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Abstract
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1 Introduction

Hotelling [1] proposed the first and oldest method called canonical correlation analysis. This method
studies the relationships between two data matrices. Canonical correlation analysis focuses on the
correlation between a linear combination of the variables in one set and a linear combination of the
variables in another set. The idea is first to determine the pair of linear combinations having the
largest correlation. Next, we determine the pair of linear combinations having the largest correlation
among all pairs uncorrelated with the initially selected pair, and so on. Other developments of the
canonical correlation analysis are in the research of Gittins [2] and Saporta [3].

A survey of the plethora of generalizations of canonical correlation analysis have been proposed for
the analysis of the relationships with more than two sets of variables (e.g., Horst [4], Carroll [5],
Kettenring [6]; see also Takane and Hwang [7], Wold [8-9], Gifi [10], Takane and Oshima-Takane
[11], Dahl and Næs [12], Hanafi and Kiers [13]). However, we will restrict ourselves to the Carroll’s
[5] generalization.

Currently, in the context where the set of variables is observed on different groups of individuals,
this problem has been studied in many scientific articles. If one expects the structure of each of
the data blocks to be different, standard principal component analysis (PCA) (Jolliffe [14], Pearson
[15]) can be performed on each data block. Moreover, one can carry out the simultaneous processing
of all groups of variables. First, methods that are similar to PCA. Several methods combine the
covariance matrices or the correlation matrices related to the various groups. The goal of these
methods is to redistribute the explained variance by rotation. Krzanowski [16] proposed to carry
out a multigroup PCA by diagonalizing the within group covariance matrix. This problem has been
reworked and developed into a succession of PCA by Eslami, Qannari, Kohler and Bougeard [17].
In this context, we can cite the common principal component analysis (Flury [18]), simultaneous
component analysis methods (Kiers and Ten Berge [19,20], Timmerman and Kiers [21], De Roover,
Ceulemans and Timmerman [22]).

In practice, when we have a group of variables, the cloud of the individuals and the cloud of
the variables are two representations of the same group: one across the rows and the other
across the columns. Very strong relations called duality link these two clouds. Thus, there is
an equivalence between multigroup data analysis methods and multiblock data analysis methods.
In these conditions, several multigroup data analysis methods, such as the dual STATIS (Lavit [23];
Lavit, Escoufier, Sabatier and Traissac [24]), the dual multiple factor analysis (L, Husson and Pags
[25]), can be seen as dual methods of multiblock data analyses.

Moreover, there are similar methods to the canonical correlation analysis among multigroup data
analyses. We can cite: Between groups comparison of principal components (Krzanowski [26]) and
Regularized generalized canonical correlation analysis for multiblock or multigroup data analysis
(Takane, Hwang and Abdi [27], Tenenhaus and Tenenhaus [28]).

However, in the context where the set of variables is observed on different groups of individuals,
the generalization of canonical correlation analysis (GCCA) according to Carroll [5] has never been
discussed. In this paper, a version of GCCA called DGCCA (Dual generalized canonical correlation
analysis), which can be applied to multiblock and multigroup, is discribed. We prove by means
of the criterion that the duality is formulated by exchanging the covariance operator into scalar
product. This criterion can be seen as a PCA in which the influence of the variables is stable.
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This paper is organized as follows: in Section 2, we will describe the canonical correlation analysis
proposed by Hotelling [1] and extended by Carroll [5]. In section 3, by using the criterion proposed
by Carroll, we will propose the dual generalized canonical correlation analysis (section 3.1). Next,
we also show that the dual generalized canonical correlation analysis can be reduced to the dual
canonical correlation analysis (section 3.2) in the case of two matrices. Finally, in section 4, the
experimental design is described and the obtained results are analyzed.

1.1 Sub-heading

Provide a factual background, clearly defined problem, proposed solution, a brief literature survey
and the scope and justification of the work done, objective, etc.

2 Materials and Methods

2.1 Generalized canonical correlation analysis

We shall be interested in measures of association between two matrices. The first matrix X1, of p
columns, is summarized by the (n×1) canonical variate X1u1. The second matrix X2, of q columns,
is summarized by the (n × 1) canonical variate X2u2. Specifically, we define canonical correlation
analysis as the following optimization problem:

Maximize corr(X1u1,X2u2) (2.1)

subject to the constraints var(X1u1) = var(X2u2) = 1

The first pair of canonical variates is the pair of linear combinations (X1u
1
1, X2u

1
2) having unit

variances, which maximize the correlation (1); The second pair of canonical variates is the pair of
linear combinations (X1u

2
1, X2u

2
2) having unit variances, which maximize the correlation (1) among

all choices that are uncorrelated with the first pair of canonical variates. One may continue the
search for canonical variates until all solutions are found.

To generalize the canonical correlation analysis of two sets of variables toK sets of variables, letX be
a matrix X = [X1, . . . , XK ] having n rows and p =

∑K
i=1 pi columns, partitioned in K submatrices

Xi. Each n× pi (n > pi) data matrix Xi represents a set of pi centered and standardized variables
observed on a set of n individuals. Let Ei (i = 1, . . . ,K) denote column spaces of Xi. Let Pi be
the orthogonal projector onto the column space Ei of Xi, Pi = Xi(X

′
iXi)

−1X ′
i.

We only consider in this paper the generalization developed by Carroll [5] which consists of the
following optimization problem:

Maximize
1

N

K∑
i=1

corr2(z,Xiui) (2.2)

subject to the constraint z′z = 1

The principle of the generalized canonical correlation analysis is first to investigate the variables
related to the set of the groups. These variables which summarize the general trends of the groups
are called general variables. Futhermore, a general variable being obtained, we seek in each group
a linear combination of variables related to this general variable. These linear combinations called
canonical variates are the representations of the general variables in groups.

One of the advantages of this approach is to obtain the solution noniteratively (Kroonenberg
[29]). Another advantage of this approach is that it is not necessary to define a link measurement
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between two groups of variables but between a variable and a group (Escofier and Pags [30]). The
measurement used by Carroll [5] is the square of the multiple correlation coefficient. Finally, this
approach has the advantage of being probably the most simple and the richest of interpretations,
because it easily connects to all the other methods of data analysis.

By definition, the multiple correlation coefficient between a variable and a group of variables Xi is
the correlation coefficient between z and the linear combination of the variables of the group Xi

most correlated with z. Geometrically, this linear combination is the orthogonal projection Piz of
z onto the column space Ei of Xi.

The relationship between the correlation coefficients and the variable z follows from the special
structure of the matrix

∑K
i=1 Pi. In other words, the generalized canonical correlation analysis

verifies the following stationary equation:

1

N

K∑
i=1

Piz = ρz (2.3)

The solution of the generalized canonical correlation analysis shows that it can be obtained from
the principal component analysis (Gifi [10], Saporta [3]). Thus, by setting Σi = X ′

iXi, the solution
of GCCA verifies the following stationary equation:

XDX ′z = ρz (2.4)

where D is a block diagonal matrix formed from Σ−1
i as the ith diagonal block.

The GCCA is similar to a PCA in which each column space Ei of Xi is associated with the matrix
Σ−1

i .

In this section we will give some details of a solution to the dual generalized canonical correlation
analysis.

2.2 Dual generalized canonical correlation analysis

We now consider a matrix X = [X ′
1| · · · |X ′

K ]′ having n =
∑K

i=1 ni rows and p columns, partitioned
in K submatrices Xi of order (ni × p) and row spaces Ei (i = 1, . . . ,K) of Xi. Each data matrix
Xi represents a set of p centered and standardized variables observed on a set of ni individuals.
Let Ji be the orthogonal projector onto the row space Ei of Xi, Ji = X ′

i(XiX
′
i)

−Xi, where A− is
a g-inverse of A.

Definition 2.1. In the first step, the solution of the dual generalized canonical correlation analysis
is a loading vector u and specific coefficients ti = X ′

iai (ai being a vector to be determined of order
(ni × 1)) associated with data matrices Xi (i = 1, . . . ,K).

In our case, as in many similar situations, we define a mean-squared loss function. The core
optimization problem considered in this paper is defined as follows:

Minimize g(u) =
1

N

K∑
i=1

||u− Jiu||2 (2.5)

subject to the constraints ||u|| = ||ti|| = 1.
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The loading vector is common to all matrices and its projection onto the subspace Ei is the specific
coefficient ti = Jiu. To convert the minimization problem into a maximization problem we rewrite
(5) and manipulate the various terms. We obtain the following maximization problem:

Maximize h(u) =
1

N

K∑
i=1

⟨u|Jiu⟩ =
1

N

K∑
i=1

u′Jiu (2.6)

subject to the constraints ||u|| = ||ti|| = 1.

From this problem, we can incorporate the constraint in the maximization problem by using
Lagrange multiplier λ and obtain h̃,

h̃(u, λ) = h(u)− λ(u′u− 1) (2.7)

The maximum of h follows from the requirement that the first order partial derivatives of h̃ are
simultaneously zero at the maximum of h and that the Hessian is negative. We will state here the
exact nature of the solution as proposition.

Proposition 2.1. For Jiu = ti, we obtain the following result:

1

N

K∑
i=1

Jiu = λu (2.8)

Proof. Differentiating with respect to u and λ, and setting all the derivatives equal to zero, we
obtain the following set of equations which have to be solved simultaneously for u and λ. Thus,

1

N

K∑
i=1

Jiu = λu

u′u = 1

It can be easily shown that for Jiu = ti, the solution u verifies the stationary equation where u is a
eigenvector of the matrix 1

N

∑K
i=1 Ji related to the largest eigenvalue λ. By replacing Ji in Jiu = ti

and taking into account of ti = X ′
iai, we obtain ai = (XiX

′
i)

−Xiu. The partial components are
obtained by setting ξi = Xiu.

Moreover, as the projectors Ji are symmetric and idempotent, it follows that h(u) = 1
N

∑K
i=1 ||Jiu||2.

It seems that the dual generalized canonical correlation analysis (DGCCA) is similar to principal
component analysis (PCA)(see proposition 3.2). The components are determined using the same
loading vector u and the explained variance can be redistributed by rotation. It can be easily shown
that the vector u which maximizes this average inertia is obtained by the eigenvector of 1

N

∑K
i=1 Ji

related to the eigenvalue λ = 1
N

∑K
i=1 ||Jiu||2.

That is, after finding a first axis, this column is fixed and the second column is found in the residual
space, by replacing Xi by Xi(Ip − uu′) and proceeding in the same way as for the first step. Other
loading vectors can be obtained by repeating the procedure. This procedure allows to construct
the orthonormal basis. We can remark that the global components ξs = Xus (s = 1 . . . , A, where
A is the rank of the matrix X) are orthogonal. The following proposition establishes that the dual
generalized canonical correlation analysis is a PCA.
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Proposition 2.2. For Wi = XiX
′
i, the dual generalized canonical correlation analysis is a PCA

and verifies the following stationary equations:

X ′D−Xu = λu (2.9)

XX ′D−ξ = λξ (2.10)

where D− is a block diagonal matrix formed from W−
i as the ith diagonal block.

Proof. Indeed, as we have indicated, the same components may be determined by the PCA of the
matrix X. One only has to consider X as a matrix having n =

∑K
i=1 ni rows and p columns and

Ji = X ′
i(XiX

′
i)

−Xi, we then set Wi = XiX
′
i as the matrix of scalar products between observations

in the row space of Xi and Λ− the block-diagonal matrix formed from W−
i . We obtain

∑K
i=1 Ji =∑K

i=1 X
′
iW

−
i Xi = X ′Λ−X. The stationary equation (8) becomes (11)

1

N
X ′Λ−Xu = λu. (2.11)

By setting D− = 1
N
Λ− and by premultiplying (11) by X, it follows

XX ′D−ξ = λξ

X ′D−Xu = λu.

We then recognize the eigen equations yielding principal components and factor axes in PCA of X.

From the above,we conclude that the criterion of DGCCA is a PCA in which the duality is
formulated by exchanging the covariance matrix Σi into scalar product matrix Wi. So, It is about
substituting the block diagonal matrix D formed from Σ−1

i by the block-diagonal matrix Λ− formed
from W−

i .

Geometrically, each specific coefficient ti associated with different matrices is the orthogonal projection
Jiu of u onto the subspaces Ei spanned by the rows of Xi. Thus, the multiple correlation coefficient
is the cosine of the angle θi between the loading vector u and its projection Jiu onto Ei. Since u
and Jiu are normalized, we then have:

cos2 θi = ⟨u|Jiu⟩.

As us′(us−1, . . . , u1) = 0, we obtain:

K∑
i=1

cos2 θi =

K∑
i=1

⟨us|Jiu
s⟩ = ⟨us|

K∑
i=1

Jiu
s⟩.

We achieve the same conclusion: the operator
∑K

i=1 Ji being a sum of the orthogonal projection
operators, It is symmetric, diagonalizable and the eigenvectors are orthonormal.

2.2.1 Dual canonical correlation analysis

We shall be interested in the measures of association between two data matrices. Let E1 and E2

be the row spaces of X1 and X2. We also introduce for each matrix, unit vectors t1 = X ′
1a1

and t2 = X ′
2a2 onto E1 and E2 repectively. The two vectors are as close as possible. Let J1

and J2 be orthogonal projections onto E1 and E2 defined by: J1 = X ′
1(X1X

′
1)

−X1 and J2 =
X ′

2(X2X
′
2)

−X2 where A− is a g-inverse of A. Let W1 = X1X
′
1 and W2 = X2X

′
2 be scalar product
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matrices. Let W12 be the scalar product matrix of the individuals inter-data matrices and W21 its
transpose.

The dual canonical correlation analysis (DCCA) problem consists of optimizing the following
squared distance from t1 = J1u and t2 = J2u:

Minimize k(a1, a2) = ||t1 − t2||2 (2.12)

subject to the constraints ||t1|| = ||t2|| = 1.

This problem is equivalent to optimize the following criterion:

Maximize k1(a1, a2) = a1W12a2 (2.13)

subject to the constraints a1W1a1 = a2W2a2 = 1

We define dual canonical correlation (DCCA) as the optimization problem which consists of measuring
the proximity of the individuals between the groups X1 and X2. The Lagrangian function of
optimization problem (8) is then considered:

k̃1(a1, a2, λ1, λ2) = a1W12a2 −
λ1

2
(a1W1a1 − 1)− λ2

2
(a2W2a2 − 1) (2.14)

where λ1 and λ2 are the Lagrange multipliers associated with the constaints. Canceling the
derivatives of the Lagrangian function with respect to a1, a2, λ1 and λ2, we obtain using the
stationary equations:

• a1 is the eigenvector of the matrix W−
1 W12W

−
2 W21 associated with the largest eigenvalue

λ2
1,

• a2 is the eigenvector of the matrix W−
2 W21W

−
1 W12 associated with the largest eigenvalue

λ2
1.

The eigenvectors t1 and t2 are associated with the same eigenvalues. Thus, in DCCA, we also get:

• t1 is the eigenvector of the matrix J1J2 associated with the largest eigenvalue λ2
1,

• t2 is the eigenvector of the matrix J2J1 associated with the largest eigenvalue λ2
1.

Remarks 2.1 (See proof in the Appendix).

1. The dual generalized canonical correlation analysis generalizes the dual canonical correlation
analysis.

2. The loading vector u is the principal factor according to normalized PCA of the vectors ti.

3. The mean (sum) of the specific coefficients ti and u are proportional.

3 Results and Discussion

We present the results of the dual generalized canonical correlation analysis and we repeat part of
the multigroup PCA of Eslami, Qannari, Kohler and Bougeard [17]. The data set is the one used by
Cortez, Cerdeira, Almeida and Reis [31] and by Eslami, Qannari, Kohler and Bougeard [17]. The
study focuses on Portuguese wines. Specifically, we reanalyze matrices of eleven physicochemical
variables observed on 4898 individuals for the white wines and 1599 individuals for the red wines.
To eliminate the differences in variable means and variances, the data are centered and standardized
per data matrix.
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Regarding the graphical representation, the physicochemical variables are as follows:

Fixac=fixed acidity, Volac=volatile acidity, Citac=citric acid, Resug=residual sugar, Chlor=chlorides,
Fredi=free sulfur dioxide, Totdi=total sulfur dioxide, Densi=density, pH, Sulph=sulphates, Alcoh=alcohol.

The goal of the dual generalized canonical correlation analysis is to help discover how the relationships
vary in the experimental setup. In Table 1 below, we report the percentages of explained variances
for first four principal components and global components obtained from the dual generalized
canonical correlation analysis. Table 2 give the analogous results for the multigroup PCA.

Table 1. The percentages of the explained variances of DGCCA

Group Dim1 Dim2 Dim3 Dim4

Red wines 28.61 13.74 11.69 9.30
White wines 21.96 21.51 10.44 10.41

Global component 44.02 19.17 11.94 8.29

Table 2. The percentages of the explained variances of multigroup PCA

Group Dim1 Dim2 Dim3 Dim4

Red wines 29.19 14.08 11.21 9.28
White wines 23.36 21.58 13.46 11.12

Global component 27.25 15.91 11.61 9.75

Fig. 1 shows the representation of the variables on the first two loading vectors. The proportion of
total variance accounted for the first principal component is 44.02%. The first principal component
which explains 44.02% of the total variance, has an interesting subject-matter interpretation. The
first principal component opposes the alcohol concentration to the sugar concentration and the
density. Moreover, this component is correlated with sulphates and chlorides. This corresponds to
the fermentation where some variables can be increased or decreased in the production process.

Fig. 1. Map of the columns on the first two loading vectors of DGCCA
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The second axis explains 19.17% of the total variance. The first two principal components, collectively,
explain 63.19% of the total variance, which is a very well result. The second axis represents 19.17%
of the total variance and shows an opposition between the acid measurements and the pH.

For each of the two analyses, the eigenvalues of DGCCA are superior to the eigenvalues of multigroup
PCA. The results of the DGCCA and the multigroup PCA are very little different.

4 Conclusions

In this paper, the duality between generalized canonical correlation analysis and its dual method
is clearly defined. Generalized canonical correlation analysis uses the covariance operator, while
dual generalized canonical correlation analysis uses the scalar product operator. The main aim of
generalized canonical correlation analysis is to investigate the relationships between blocks, while
the main aim of dual generalized canonical correlation analysis is to investigate the relationships
among variables within the various groups. the PCA can be considered for both multiblock and
multigroup data. The dual generalized canonical correlation analysis benefits the same advantages
that the generalized canonical correlation analysis according to Carroll. We have shown in this
paper that due to their higher flexibility and properties, it can be considered a straightforward
extension of the PCA to multigroup PCA which facilitates the interpretation of results. The
DGCCA criterion opens several ways of research in particular to find variables that discriminate
the groups of variables. Moreover, if the number of individuals is much smaller than the number of
variables, this method may exhibit instability due to ill-conditioned scalar product matrix. Under
these conditions, a regularization of the method may be useful as in the case of generalized canonical
correlation analysis (Tenenhaus et al. [32], Takane, Hwang and Abdi [27]).
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Appendix A. Proofs of the remarks

Proof of 1. The dual generalized canonical correlation analysis generalizes the dual canonical
correlation analysis.

Indeed, the normalization constraints are the same as those of the dual canonical correlation
analysis. To minimize ||u − J1u||2 + ||u − J2u||2 subject to the normalization constraints over
u, t1 and t2 is equivalent to minimize ||J1u− J2u||2.

||u− J1u||2 + ||u− J2u||2 = ⟨J1u|u⟩+ ⟨u|J2u⟩
= ⟨J1u|J2u⟩
= ||J1u− J2u||2 (4.1)

Proof of 2. The loading vector u is the principal factor according to normalized PCA of the vectors
ti.

In fact the specific coefficients being given, u is the loading vector that yields maximum 1
N

∑K
i=1 ||u−

Jiu||2, then by definition the principal factor of the specific coefficients ti.

Proof of 3. The mean (sum) of the ti and u are proportional.

Indeed, The stationary equation (8) shows that the only possible proportionality constant is λ.
Since

1

N

K∑
i=1

ti =
1

N

K∑
i=1

Jiu = λu (4.2)

λ being the largest eigenvalue of the mean (sum) of Ji.
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