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Abstract 

 
In this study, a non-linear system of ordinary differential equation model that describe the dynamics of 

malaria disease transmission is derived and analyzed. Conditions are derived from the existence of disease-

free and endemic equilibria. Basic reproduction number    of the model is obtained, and we investigated that 

it is the threshold parameter between the extinction and persistence of the disease. If     is less than unity, 

then the disease-free equilibrium point is both locally and globally asymptotically stable resulting in the 

disease removing out of the host populations. The disease can persist whenever     is greater than unity. 

At    is equal to unity, existence conditions are derived from the endemic equilibrium for both forward and 

backward bifurcations. Furthermore, optimal combinations of time dependent control measures are 

incorporated to the model, and we derived the necessary conditions of the optimal control using Pontryagins’s 

maximum principal theory. Numerical simulations were conducted using MATLAB software to confirm our 

analytical results. Our findings were that malaria disease may be controlled more with strict application of the 

combination of all control measures that is, the combination of prevention of drug resistance, insecticide 

treated net ITN, indoor residual spray IRS and active treatment than when the combination of three control 

measures are used. 

     

 

Keywords:  Malaria; disease-free equilibrium; endemic equilibrium; basic reproduction number; stable; 

optimal control. 
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1 Introduction  

 
Malaria is an old infectious parasitic disease and transmitted to human through the bites of infected female 

Anopheles’ mosquitoes [1]. “The burden of malaria disease affects the community socioeconomic in many 

ways. Some of these are fertility, population growth, saving and investment, worker productivity, absenteeism, 

premature mortality and medical costs” [2]. “In areas where malaria is highly endemic, young children bears a 

larger burden in terms of the disease morbidity and mortality and affects fetal development during early stage of 

pregnancy in women due to loss of immunity. Malaria is still treating a serious challenge to the global world 

population. According to 2020 world health organization (WHO) report, 241 million cases and 627 thousand 

deaths from malaria globally and the estimate number of children under 5 years of age deaths caused by malaria 

only in Africa is 80%” [3].  
  

The most popular strategies of controlling malaria disease includes, the use of chemotherapy, intermittent 
preventive treatment for children and pregnant women (preventive doses of sulfadoxine pyrimethamine 

(IPT/ST)), and use of insecticides treated bed nets and insecticides against the vector. The challenge posed by 

the resistance of parasites against drugs and resistance of mosquitoes against insecticides calls for urgent need 

for a better understanding of important parameters in the disease transmission and develops effective and 

optimal strategies for prevention and control of the spread of malaria disease 
 

“Mathematical modeling has become an important tool in understanding the complex dynamics of disease 

transmission and in decision making processes regarding intervention programs for disease control. Concerning 

malaria disease, Ross (1911) developed the first mathematical model. He focused his study on mosquito control 

and showed that for the disease to be eliminated the mosquito population should be brought below a certain 

threshold” [4]. Later the idea of Ross is extended by Macdonald to account for super infection [5]. Ngwa, G. A. 

Shu, W.S., A mathematical model for endemic malaria with variable human and mosquito population [6]. 

Alemu G. W., Boka K.B.,, P.R. Koya derived and analyzed deterministic model for the inclusion of Infected 

immigrants on the spread and dynamics of malaria transmission [7], Chiyaka,C., Garira, and W., Dube, S., 

derived analyzed effects of treatment and drug resistance on the transmission dynamics of malaria in endemic 

areas [8], J.Tumwiine, S.D.H-Musekwa and F.Nyabadaza were analyzed a mathematical model for the 

transmission and spread of drug sensitive and resistant malaria strains within human populations [9]. Other 

studies are carried out by using optimal control theory. Okosun et al. derived and analyzed a malaria disease 

transmission mathematical model that includes treatment and vaccination with waning immunity and applied 

optimal control to study the impact of a possible vaccination with treatment strategies in controlling the spread 

of malaria [10], F.B. Agusto, and M.A. Khan, derived and analyzed Optimal Control Strategies for dengue 

transmission [11], K. O. Okosun and O. D. Makinde Modelling the impact of drug resistance in malaria 

transmission and its optimal control analysis [12], E. Bonyah, M.A. Khan,K.O. Okosun, J.F. Gómez-Aguilar 

present ’’Modeling the effects of heavy alcohol consumption on the transmission dynamics of gonorrhea with 

optimal [13]. Makinde and Okosun, were applied optimal control to study the impact of chemo-therapy on 

malaria disease with infective immigrants [14], K. O. Okosun, O. Rachid, and N. Marcus, applied optimal 

control strategies and cost-effectiveness analysis of a malaria model [15]. Temesgen D. K,, O. D.Makinde & 

Legesse L. O. derived and analyzed Optimal Control and Cost Effectiveness Analysis of SIRS Malaria Disease 

Model with Temperature Variability[16]. 

 

In this paper, we study SITRS-SI and SIRS-SI endemic malaria transmission model with standard incidence law 

that was presented by [12]. Furthermore, we modified the model [6] by omitting the incubating class from the 

system and incorporate four time dependent control measures, the class infective in treatment individuals and 

infectious classes with drug sensitive and drug resistant individuals. The purpose of this study is 
 

(i) to investigate the stability for both disease-free equilibrium and endemic equilibrium 

(ii) to develop effective ways for controlling the malaria disease 

(iii) to explore the best strategy in terms of reducing the number of malaria infectious populations to zero.  
 

2 Model Description and Formulation 

 
The model subdivides the human populations in to five sub class namely, susceptible     infected with drug 

sensitive malaria strain       infected with drug resistant malaria strain       infective in treatment    ,  recovered 
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     Similarly, the mosquito populations are also sub divided in to susceptible class    , and infected class     The 

total number of human and mosquito populations at time t are denoted and given by                       
                       and                     respectively. Note that,          ,            ,      
      ,          ,          ,          ,           and               The susceptible humans     are 

recruited at the rate of    and they either die from natural causes at a rate of      or move to infected class    by 

acquiring malaria through contact with infectious mosquitoes with respective rate of force of infection      

     
  

  
 . Where,    is the rate of probability of human getting infected,   is the mosquito contact rate with 

human and   is mosquito biting rate. We also let a fraction   of humans be infected with drug sensitive malaria 

strain and the remaining fraction       individuals are infected with drug resistant malaria strains. Infected 

humans with drug sensitive malaria strains     individuals are either die from natural causes and due to disease 

death with respective rates      and      respectively or move to infective in treatment    at a rate    and 

recovered class    at recovery rate       Infected with drug resistant malaria strains     individuals are also either 

die from natural causes and due to disease death with respective rates      and     respectively or move to 

infective in treatment    at a rate    and recovered class     at recovery rate       Infective in treatment 

   individuals are individuals with malaria disease that are getting treated under the control. They also either die 

from natural causes and due to disease death with respective rates      and     respectively or move to the 

susceptible class with fraction of   due to the administered drug kills off the parasites and the infected humans 

with drug resistant malaria strains class with fraction of   due to treatment failure. These infected with drug 

sensitive and resistant malaria strains individuals progress to partially immune group (recovered class).Partially 

immune group(recovered individuals) either losses immunity and becomes again move to susceptible class with 

respective rate   or die from natural death at a rate    .Susceptible mosquitoes     are recruited at the rate      
They either die due to natural death at a rate of     or move to infected class    by acquiring malaria through 

contact with infectious humans with respective rate of force of infection             
       

  
    Where     is 

the probability of a mosquito getting infected. Infected mosquitoes     are die because of natural and disease 

induced death with respective rates      and     respectively. No recovered compartment for mosquitoes. We 

represent diagrammatically the flow of both the human and mosquito populations from one class to the other is 

given below. 

 

 
 

Fig. 1. Flow diagram for the transmission of endemic malaria model 
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With initial conditions 

 

                       ,            ,                      ,            
                                                                                                                                                        (2.2)  

 

With some of the following additional assumptions 

 

(i) The susceptible class in both the human and mosquito populations enter into the infective classes by 

adequate contact with infectious populations not infective in treatment. 

(ii) infective in treatment and recovered individuals are not infectious to the susceptible populations 

(iii) Those infective humans recovered from the disease due to natural immunity and enter into a partially 

immune group 

(iv) Those infective individuals in treatment recovered from the disease due to the administered drug killed 

off the parasites 

(v) One part of the recovered class again becomes susceptible to the disease 

(vi) No recovered compartment for mosquitoes.  
 

3 Basic Property of the Model  

 
3.1 Positivity of the model 
 

Theorem 1 Every solution of system (2.1) with initial conditions equation (2.2) exists in the 

 

Interval         and                                                    and          for all 

   .  

 

Proof. To show positivity of solutions, it is enough to show that each of the trajectories of system (2.1) is non-

negative for all    . 

 

Proof. To show positivity of solutions, it is enough to show that each of the trajectories of system (2.1) is non-

negative for all    . 

 

Since the right-hand side of system (2.1) is completely continuous and locally Lipschitzian on C, the 

solution                                                   of system (2.1) with initial condition equation (2.2) 

exists and unique on [0,  ) where       . 

 

It follows from the first system (2.1) that, the differential inequality describing the evolution of the susceptible 

human population over time   is given by 
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From the second system (2.1) we have, 

 
    

  
                     is equivalent to                             .  

 

From the third system (2.1) we have, 

 
    

  
                     is equivalent to                              

 

From the fourth system (2.1) we have, 

 
   

  
                 is equivalent to                           

 

From the fifth system (2.1) we have, 

 
   

  
              is equivalent to                      . 

 

From the sixth system (2.1) we have, 
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 𝑠                        

       

  
 

 

 
        

 

  
  

 

Thus, 

 

                          
       

  
  𝑠 

 

 
 𝑠                    

       

  
  𝑠 

 

 
 𝑠   

                  
       

  
 

 

 
          

 

 
   

 

From the seventh system (2.1) we have, 

 
   

  
               is equivalent to                       . 

 

Therefore; we can see that                                                               for 

all       
 

3.2 Invariant region 

 
Theorem 2 The feasible region   defined by 

 

              
    

   where,                         
      

  

  
  and 

                   
        

   

  
 , with initial conditions                       ,                  

    ,                     ,  is bounded. 

 

Proof: Let                                        and                   
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The feasible region of both the human and mosquito populations are determined by the feasible region of 

       and        respectively as follows 

 

The feasible region of      : Total sum of human compartments of system (2.1) leads to 

 
    

  
                                      if and only if 

 
    

  
             if and only if 

 
   

  
              

 

The resulting differential inequality can be solved by separation of variables to give, 

 

 
 

  
    

         
     

 
 

  
    

         
     

 

Taking the initial conditions     and denoting       by    , then the complete solution 
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As            
  

  
 .So if      

  

  
   then                

  

  
 .This means that 

  

  
 is upper bound 

of    On the other hand if      
  

  
 ,then        will decrease to 

  

  
 Thus               

  

  
. Therefore; the 

total human population is bounded.  

 

The feasible region of      : total sum of mosquito compartments of the system (2.1)  

 

leads to 
   

  
  Λ             

. 

 
   

  
   Λ           

 
   

  
         Λ   

 

The resulting differential inequality can be solved by separation of variables to give, 

 

 
 

  
    

      Λ  
     

 

Taking the initial conditions     and denoting       by    , then the complete solution 

 

        
  

  
      

  

  
          . 

 

As            
  

  
 .So if      

  

  
   then                

  

  
 .This means that 

  

  
 is upper bound 

of    On the other hand if      
  

  
 ,then        will decrease to 

  

  
 .Thus               

  

  
. 

 

Therefore; the total mosquito population is bounded. Thus, the solutions of the model variables representing 

human populations                  
 

are confined in the feasible region                                         
      

  

  
 . Similarly, 

the solutions of the model variables representing mosquito populations           are confined in the feasible 

region                  
      

  

  
  . 
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This shows that the feasible region of the system system (2.1) is bounded and is given by 

                                                  
  or equivalent to             

   
    

  . 
 

Thus, in   the system (2.1) is well-posed epidemiologically and mathematically. Hence, it is sufficient to study 

the dynamics of the model in    
 

4 Disease-free Equilibrium and Basic Reproduction Number, Disease-free 

Stability  
 

The disease-free equilibrium point of the model is its steady state solutions without infection or disease.  

 

Consider the disease free-equilibrium point denoted and given by: 

 

       
    

    
   

   
   

   
    

 

Where,   
       

       
    

     
      

  and   
   are the components of      and    

     
    

     
    

    and the 

non-infectious are obtained by setting 
    

  
 

    

  
   for the malaria model system (2.1) and after computing the 

resultant gives   
  

   

  
   and   

    
    

  
 Hence; 

 

     
   

  
     

  

  
                                                                                                      (4.1)  

 

The basic reproduction number denoted by    is the average number of secondary infectious infected by an 

infective individual during his or her whole course of disease [17]. We use the next generation matrix method by 

van den Driessche and Watmough [18] to derive the basic reproduction number    of system (2.1). The 

infectious compartment of system (2.1) are,    ,    , and    . To apply the method [18], let the system (2.1) be 

rearranged by beginning with the infected classes as follows: 

 

Let                     
  

      

 

 
 

      
      

  
  

          
      

  
  

             

  
   

 
 

 and        

               
               

         

  

 

The new infection matrix   and the transition matrix   are given, respectively, by  

 

  

            
                

        

    

         

    
 

  

and    

              

              

         
   

 

     

 

 
 

  
          

       

  
              

     
        

                

         

                
  

 
 

 and  

 

The basic reproduction number of system (2.1) is the dominant eigen value of the next generation matrix      

which is given by 
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                                                    (4.2)  

 

4.1 Local stability of disease-free equilibrium point 

 
Theorem3 The disease-free equilibrium point     of system (2.1) is locally asymptotically stable if      and 

unstable if     . 

 

Proof: 

 

The local stability of the system is determined by the signs of the eigenvalues and it is further proved by 

linearizing to obtain its Jacobian at disease-free steady-state points so that 

 

The Jacobian matrix of system (2.1) at disease free equilibrium point     defined and given by 

 

      

 

 
 
 
 

            

           

           

         
           
               
              

 
 
 
 

                                                            (4.3)  

  

Where,                ,                ,              ,           ,    
                                                                   
        

    
 

 

                if and only if         ,                  , 

 

          and 

 

   
     

                                                                                                                        (4.4)  

 

Where,  
 

    ,   

              

                  
            

    
                                                                                     (4.5)  

              
    

 

By the principle of Ruth-Hurwitz criteria [19], equation (4.3) has negative real eigenvalues if and only if 

          and          . Clearly, we see that,      because of it is the sum of positive variables, but 

      if and only if      
     which is equivalent to      and hence, all eigenvalues of the determinant 

of equation (4.3) will have negative real eigenvalues. Therefore; the disease-free equilibrium point    is locally 

asymptotically stable. 

 

5 Existence of Endemic Equilibrium and Bifurcation, and Local Stability 

of Endemic Equilibrium  
 
Let       

     
     

    
    

    
    

   be a non-trivial endemic equilibrium point of system (2.1), that 

is all components of     are positive. If we set system (2.1) to zero we get the following 
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 =,     

  
            

   
 

  
 ,    

  
  

     
     

  

    
 

      
    

    
  

                           
   

 

      
   

  
                              

   
 

      
                        

 

  
      

  
 

  
                                                                                                                                        (5.2)  

 

    
      

    
     

  

  
                                                                                                                             (5.3)  

 

Where,   
    

     
     

    
    

  and substituting (5.1) in to (5.3) we get 

 

  
  = 

                                     
 

                  
  

                                                                                    (5.4)  

  

 Again substituting (5.1) and (5.4) respectively in to (5.2) we get 

 

  
       

        
                                                                                                                    (5.5)  

 

Where,  
 

                Λ                                                 

    
          

  
   

    
                                                                                                                  (5.6)  

      
   

   
   

     Λ      
    

 

Where,    is the basic reproduction number given by (4.2) and 

 

    
          𝑣                                  𝑣  

     

  
   

   
   

  𝑣         
  

                                                           

                                         , 

                                            
 

Equation (5.5) admits a trivial solution    
    which corresponds to the disease-free equilibrium point (DFEP). 

Now we assume    
    the existence of endemic equilibria is regulated by the quadratic equation      

    
    

        The coefficient    in (5.6) is always positive and    is positive if      and negative if     . 

So, the sign of    and    will decide about the positive solution of (5.5). For the case when     , two 

solutions can be obtained for (5.5), that are positive and negative. For the case when considering   = 0 if and 

only if    = 1, then a solution of the form   
  

   

  
 exists when              . It follows that the number 

of endemic equilibria of (2.1) is depend on the coefficient   ,    and    as follows: 

 

Theorem 4 The system (1) has  

 

(i) a unique endemic equilibrium if       if and only if        

(ii) a unique endemic equilibrium if       and       or                    
             

(iii) Two endemic equilibrium if       and       and   
           

(iv) otherwise no endemic equilibrium  

 

Here also, when put for the value of Λ        from [20] and use Table 1 for the values of other parameters, 

the two roots are presented graphically as shown in Fig. 2. Where, the blue line represents stable equilibrium 

and the red line represents unstable equilibrium. 
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Fig. 2. When we plot the basic reproduction number    versus the force of infection mosquitoes to 

humans, we note stable disease free region when    
    and when      , the force of infection 

mosquitoes to humans starts to increase in stable endemic region where we note that the disease start to 

spread again and hence, forward bifurcation 

 

5.1 Existence of back ward bifurcation  

 
To show the existence of backward bifurcation of system (2.1), we employ the method developed in Gumel and 

Song, 2008; Castillo-Chavez and Song, 2004 [21-23]. We also assume and note that,  the normal form 

representing the dynamics of the system on the Centre manifold theory is given by           , where, 

 

  
 

 
            

  
 

 
 𝑣     

    

      
         

        for j =1,2…,n                                      (5.7)  

 

                 𝑣   
    

     
       

 
       for i =1,2…,n                                                  (5.8)  

 

Where, 

 

   Denotes a bifurcation parameter to be chosen, 

   s Denote the right hand side of system(2.1), 

   Denotes the state vector, 

    Denotes the disease-free equilibrium   , 

    Denotes the differential operator with respect to  , 

    Denotes the differential operator with respect to  , and  

  𝑣 denotes the right and left eigenvectors respectively corresponding to the null eigenvalue of the Jacobian 

matrix of (2.1), evaluated at    for       
 

Let we choose the rate of transmission of infection from an infectious mosquito to a susceptible human     as 

the bifurcation parameter. We observe that      is equivalent to: 

 

      
   

          

                                 
                                                                                             (5.9)  

 

and the linearized Jacobian matrix evaluated at     and   
  denoted and given by 

 

        
   

 

 
 
 
 

            
 

           
 

           
 

         
           
               
              

 
 
 
 

                                                    (5.10)  

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

Basic Reproduction number  R
0

F
o
rc

e
 o

f 
in

fe
c
ti
o
n
 M

o
s
q
u
it
o
e
s
 t

o
 H

u
m

a
n
s

Stable DFEP

Stable EEP

Unstable DFEP



 

 
 

 

Edossa et al.; JAMCS, 37(8): 11-33, 2022; Article no.JAMCS.91316 
 

 

 
21 

 

   
      

     
            

     
                

  

           
         if and only if         ,                  ,  

          and  

   
     

                                                                                                                      (5.11)  

 

Where, 

 

     ,   

              

                  
      

       

    
  

              
                                                                                                                         (5.12)  

 

If we also substitute 1(one) for     in to equation (5.11), then it will have a simple zero eigenvalue and the other 

eigenvalues have negative real parts. Therefore; the disease-free equilibrium point 
0

E  is a non- hyperbolic.  

 

 To compute the coefficients equation (5.11) and equation (5.12), we determine the right and left eigenvectors 

corresponding to the zero eigenvalue. Thus, the components of the right eigenvectors denoted by      for 

        are given by 
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Where,    
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                                                 (5.14)  

 

And the components of the left eigenvectors denoted by 𝑣 , for         are given by 
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   𝑣   𝑣    𝑣       𝑣  𝑣     
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 𝑣    𝑣    
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 𝑣     
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𝑣  𝑣  𝑣  𝑣   ,  for 𝑣  𝑣   , 𝑣  
   

  
𝑣  𝑣  

   

  
𝑣                                           (5.16)  

 

Let we make the following change of state variables                                     
         and using the vector notation                            .The system (2.1) can then be 

written in the form 
  

  
      where,                          

  as shown below 
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 4 2 7  hrð ℎ 0,0𝑣7 6 2 2 7  hsð 𝑣 0,0+𝑣7 6 3 2 7  hrð 𝑣 0,0+𝑣7 22 2 6 Iℎ𝑠2 0,0+𝑣7 32
 2 6 Iℎ𝑟2 0,0 (5.20)  
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After substituting equation (5.14), equation (5.16) and equation (5.18) respectively in to equation (5.20), then 

the simplified values of the coefficient   in terms of    and 𝑣  is given by 
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 and 

 

After substituting equation (5.14), equation (5.16) and equation (5.19) respectively in to equation (5.21), then 

the simplified values of the coefficient   in terms of    and 𝑣  is given by 
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Clearly, the coefficient   is positive since all the parameters are non-negative. Thus, the local dynamics of the 

system (1) around   , for       
  is depends on the sign of the coefficient    Similar to theorem [24] we also 

established the following theorem. 

 

Theorem 5 The system (1) will undergo backward bifurcation at      if the coefficient   is positive        
or         otherwise it will exhibit a forward bifurcation if   is negative       . 
 

5.2 Local stability of endemic equilibrium  

 

Theorem 3: The endemic equilibrium point (  ) of the system (2.1) is locally asymptotically stable if     . 

 

Proof: The Jacobian matrix evaluated as 

 

      

 

 
 
 
 

         
         
         
         
           
          
          

 
 
 
 

                                                                 (5.22) 
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   , 

      
    
     

  

  
      

 

The eigenvalues of the       are given by: 

 

Clearly          
    
     

  

  
         and its associate characteristics equation is  

 

      
     

     
     

                                                                                       (5.23)  

 

 Where. 
                     

                                                    

                                                   
                        

                                                                  

                                                                           
                           

                               +                                         

                                                                               

                                   

                                                         

                                       

                              
 

The Routh-Hurwitz criteria for Polynomial equation (5.23) will give six negative eigenvalues if the conditions 

given below are satisfied:     ,  for i = 1, 2, 3, . . ., 6.The relevant Routh Hurwitz criteria in [25] could be 

used to show that the model system (2.1) is stable locally asymptotically when       
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6 Global Stability 

 
6.1 Global stability of disease-free equilibrium point 

 
To investigate the global stability of the disease-free equilibrium point    ,we consider the Lyapunov function 

[26]. So that  

 

                                                   
  

  
      

    

  
   

    

  
                               

   

  
                             (6.1)  

 

After substituting 
    

  
 
    

  
 and 

   

  
 from (1) to (35) and simplifying it, then we get  

 
  

  
 

          
                                 

  
                                                                    (6.2)  

 

Since 
   

  
  

       

  
    

    
  

   

  
   

  

  
   

  (36) is equivalent to 

 
  

  
 

                                            

    
                                                               (6.3)  

 

Since   
  

                                 

          
,  (37) is also equivalent to 

 
  

  
          

                                                                                                                           (6.4)  

 

Therefore;  
  

  
   provided    

       which leads to       .  
  

  
   if and only if           or 

       
 

Therefore; by Lasalle’s invariant principle [27], every solution to equations of the model system(2.1) with initial 

conditions in    approaches to the disease-free equilibrium point     at time   leads infinity whenever,    
  Hence,the disease-free equilibrium    is globally asymptotically stable if     . 

 

Theorem 6 The disease-free equilibrium point     of system (2.1) is globally asymptotically stable if      

and unstable if     . 

 

The epidemiological implication of theorem 6 is that the elimination of the malaria disease is possible regardless 

of initial condition system (2.2) of the sub-population of the model system (2.1) whenever       
 

7 Analysis of the Model with Optimal Control 

 
In this section, we consider model system (2.1) and incorporate optimal combinations of time dependent control 

measures namely, (i) prevention measure for drug resistance            to minimize the proportion of the 

emergence of drug resistant of malaria strains as well as spread of the disease dynamics. This includes 

improving the way drugs used though improving prescribing, follow up practices and patient compliance, (ii) 

the use of insecticide treated bed net (ITN)           as preventive measure i.e., to reduce the number of bites 

from mosquitoes as they physically provide a barrier between the infectious mosquitoes and the susceptible 

humans, and also to reduce the population of the mosquitoes by killing them after they land on the treated net. 

(iii) treatment with drugs           , treating individuals who developed symptoms of the disease, and (iv) the 

use of indoor residual spray (IRS),            as preventive measure i.e., insecticide spray on the breeding site 

of mosquitoes reduces the number of mosquito populations by killing these rest indoors after feeding. The 

controls are practiced on time interval [      ], where    and    are initial and final time respectively. After 

incorporating the above controls in to the basic model (2.1) we get the following modified state equations: 
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 Λ                              λ        

    

  
                   λ                          

    

  
                       λ                    

   

  
                                  

   

  
                            

   

  
 Λ         λ                

   

  
       λ                      

                                            

 
Here the following objective function   is used to minimize the number of infected human with drug sensitive 

and drug resistance malaria parasite strains, infective in treatment human populations and total mosquito 

populations while keeping the costs of applying the controls    ,   ,     and     as low as possible.  

 

                             
 

 
     

  
    

  
 

                                                          (7.2)  

 

Where,   =1,2,3,4,           and    and   ,       and,     are coefficients associated to the state variable 

and controls respectively. Following the approach [28,29], the cost of the controls have been chosen quadratic.  

 

Thus,the goal is to find, an optimal control quadruple,     
      

      
  and     

  such that  

 

      
      

      
      

                                                                                          (7.3)  

 

Where,                                                  is the control set.  

 

The Pontryagins’s Maximum Principle [29] converts the system (7.1) with equation (7.2) and equation (7.3) into 

a problem of minimizing pointwise the Hamiltonian H with respect to    ,   ,     and      

 

                                                              
   

  
   

    

  
   

    

  
   

   

  
   

  
   

  
   

   

  
   

   

  
                                                                                                                        (7.4) 

 

Where,                                                      
 

 
     

  
  for i=1,2,3,4  

 

and     for i= 1,2,3,4,5,6,7 are adjoint variable. Using the exitance result for the optimal control [29], we 

established the following theorem as  

 

Thereom7 There exists a set of an optimal control    
       

      
      

     
   and corresponding state solution, 

   
      

      
     

     
     

  and    
  that minimizes                over   subject to system (7.1). Further, there 

exists adjoint functions λ         λ    ,  and              satisfying  
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with transversality conditions  

 

          for    1,2,3,4,5,6,7                                                                                                                         

 

Further, the optimal controls     
      

      
  and     

  are given by  

 

  
            

                               

  
      

  
            

                                                                   

  
      

  
            

                      

  
                                                                                (7.7)  

  
            

            

  
      

 

Proof: 

 

The existence of the optimal control follows from Fleming and Rischel [30] due to convexity of the integrand 

objective functional   in (7.2) with respect to               over the convex and closed control set   and the 

system (7.1) satisfies the and Lipchitz property with respect to state variables since the state solutions are 

bounded. The differential equation (7.5) governing the adjoint variables λ  λ      λ  are obtained by partial 

differentiation of the Hamiltonian H equation(7.4) with respect to the corresponding state variables that is, 

 
   

  
  

  

   
,  
    

  
  

  

    
 
    

  
  

  

    
,  
   

  
  

  

   
, 
   

  
  

  

   
 ,

  

  
  

  

   
 
   

  
  

  

   
 with terminal 

conditions eqation(7.6).The characterization of optimal control given by system (7.7) is obtained by partial 

derivative of the Hamiltonian H equation (7.4) with respect to each control     and solving  
   

   
         

     ,4.  

 

8 Numerical Simulation 

 
In this section, numerical simulations are performed to confirm with our analytical results stated in the 

optimality system which is characherized by the state system(7.1) and the adjoint system (7.5) was solved 

numerically by applying Runge Kutta fourth order schemes of the approach [31]. The implimentation of the 

scheme was done using MATLAB packege. 

 

The parameters values provided in Table 1 are used so that                    The simulations of the 

model are done by using the initial conditions given by                                      
                                   .To minimize malaria infectious humans and the total mosquito 

populations as well as minimizing the associated costs of controls, the weights constant values in the objective 

function(38) are chosen so that                              
 

In order to analyze the numerical results,  we proposed optimal combinations of the aforementioned control 

strategies as alternative choose to minimize the spread of malaria disease dynamics. So as to do this, we 

introduced different optimal combination strategies in our model and numerically compare their effects on 

malaria infeected populatons.Thus,the proposed optimal combinations and numerical result analysis are as 

follows  

 

 Strategy  : Combination of use of preventive control of drug resistance, insecticide treated net ITN and 

treatment of infective individuals 

 Strategy  : Combination of use of preventive control of drug resistance, indoor residual spray IRS for 

vector control and treatment of infective individuals  

  Strategy  : Combination of use of insecticide treated nets ITN, indoor residual spray IRS for vector 

control and treatment of infective individuals 

 Strategy  : Combination of use of preventive control of drug resistance, insecticide treated nets ITN and 

indoor residual spray IRS and treatment of infective individuals 
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Table 1. Lists of parameters of the model system (2.1) 

 
Parameter symbol  Value Source 

   0.8333 [32] 

    0.00005447 [33] 

   0.0680 [34] 

   0.0022 [35] 

   0.00019 [36] 

  0.5000 Assumed 

  0.2000 [37] 

  0.5020 [37] 

 Λ  0.0710 [38] 

    0.0100 [39] 

    0.0500 [40] 

Λ  0.00000575 [33] 

  0.01672 [41] 

  0.7000 [42] 

    0.48 [41] 

  0.2500 Assumed 

  0.2500 Assumed 

   0.0500 Assumed 

  0.0500 Assumed 

  0.5000 Assumed 

  0.0500 Assumed 

 

8.1 Strategy   
 

Control with the preventive of drug resistance, insecticide treated net ITN, and treatment(              
       . In this strategy, we compare the strategy a situation where no control (              
        was used with the application of strategy   . It can be seen from the Figs. 3a, 3b, 3c, 3d, 3e and 3f 

that there is a significant increase in the number of susceptible and recovered human populations and a 

significant decrease in the number of infected with drug sensitive strains, infected with drug resistant strains, 

infective in treatment human populations and infected mosquito populations compared to the strategy with no 

control at a given time respectively. From this, one can observe that strict application of strategy   for a period 

between 10 and 30 days is sufficient to reduce the number of individuals with malaria symptoms and malaria 

infected vectors to zero. It can be noted that, a combination of preventive of drug resistance, insecticide treated 

nets ITN, and treatment can play an important role in minimizing malaria infectious. The control profile shown 

in Fig. 3g shows that, controls        and    decreases from the maximum of 100% to the lower bound. This 

suggest that, a high effort is required for preventive control of drug resistance     insecticide treated net ITN     

and medical treatment    of individuals under this strategy. 

 

8.2 Strategy   
 

Control with the preventive of drug resistance, indoor residual spray IRS, and treatment(              
       . In this strategy, we compare the strategy a situation where no control (              
        was used with the application of strategy  . It can be seen from the Figs. 4a,4b,4c,4d ,4e and 4f that 

there is a significant increase in the number of susceptible and recovered human populations and a significant 

decrease in the number of infected with drug sensitive strains, infected with drug resistant strains, infective in 

treatment human populations and infected mosquito populations compared to the strategy with no control at a 

given time respectively. Even though this strategy minimizes the number of malaria infectious populations, 

however, it is not enough to eliminate the disease at a given time and hence there is a need for additional control 

effort to eliminate the disease out of the community. The control profile shown in Fig. 4g shows that, controls 

       and    decreases from the maximum of 100% to the lower bound. This suggest that, a high effort is 

required for preventive control of drug resistance     indoor residual spray IRS     and medical treatment    of 

individuals under this strategy. 
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(a)                                                    (b)                                             (c) 

 

 
 

(d)                                        (e)                                               (f) 

 

 
 

(g) 

 

Fig. 3. Simulations of the model Showing the effect of preventive control of drug resistance, insecticide 

treated net ITN and Treatment controls 

 

8.3 Strategy   
 

Control with insecticide treated net ITN, indoor residual spray IRS, and treatment(              
        In this strategy, we compare the strategy a situation where no control(                   
   was used with the application of strategy   . It can be seen from the Figs. 5a,5b,5c,5d ,5e and 5f that there is a 

significant increase in the number of susceptible and recovered human populations and a dramatic decrease in 

the number of infected with drug sensitive strains, infected with drug resistant strains, infective in treatment 

human populations and infected mosquito populations compared to the strategy with no control at a given time 

respectively. With the application of strategy            and     within time      days,       within time   
   days will be eliminated from the system. This result is a bit more promising than strategy   and strategy  . 

The control profile shown in Fig. 5g shows that, control     is at 50% initially and decreases from the maximum 

of 70% to the lower bound while controls    and    decreases from the maximum of 100% to the lower bound 

within 90 days. This suggests that, a high effort is required for the use of insecticide treated net   , and indoor 

residual spray IRS     for vector control and there is a low effort for the use of medical treatment     of 

individuals under this strategy. 

 

8.4 Strategy   
 

Control with the preventive of drug resistance, insecticide treated net ITN, indoor residual spray IRS, and 

treatment (                      . In this strategy, we compare the strategy a situation where no 
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control (                      was used with the application of strategy  . It can be seen from the 

Figs, 6a,6b,6c,6d ,6e and 6f that there is a significant increase in the number of susceptible and recovered human 

populations and a significant decrease in the number of infected with drug sensitive strains, infected with drug 

resistant strains, infective in treatment human populations and infected mosquito populations compared to the 

strategy with no control at a given time respectively. With the application of strategy                 and 

     within time       ,10 ,11 and 30 days respectively will be eliminated from the system. This result is a bit 

more promising than when strategy   and strategy   except possibly strategy   which yield almost the same 

results. The control profile shown in Fig. 6g shows that, controls    ,        and     decreases from the 

maximum of 100% to the lower bound. This suggest that, a high effort is required for preventive control of drug 

resistance     insecticide treated net     ,indoor residual spray IRS     and medical treatment    of individuals 

under this strategy.  

 

 
 

(a)                                         (b)                                            (c) 

 

 
 

(d)                                             (e)                                          (f) 

 

 
 

(g) 
 

Fig. 4. Simulations of the model Showing the effect of preventive control of drug resistance, indoor 

residual spray IRS and treatment controls 
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(d)                                                 (e)                                        (f) 

 

 
 

(g) 

 

Fig. 5. Simulations of the model showing the effect of insecticide treated net, indoor residual spray IRS 

and treatment controls 

 

 
 

(a)                                       (b) `                                                 (c) 

 

 
 

(d)                                   (e) `                                                  (f) 
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Fig. 6. Simulations of the model Showing the effect of preventive control of drug resistance, insecticide 

treated net, indoor residual spray and treatment controls 
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9 Discussions and Conclusions 

 
In this study, a non-linear system of ordinary differential equation model that describes the dynamics of malaria 

disease transmission is formulated and analyzed. Conditions are derived from the existence of disease-free and 

endemic equilibria. The basic reproduction number    of the model is obtained, and we investigated that it is a 

threshold parameter between the extinction and persistence of the disease. If     is less than unity, then the 

disease-free equilibrium point is both locally and globally asymptotically stable resulting in the disease 

removing out of the host populations. The disease can persist whenever     is greater than unity. Furthermore, 

at    is equal to unity, existence conditions are derived from the endemic equilibrium for both forward and 

backward bifurcations. 

 

The numerical simulations of the optimality system which is characherized by the state system (7.1) and the 

adjoint system (7.5) was solved numerically by applying Runge Kutta fourth order schemes ,The result of 

numerical simulations of these can be seen from the Fig. 6 that the combination of prevention of drug resistance, 

insecticide treated net ITN, indoor residual spray IRS and active treatment or strategy d performs the best to 

control the disease in given time period of intervention. Finally, we note that with the strict application of either 

one of the incorporated combinations of optimal control strategies, it is possible to reduce the number 

populations with malaria symptoms to zero in the given time and the spread of the disease dynamics. Further we 

note that, application of optimal control strategy is not only reduce the number populations with malaria 

symptoms but also it reduces the emergence of drug resistant malaria strains as well as the spread of the disease.  

 

10 Recommendations 

 
Here we recommend to malaria control policy makers, health care workers and any concerning body may use 

the incorporated strategy in this paper to dwindle the malaria disease burden on the community.  
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