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Abstract
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1 Introduction

Investigation of nonlinear properties of magnetoelastic crystals in condensed matter is very important.
Most of this work has been done for linear models. It seems, that nonlinear magnetoelastic waves
in nonlinear approximation of phonon mode demonstrate a wide range difference their propagation
and interactions in comparision to a linear one. This paper arise to study nonlinear magnetoelastic
waves in nonlinear approximation by phonon mode. The paper is organized as follows. In the section
2 starting from quantum-mechanical Hamiltonian taking into account modulation of exchange
integrals as a result of oscillation of each site of spin chain, using generalized coherent states of
SU(2) group as a basis of trial functions following paper [1]. We receive Landau-Lifshitz equation
which describes magnetoelastic waves in nonlinear approximation of phonon modes analytically we
were able to our best find the solution to the above mentioned system only in linear approximation
of phonon mode, which requires application of numerical methods. In the following we discuss
a numerical approaches, which is not so simple due to singularities arising in the poles of Bloch
sphere, as for all types of sigma-models. To avoid this we use a stereographical projection to a
complex plane, that corresponds to the projection of SO(3) space to a coset SU(2)/U(1) space,
due to their isomorphism. In the section 3 introdution NSFD Rules and implementation of NSFD
for Lanadu-Lifshitz equation. In the section 4 we solve the problem using the analytical solution
with a linear approximation in phonon mode as a initial condition, which could be considered as
a perturbed solitonic solution. As a result evolution of the initial perturbation we receive a stable
solitonic solution moving with some speed. Let us remind, that the Landau-Lifshitz equation could
be written, in the isotropic case, in the following form

i~St =
1

2
[S, Sxx] (1.1)

Where we introduce S =

(
Sz S−

S+ −Sz
)

= S.σ,

σz =

(
1 0
0 −1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 i
i 0

)
are Pauli operators. This equation (1, 1)

give us a macroscopic description of the magnetization dynamic in ferromagnets and represents the
equation of motion of the magnetization vector in non-dissipative media. On the other hand, it is
well know, that in microscopic level the most popular models for description of magnetic properties
of a crystal are spin models of the Heisenberg-Frenkel magnet

Ĥ = −
∑
i,k

JikŜiŜk (1.2)

where Jik are exchange integrals , Ŝj are the spin operators of the atom in the jth site.

2 Mathematical Modeling of Problem

Let us consider the model of the Heisenberg ferromagnet with single-axis anisotropy in the presence
of oscillations of sites of the crystal lattice [1].

Ĥ = Ĥs + Ĥp

where

Ĥs = −
N∑
j=1

{
J0

2
(ŝj

+ ˆsj+1
− + ŝj

− ˆsj+1
+) + Jz ŝj

z ˆsj+1
z

}

= −J0
N∑
j=1

{ŝj ˆsj+1 +4ŝjz ˆsj+1
z}
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is the spin part of the Hamiltonian,

Hp =

N∑
j=1

{
p2
j

2m
+
k

2
(yj+1 − yj)2

}

is the phonon part of the Hamiltonian.Here ∆ =
(Jz−J0)

J0 is the costant of exchange anisotropy,m
and p are the mass and momentum of the atom,correspondingly |yj+1 − yj | is the displacement of
the jth atom from the equilibrium position,k is the elastic constant,j is the summation index,here
s± = sx± isy. Let us pass over to the classical description. In order to make this we average, by use
of the SU(2) generalized coherent states (GCS) [2,3]. Let us remind the reader that SU(2)GCS in
complex parameterization has the form

|z〉 =
∏
j

|zj〉 =
∏
j

(
1 + |zj |2

)−k
exp{zj Ŝj

+}|k,−k〉, (2.1)

here k is the number of representation, is the parameter of quasiclassical description. Spin operators
averaged by use of the SU(2)GCS get the following form

S+
j = S−j = 〈Ŝ+

j 〉 =
2zj

1 + |zj |2
, Szj = 〈Ŝzj 〉 =

1− |zj |2

1 + |zj |2
(2.2)

Note that the parameterization via more habitual angle variables is possible. In the case the values
of the averaged spin operators have the form

S = s (sinθcosϕ, sinθsinϕ, cosθ) (2.3)

zj = tan

(
θ

2

)
exp{iϕj}, (2.4)

where the values of the angle parameters are restricted as 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π . By use (2.3)
we obtained Landau-Lifshitz equation as the following equations [1]

a2
0θxx −

[
a2

0ϕ
2
x + 2∆

]
sinθcosθ +

~
J0s2

sinθϕt = 0,

a2
0

(
sin2θϕx

)
x
− ~
J0s2

sinθθt = 0 (2.5)

By use of the vector (2.1) we carry out the averaging procedure of the spin Hamiltonian Ĥs . We
have

H = 〈z|Ĥ|z〉 = Hs +Hp. (2.6)

zj+1 = zj + a0zjx +
a20
2
zjxx + ...

yj+1 = yj + a0yjx + ... (2.7)

Then rewriting Hamiltonian(2.4) in spherical variables we obtain

H = −s2
N∑
j=1

{
J0

2

(
S+
j S
−
j+1 + S−j S

+
j+1

)
+ JzSzj S

z
j+1

}
+Hp. (2.8)

Introducing Poison brackets in the following form

{A,B} =

∫ {
−εijk

δA

δSi
δB

δSj
− δA

δP

δB

δy
+
δA

δy

δB

δP

}
dx

We derive the equations of dynamics of the magnetization vector coupled with the lattice oscillations

~Sjt =
{
H,Sj

}
= −εijk

δH

δSi
Sk
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then

~
−→
St = s2J0 a

2
0

2
(2SyxxS

z − 2SzxxS
y)
−→
i − s2J0 a

2
0

2
(2SxxxS

z − 2SzxxS
x)
−→
j

+ s2J0 a
2
0

2
(2SxxxS

y − 2SyxxS
x)
−→
k − s2J02∆

(
SzSy

−→
i − SzSx−→j

)
(2.9)

we have S = (Sx, Sy, Sz) , ez = (0, 0, 1) then from (2, 9) obtain

~
−→
St + s2J0a2

0

[−→
S ×

−→
S xx

]
+ 2s2J0∆Sz

[−→
S ×

−→
ez
]

= 0 (2.10)

or rewriting this equationsin matrixs form we obtain

i~St + s2J0 a
2
0

2
[S, Sxx] + s2J0 ∆

2
[S, σ̂z] {S, σz} = 0 (2.11)

(2, 5), (2, 9), (2, 10), (2, 11) are different form of Landau-Lifshitz equation.

2.1 Introduction the stereographical projection

To conduct numerical simulation of magnetoelastic interaction processes it is not convenient the
parametrization by spherical variables of by Euler angles, due to the singularities in the poles. In
order to prevent that for numerical simulation we use stereographical projection.

a) The relationship between the complex parameters z and Sx, Sy, Sz by stereographical projection
for top plane is given with the following relations

2asd.jpg

Sx =
z + z

1 + zz
, Sy =

z − z
1 + zz

i, Sz =
1− zz
1 + zz

with use chain rule we have

Szx =
−2z

(1 + zz)2 zx +
−2z

(1 + zz)2 zx

Sxx =
1− z2

(1 + zz)2 zx +
1− z2

(1 + zz)2 zx

Syx =
−1− z2

(1 + zz)2 izx +
1 + z2

(1 + zz)2 izx

Sxxx =
−2z

(
1− z2

)
(1 + zz)3 (zx)2 +

−2z
(
1− z2

)
(1 + zz)3 (zx)2 +

−4z − 4z

(1 + zz)3 zxzx +
1− z2

(1 + zz)2 zxx +
1− z2

(1 + zz)2 zxx

Syxx =
2z
(
1 + z2

)
(1 + zz)3 i (zx)2 +

−2z
(
1 + z2

)
(1 + zz)3 i (zx)2 +

4z − 4z

(1 + zz)3 izxzx +
1 + z2

(1 + zz)2 izxx +
−1− z2

(1 + zz)2 izxx

Szxx =
4z2

(1 + zz)3 (zx)2 +
4z2

(1 + zz)3 (zx)2 +
4zz − 4

(1 + zz)3 zxzx −
2z

(1 + zz)2 zxx −
2z

(1 + zz)2 zxx

SyxxS
z − SzxxSy =

−2zz4 − 2z3 + 2zz2 + 2z

(1 + zz)4 i (zx)2 +
2zz4 + 2z3 − 2zz2 − 2z

(1 + zz)4 i (zx)2 +

zz3 + z2 − zz − 1

(1 + zz)3 i (zxx) +
−zz3 − z2 + zz + 1

(1 + zz)3 i (zxx)

SxxxS
y − SyxxSx =

−4z3z − 4z2

(1 + zz)4 i (zx)2 +
4zz3 + 4z2

(1 + zz)4 i (zx)2 +
2z + 2zz2

(1 + zz)3 izxx +
−2z − 2zz2

(1 + zz)3 izxx
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SxxxS
z − SzxxSx =

−2z4z − 2z3 − 2z2z − 2z

(1 + zz)4 (zx)2 +
−2z4z − 2z3 − 2z2z − 2z

(1 + zz)4 (zx)2 +

zz3 + z2 + zz + 1

(1 + zz)3 zxx +
zz3 + z2 + zz + 1

(1 + zz)3 zxx

from (2, 9) we have ~Sxt = s2J0a2
0 (SyxxS

z − SzxxSy)− s2J02∆SzSy then

~
(

1− z2

(1 + zz)2 zt +
1− z2

(1 + zz)2 zt

)
= s2J0a2

0(
−2zz4 − 2z3 + 2zz2 + 2z

(1 + zz)4 i (zx)2 +

2zz4 + 2z3 − 2zz2 − 2z

(1 + zz)4 i (zx)2 +
zz3 + z2 − zz − 1

(1 + zz)3 i (zxx) +

−zz3 − z2 + zz + 1

(1 + zz)3 i (zxx))− s2J02∆
z − z
1 + zz

i× 1− zz
1 + zz

(2.12)

and also ~Syt = −s2J0a2
0 (SxxxS

z − SzxxSx) + s2J02∆SzSx then

~
(
−1− z2

(1 + zz)2 izt +
1 + z2

(1 + zz)2 izt

)
= −s2J0a2

0(
−2z4z − 2z3 − 2z2z − 2z

(1 + zz)4 (zx)2 +

−2z4z − 2z3 − 2z2z − 2z

(1 + zz)4 (zx)2 +
zz3 + z2 + zz + 1

(1 + zz)3 zxx +
zz3 + z2 + zz + 1

(1 + zz)3 zxx)

+s2J02∆
z + z

1 + zz
× 1− zz

1 + zz

then

~
(
−1− z2

(1 + zz)2 zt +
1 + z2

(1 + zz)2 zt

)
= s2J0a2

0(
−2z4z − 2z3 − 2z2z − 2z

(1 + zz)4 i (zx)2 +

−2z4z − 2z3 − 2z2z − 2z

(1 + zz)4 i (zx)2 +
zz3 + z2 + zz + 1

(1 + zz)3 izxx +
zz3 + z2 + zz + 1

(1 + zz)3 izxx)

− s2J02∆
z + z

1 + zz
i× 1− zz

1 + zz
(2.13)

and also ~Szt = s2J0a2
0 (SxxxS

y − SyxxSx) then

~(
−2z

(1 + zz)2 zt +
−2z

(1 + zz)2 zt = s2J0a2
0(
−4z3z − 4z2

(1 + zz)4 i (zx)2 +
4z3z + 4z2

(1 + zz)4 i (zx)2 +

2z + 2zz2

(1 + zz)3 izxx +
−2z − 2z2z

(1 + zz)3 izxx) (2.14)

we deduce relation (2.12) from relation (2.13) and we obtain

~
(

2

(1 + zz)2 zt +
−2z2

(1 + zz)2 zt

)
= s2J0a2

0(
4zz2 + 4z

(1 + zz)4 i (zx)2 +
4zz4 + 4z3

(1 + zz)4 i (zx)2 +

−2

(1 + zz)2 i (zxx) +
−2z2

(1 + zz)2 i (zxx))− s2J02∆
2z2z − 2z

(1 + zz)2 i (2.15)

we multiply relation (2.14) in −z and add with relation (2.15) then we will have

~
(

2

(1 + zz)
zt

)
= s2J0a2

0(
4z

(1 + zz)2 i (zx)2 +
−2

(1 + zz)
izxx)− s2J02∆

2z2z − 2z

(1 + zz)2 i

i~zt = s2J0

(
−2a2

0z

1 + zz
z2
x + a2

0zxx + ∆
2z(zz − 1)

1 + zz

)
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then the another form of Landau-Lifshitz equation by use stereographical projection for top plane
is

i~zt + s2J0

(
−a2

0zxx +
2a2

0z

1 + |z|2 z
2
x + ∆

2z(1− |z|2)

1 + |z|2

)
= 0

then this equation after scale transformation can be written as

izt − zxx +
2z

1 + |z|2 z
2
x +

(
s2J0

ω0~

)2

∆
2z(1− |z|2)

1 + |z|2 = 0 (2.16)

b) The relationship between the complex parameters z and Sx, Sy, Sz by stereographical projection
for bottom plane is given with the following relations

1asd.jpg

Sx =
z + z

1 + zz
, Sy =

z − z
1 + zz

i, Sz =
zz − 1

1 + zz

with use chain rule we have

Szx =
2z

(1 + zz)2 zx +
2z

(1 + zz)2 zx

SyxxS
z − SzxxSy =

2zz4 + 2z3 − 2zz2 − 2z

(1 + zz)4 i (zx)2 +
−2zz4 − 2z3 + 2zz2 + 2z

(1 + zz)4 i (zx)2 +

−zz3 − z2 + zz + 1

(1 + zz)3 i (zxx) +
zz3 + z2 − zz − 1

(1 + zz)3 i (zxx)

SxxxS
z − SzxxSx =

2z4z + 2z3 + 2z2z + 2z

(1 + zz)4 (zx)2 +
2z4z + 2z3 + 2z2z + 2z

(1 + zz)4 (zx)2 +

−zz3 − z2 − zz − 1

(1 + zz)3 zxx +
−zz3 − z2 − zz − 1

(1 + zz)3 zxx

then the another form of Landau-Lifshitz equation by stereographical projection for bottom plane
is

i~zt + s2J0

(
a2

0zxx −
2a2

0z

1 + |z|2 z
2
x + ∆

2z(|z|2 − 1)

1 + |z|2

)
= 0

then this equation after scale transformation can be written as

izt + zxx −
2z

1 + |z|2 z
2
x +

(
s2J0

ω0~

)2

∆
2z(|z|2 − 1)

1 + |z|2 = 0 (2.17)

3 Nonstandard Finite Difference Method

3.1 Introduction to NSFD or NFSD Rules

The genesis of nonstandard finite difference (NSFD) modelling procedures began with the 1989
publication of Mickens [4]. Extensions and a summary of the known results up to 1994 are given
in Mickens [5]. This class of schemes and their formulation center on two issues. First, how should
discrete representations for derivatives be determined, and second, what are the proper forms to be
used for nonlinear terms. A brief and first introduction to the discrete derivative issue is discussed
in the paper by Mickens et al. [6]. We suppose decay equation [7]

du

dt
= −λu, u(0) = u0
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Note that the usual forward Euler representation for the first-derivative is

du

dt
→ uk+1 − uk

h

However ,the discrete first-derivative for decay equation is given by the expression

du

dt
→ uk+1 − uk

φ

where the denominator function φ is

φ =
1− e−λh

λ
and the denominatorfunction satisfies the condition

φ(λ, h) = h+O(λh2)

This way of constructing discrete derivatives can be easily extended to partial derivatives. The linear
harmonic oscillator is modeled by following second-order ODE. The linear harmonic oscillator is
modeled by the following second-order ODE [7]

d2u

dt2
+ ω2 = 0

whereω is a real constant.the discrete second-derivative for this equation is given by the expression

d2u

dt2
→ uk+1 − 2uk + uk−1

4
ω2 sin2

(
hω
2

)
where h = ∆t, tk = hk.the ”exact” NSFD scheme is

uk+1 − 2uk + uk−1

4
ω2 sin2

(
hω
2

) + ω2uk = 0.

This way of constructing discrete derivatives can be easily extended to partial derivatives In general,
the NSFD rules do not lead to a unique discrete model for either ODEs or PDEs. However, this a
priori nonuniqueness can often be partially resolved by appeal to various constraints applied to the
discrete equations modelling the differential equations. For example, if the ODE or PDE has special
solutions, such as fixed points or traveling waves, the requirement that the discrete equations also
have these solutions along with the corresponding (linear) stability properties will often force the
discrete models to only assume a small set of possible structures [8].

3.2 Implementation of NSFD for Landau-Lifshitz Equation

we use forward and backward and central difference method(explicit method or SFD) for equation
(2.16) then

i
zi,j+1 − zi,j−1

2τ
− zi+1,j − 2zi,j + zi−1,j

h2
+

2zi,j
1 + |zi,j |2

(
zi+1,j − zi−1,j

2h
)2+

(
s2J0

ω0~
)2∆

2zi,j(1− |zi,j |2)

1 + |zi,j |2
= 0 (3.1)

and the NSFD scheme for this equation is

i
zi,j+1 − zi,j−1

2τ
− zi+1,j − 2zi,j + zi−1,j

4

( s2J0

ω0~ )2∆
2(−1+|zi,j |2)

1+|zi,j |2

sin2(
h

√
( s2J0

ω0~ )2∆
2(−1+|zi,j |2)

1+|zi,j |2

2
)

+
2zi,j

1 + |zi,j |2
(
zi+1,j − zi−1,j

2h
)2+
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(
s2J0

ω0~
)2∆

2zi,j(1− |zi,j |2)

1 + |zi,j |2
= 0 (3.2)

we use forward and backward and central difference method(explicit method) for equation (2.17)
then

i
zi,j+1 − zi,j−1

2τ
+
zi+1,j − 2zi,j + zi−1,j

h2
− 2zi,j

1 + |zi,j |2
(
zi+1,j − zi−1,j

2h
)2+

(
s2J0

ω0~
)2∆

2zi,j(|zi,j |2 − 1)

1 + |zi,j |2
= 0 (3.3)

and the NSFD scheme for this equation is

i
zi,j+1 − zi,j−1

2τ
+

zi+1,j − 2zi,j + zi−1,j

4

( s2J0

ω0~ )2∆
2(−1+|zi,j |2)

1+|zi,j |2

in2(
h

√
( s2J0

ω0~ )2∆
2(−1+|zi,j |2)

1+|zi,j |2

2
)

− 2zi,j
1 + |zi,j |2

(
zi+1,j − zi−1,j

2h
)2+

(
s2J0

ω0~
)2∆

2zi,j(−1 + |zi,j |2)

1 + |zi,j |2
= 0 (3.4)

4 Numerical Result

To derive a numerical solution of the Landau-Lifshitz equation we use the analytical solitonic
solution [1] of the Landau-Lifshitz equation as initial condition. We know for magnetic solitons
moving with velocity υ exact solution is [1]

tan2 θ

2
=

µ2

Ωcosh2µξ − [Ω−Ω1]
2

,

ξ = z − ντ =
2

√
a1∆− ω −

(ν
2

)2

(4.1)

Now for obtain approximation solution at h = 0.1, τ = 0.002,∆ = 0.1, ν = 0.1, 0.3, 0.6, 0.8 at T = 10
for SFD and NSFD scheme that we got and we used (4, 1) as initial valu As a result we will receive
a magnetoelastic solitonic solution,which could be considered as magnetic polaron. In Fig. 1, Fig.
2 we show the error of SFD and NFSD scheme at ν = 0.1 and in Fig. 3, Fig. 4 we show the error
of SFD and NFSD scheme at ν = 0.3.

Fig. 1. Errore of SFD method for ν = 0.1
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Fig. 2. Errore of NSFD method for ν = 0.1

Fig. 3. Errore of SFD method for ν = 0.3

Table 1. Maximum absolute errors for ν = 0.3

T SFD method NSFD method

1 5.0000(−5) 5.0000(−5)

2 1.0000(−4) 1.0000(−4)

3 1.2000(−4) 1.1000(−4)

4 1.4000(−4) 1.3000(−4)

5 1.6000(−4) 1.4000(−4)

6 1.9000(−4) 1.6000(−4)

7 2.2000(−4) 1.8000(−4)

8 2.5000(−4) 2.0000(−4)

9 2.9000(−4) 2.1000(−4)

10 3.3000(−4) 2.3000(−4)

In Tables 1, 2 we calculated the Maximum absolute errors for ν = 0.1, 0.3.
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Fig. 4. Errore of NSFD method for ν = 0.3

Table 2. Maximum absolute errors for ν = 0.1

T SFD method NSFD method

1 5.30000(−5) 3.0000(−5)

2 5.0000(−5) 5.0000(−5)

3 6.0000(−5) 7.0000(−5)

4 8.0000(−5) 8.0000(−5)

5 1.0000(−4) 1.0000(−4)

6 1.2000(−4) 1.1000(−4)

7 1.3000(−4) 1.1000(−4)

8 1.4000(−4) 1.2000(−4)

9 1.6000(−4) 1.3000(−4)

10 1.8000(−4) 1.4000(−4)

We also did this for ν = 0.6, 0.8

Fig. 5. Errore of SFD method for ν = 0.6
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Fig. 6. Errore of NSFD method for ν = 0.6

Fig. 7. Errore of SFD method for ν = 0.8

Table 3. Maximum absolute errors for ν = 0.6

T SFD method NSFD method

1 2.0000(−5) 3.000(−5)

2 4.0000(−5) 6.0000(−5)

3 6.0000(−5) 9.0000(−5)

4 7.0000(−5) 1.2000(−4)

5 9.0000(−5) 1.5000(−4)

6 1.1000(−4) 1.8000(−4)

7 1.3000(−4) 2.1000(−4)

8 1.4000(−4) 2.4000(−4)

9 1.5000(−4) 2.7000(−4)

10 1.7000(−4) 3.0000(−4)
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Fig. 8. Errore of NSFD method for ν = 0.8

Table 4. Maximum absolute errors for ν = 0.8

T SFD method NSFD method

1 1.0000(−5) 2.0000(−5)

2 2.0000(−5) 4.0000(−5)

3 3.0000(−5) 6.0000(−5)

4 4.0000(−5) 8.0000(−5)

5 5.0000(−5) 1.0000(−4)

6 7.0000(−5) 1.1000(−4)

7 8.0000(−5) 1.3000(−4)

8 8.0000(−5) 1.5000(−4)

9 9.0000(−5) 1.7000(−4)

10 1.0000(−4) 1.8000(−4)

5 Conclusion and Future Works

According to numerical examples, it can be concluded that if the velocity is near the 1 the error
of SFD method is less than that of the NSFD method, and ν � 1 the error of NSFD method is
less than that of the SFD method, but in general ,both of these methods have a close error but to
increase the accuracy of calculation, we can select kind of method according to the value of velocity.
In this paper we wanted to use two methods to find the approximate solution and compare them.
In the future we intend to use this method to solve dynamic systems that is a combination of
Landau-Lifshitz equation and wave equation.
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