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Abstract 

 
In this work we conceive a method of  how the Lagrange multiplier of modified Variational Iteration Method 

can be defined from Laplace transform, And we use this technique to solve both differential equations and 

FDEs with initial value conditions,  With Illustrative examples by  applying the modified VIM to both 

Ordinary differential equations and fractional Differential Equations. 

 

 
Keywords: Variational iteration method; Lagrange multiplier; Laplace transform; fractional differential 

equations; Caputo derivative. 

 

1 Introduction 

         
Many Method have been used to solve a number of nonlinear problems which arise in mathematical physics and 

another related areas like [1-4]. The technique of Lagrange multipliers [5,6,7,8,2,3] was widely used to solve a 

number of nonlinear problems and another related areas, and it was developed into a powerful analytical 

method, Like the varianional iteration method [9-17],  for solving differential equations. The method has been 

applied to initial boundary problems [6-8], fractal initial value problems [18-20], etc. Generally, in applications 
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of variational iteration method to initial value problems of differential equations, one usually follows the 

fallowing three steps: 

 

(a)  Establishing the correction functional  

(b)  Identifying the Lagrange multipliers  

(c)  Determining the initial iteration 

         

The step (b) is very decisive. Applications of the method to fractional differential equations (FDEs) mainly and 

directly used the Lagrange multipliers in ordinary differential equations (ODEs).the present article conceives a 

method how the Lagrange multiplier has to be defined from Laplace transform. This technique can be easily 

extended to solve both differential equations and FDEs with initial value conditions. 

 

2 Basics of the Variation Iteration Method 

 
To illustrate the basic idea of the technique, consider the following general nonlinear system: 

 

 
      

   
                                                                                                                                             

 

Where R is a linear operator and N is a nonlinear operator and g(t) is a given continuous function and 
   

   
 is the 

term of the highest-order derivative. 

            

The basic concept of the method is to construct a correction functional for the system (1), which reads  

 

                                                                                                                   
 

  
  

 

Where        is a general Lagrange multipliers [14,15,5] that can be identified optimally via variational theory, 

   is the     approximate solution, and     denotes a restricted variation, i.e.      , where   is the variational 

derivative.  

          

To illustrate how restricted variation works in the variational iteration method. 

 

3 New Identification of the Lagrange Multipliers 

 
Now we revisit the original idea of the Lagrange multipliers in the case of an algebraic equation. Firstly, an 

iteration formula for finding the solution of the algebraic equation        can be constructed as: 

 

                                                                                                                                             (3) 

 

The optimality condition for the extreme 
     

   
   leads to  

 

   
 

      
                                                                                                                                             (4) 

 

Where   is the classical variational operator.  From (3) and (4), for a given initial value    we can find the 

approximate solution      by the iterative scheme for (4) 

 

         
     

      
,                                                                                                          (5)                                              

 

The  algorithm is well known as the Newton-Raphson method and has quadratic convergence. 

         

Now, we extend this idea to finding the unknown Lagrange multiplier. The main step is to first take the Laplace 

transform [6] to Equation (1), then the linear part is transformed into an algebraic equation as follows:   
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                                                                                          (6) 

 

where   

                                         
 

 
. 

 

The iteration formula of (6) can be used to suggest the main iterative scheme involving the Lagrange multiplier 

as: 

 

                                                                                        (7) 

 

Considering                as restricted terms, one can derive a Lagrange multiplier as: 

 

                              
                      

   
 

  
                                                                                                                                                  (8) 

 

With Equation (8) and the inverse-Laplace transform     , 

 

The iteration formula (7) can be explicitly given as: 

 

                  
 

  
                                                                                                             

                                                                                                      

                  
 

  
            

    

 
 

 

  
                                                              (9) 

 

Where the initial iteration       can be determined by 

 

           
 

  
            

    

 
        

                            
          

      
                                                                                          (10) 

 

Equation (10) also explained why the initial iteration in the classical VIM is determined by the Taylor series. 

So Consequently, the solution 

 

                 . 
 

4 The Caputo Differintegral 

                
Let       be real constants                        and      a function which is integrable on        in 

case      and   -times differentiable on        except on a set of measure zero in case     . Then the 

Caputo differintegral is defined for          by formula: 

 

  
 

 
        

     
       

    
                                                                                                                                          

 

5 Illustrative Examples 

       
We now consider the applications of the modified VIM to both ODEs and FDEs. 
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5.1 Ordinary differential equation 

 
Example 1: 

 

Consider the following differential equation: 

 
  

  
                                  

 

This has the exact solution:  

 

        
    

 

We can obtain the successive approximate solutions as: 

 

            
         

  
   

     

 
  

 

  
                    

 

     
  

 
 

 

 
               

 

                           
 

          
  

 
 

 

 
                

 

     
  

 
 

  

 
          

  

 
 

  

  
        

 

    
   

 

 
 

 

  
                

 

          
  

 
 

 

 
                  

 

     
  

 
 

 

 
               

   
 

 
 

 

 
         

 

    
   

 

 
 

 

 
 
 

 
 

 

  
      

   
 

 
 

 

  
 

 

  
             

 

        
  

 
          

                      

    
   

 

 
 

 

  
          

 

    
                  

  

          
     

  

 
                                                                           

 

For           tends to the exact solution     
  . 

 

That the integration by parts is not used and the calculation of the Lagrange multiplier here is much simpler. 

Furthermore, the VIM can be easily extended to FDEs and this is the main purpose of this work 
 

5.2 Fractional differential equations 

        
Let us consider the FDE 
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Where   
 

 
  is Caputo differintegral denote by  

  

 and the variational iteration formula is given as 

 

                   
   

  
   

 
 
            

 

 
     

 

Where   
 

 
   is the Caputo derivative and          is a nonlinear term: 

 

  
 

 
                   

 

                                                                                                    (12) 

 

then, we consider the application of the modified VIM. 

 

The following Laplace transform of the term   
 

 
   holds 

 

    
 

 
                            

                                                                         (13) 

 

Taking the above Laplace transform to both sides of (11), the iteration formula of equation (11) can be 

constructed as: 

 

                                                                   
      

 

Then consequently, after the identification of a Lagrange multiplier 

 

       
 

  
 , 

 

then: 

 

                  
 

  
                                              

       

                               
 

  
                      

       

 

                                                                                                                                           (14) 

 

and  

 

                           
                                                                    

 

              
             

      
                                                                                                        (15) 

  

Let us apply the above VIM to solve FDEs of Caputo type. 

 

Example 2: 

         

Consider the linear initial value problem 

 

                                                                                                               (16) 

 

After taking the Laplace transform to both sides of Equation (15) we get the following iteration formula: 

 

                                                                                                  (17) 

 

Setting          as a restricted variation,      can be identified as 
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                                                                                                                                           (18) 

 

The approximate solution of Equation (15) can be given as: 

 

                  
 

  
                                        

     
 

  
                                                      

 

            
 

 
 

 

  
                                                       

 

                                                                                       
 

          
 

 
 

 

  
              

 

 
 

 

  
       

     
 

 
 

 

    
    

  

      
            

 

          
 

 
 

 

  
                                                    

     
 

 
 

 

  
    

  

      
                    

     
 

 
 

 

    
 

 

     
                               

 

        
  

      
 

   

       
                                                         

 

          
 

 
 

 

  
                                                                           

     
 

 
 

 

  
    

  

      
 

   

       
                

     
 

 
 

 

  
 
 

 
 

 

    
 

 

     
                                  

     
 

 
 

 

    
 

 

     
 

 

     
                                   

 

        
  

      
 

   

       
 

   

       
                                 

 

Then       rapidly tends to the exact solution for      : 

 

           
   

 

Since    is the Mittag-Leffler function defind as: 

 

       
  

       
 
     

 

5.3 Solution of equation (15) by using Laplace Transform 

 

          
                           

      

 

          
  

Then equation (15) will be: 
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By taking the inverse Laplace transform for both two sides give:    

 

      
        

       
 
     

      

       
       

  
     

 

6 Conclusion 

         
Variational iteration method has been known as a powerful tool for solving many functional equations such as 

ordinary, partial differential equations, integral equations and so many other equations. In this work, we have 

presented the modified variation iteration method which included Lagrange multiplier that easily identify by 

Laplace transform to give an analytical solutions of fractional differential equations, All examples showed that 

the results of the modified variational iteration method are in excellent agreement with those obtained by the 

Laplace transform method, but the results showed that the modified variational iteration method is more 

effective than the results of Laplace transform method because the inverse of Laplace transform some-times 

may be difficult to compute.  
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