211 −9340.53 

8 45312 8 0.92 337.4581 2551 32681 −120386 0.7 336.2932 170816 32571 −135219 

9 88588 6 0.05 359.1051 1223 43391 −25071.8 0.03 521.7201 122003 43331 −26753.4 

10 96320 21 0 133.8112 327 96302 −49869.2 0 1056.651 138749 96304 −49916.9 

11 98528 101 0.05 932.8615 1251 98411 −55816.7 0.03 5231.517 166893 98390 −56792.7 

   Total time 2289.652     17118.25    

 

 

Figure 8. Comparison ALFPGM and SMO normalized time results. 

6. Conclusions  

The manuscript presents the results on training support vector machines using 
an augmented Lagrangian fast projected gradient method (ALFPGM) for large 
data sets. In particular, the ALFPGM is adapted for training using high perfor-
mance computing techniques. Highly optimized linear algebra routines were 
used in the implementation to speed up some of the computations. 

A working set decomposition scheme for p pairs selection is developed and 
optimized. Since working set selection takes a large portion of the overall train-
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ing time, finding an optimal selection of pairs is the key to using multiple pairs 
in the decomposition. Numerical results indicate that the optimal choice of the 
number of pairs in the working set p for ALFPGM is 50 - 100 pairs. It is shown 
that in some examples the selection of pairs can be truncated earlier without 
compromising the overall results but with significantly reducing training times. 

Finally, the comparison of training performance of the ALFPGM with that of 
the SMO from the Scikit-learn library demonstrates that the training times with 
ALFPGM is consistently smaller than those for the SMO for the tested large 
training sets. 

7. Future Work 

The results demonstrate that the choice of the number of pairs p is important as 
it determines the number of decompositions. Even though the numerical expe-
riments determined a critical range of values for the optimal value of pairs p, the 
pWSS can be further improved for multiple pair selection and the total training 
time will be further reduced. 

One possible direction of achieving that improvement is to determine an op-
timal dependence of the number of pairs p on the size of the training set. Select-
ing optimal values of WSSminAlphaCheck and minAlphaOpt used in pWSS3 needs to 
be further explored. Finding the optimal values of ALFPGM parameters based 
on the input data can further improve the efficiency of the ALFPGM. 

A use of graphics processing units (GPU), which are getting less expensive 
and with more capabilities than before, should be revisited in future. In the fu-
ture, the most time consuming parts of the algorithm such as computing simi-
larity kernel measures can be done using the GPU. 
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