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In this paper, a beta operator is used with Caputo Marichev-Saigo-Maeda (MSM) fractional differentiation of extended Mittag-
Leffler function in terms of beta function. Further in this paper, some corollaries and consequences are shown that are the
special cases of our main findings. We apply the beta operator on the right-sided MSM fractional differential operator and on
the left-sided MSM fractional differential operator. We also apply beta operator on the right-sided MSM fractional differential
operator with Mittag-Leffler function and the left-sided MSM fractional differential operator with Mittag-Leffler function.

1. Introduction

Fractional calculus is a fast-growing field of mathematics
that shows the relations of fractional-order derivatives and
integrals. Fractional calculus is an effective subject to study
many complex real-world systems. In recent years, many
researchers have calculated the properties, applications, and
extensions of fractional integral and differential operators
involving the various special functions.

Integral and differential operators in fractional calculus
have become a research subject in recent decades due to the
ability to have arbitrary order. Special functions are the func-
tions that have improper integrals or series. Some of the well-
known functions are the gamma function, beta function, and
hypergeometric function.

Many researchers establish compositions of new frac-
tional derivative formula called MSM Caputo-type fractional
operators on well-known functions like the Mittag-Leffler
function.

Owolabi [1] studied the dynamic evolution of chaotic and
oscillatory waves arising from dissipative dynamical systems
of elliptic and parabolic types of partial differential equations.

Owolabi [2] deals with the numerical solution of space-time-
fractional reaction-diffusion problems used to model some
complex phenomena that are governed by the dynamic of
anomalous diffusion. The time- and space-fractional
reaction-diffusion equation is modeled by replacing the
first-order derivative in time and the second-order derivative
in space, respectively. Owolabi and Shikongo [3] expanded
the studies on a tumor-host model with chemotherapy appli-
cation, by considering a model which includes terms that can
express both intrinsic drug resistance and drug-induced
resistance. Owolabi et al. [4] studied chaotic dynamical sys-
tems. In the models, integer-order time derivatives are
replaced with the Caputo fractional-order counterparts. A
Chebyshev spectral method is presented for the numerical
approximation. Owolabi [5] is concerned with the formula-
tion and analysis of a reliable numerical method based on
the novel alternating direction implicit finite difference
scheme for the solution of the fractional reaction-diffusion
system. The integer first-order derivative in time is replaced
with the Caputo fractional derivative operator.

Yavuz [6] investigated the novel solutions of fractional-
order option pricing models and their fundamental
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mathematical analyses. The main novelties of this paper are
the analysis of the existence and uniqueness of European-
type option pricing models providing to give fundamental
solutions to them and a discussion of the related analyses
by considering both the classical and generalized Mittag-
Leffler kernels. Yavuz and Abdeljawad [7] presented a funda-
mental solution method for nonlinear fractional regularized
long-wave (RLW) models. Since analytical methods cannot
be applied easily to solve such models, numerical or semiana-
lytical methods have been extensively considered in the
literature.

Sene and Srivastava [8] presented a new stability notion
of the fractional differential equations with exogenous input.
Motivated by the success of the applications of the Mittag-
Leffler functions in many areas of science and engineering,
Sene [9] addresses new applications of the generalized
Mittag-Leffler input stability to the fractional-order electrical
circuits. He considered the fractional-order electrical circuits
in the context of the generalized Caputo-Liouville derivative.

Singh [10] deals with certain new and interesting features
of the fractional blood alcohol model associated with the
powerful Hilfer fractional operator. The solution of the
model depends on three parameters such as (i) the initial
concentration of alcohol in the stomach after ingestion, (ii)
the rate of alcohol absorption into the bloodstream, and
(iii) the rate at which the alcohol is metabolized by the liver.
Singh et al. [11] studied the solution of the local fractional
Fokker-Planck equation (LFFPE) on the Cantor set. They
performed a comparison between the reduced differential
transformmethod (RDTM) and local fractional series expan-
sion method (LFSEM) employed to the LFFPE. Singh et al.
[12] analyzed the local fractional Poisson equation (LFPE)
by employing the q-homotopy analysis transform method
(q-HATM). They have studied PE in the local fractional
operator sense. To handle the LFPE, some illustrative exam-
ple was discussed.

Kumar et al. [13] deal with a fractional extension of the
vibration equation for very large membranes with distinct
special cases. A numerical algorithm based on the homotopic
technique is employed to examine the fractional vibration
equation. The stability analysis is conducted for the suggested
scheme.

Kilbas et al. [14] have been working on the composition
of Riemann-Liouville fractional integration and differential
operators. Rao et al. [15] introduced the result that fractional
integration and fractional differentiation are interchanged.
Agarwal and Jain [16] developed fractional calculus formula
of polynomial using the series expansion method. Further, it
is expressed in terms of Hadamard product.

Nadir and Khan [17] applied Caputo-type MSM frac-
tional differentiation on Mittag-Leffler function. Mondal
and Nisar [18] applied the Marichev-Saigo-Maeda operator
on the Bessel function. Nadir and Khan [19] applied the
Marichev-Saigo-Maeda differential operator and generalized
incomplete hypergeometric functions.

Nadir et al. [20] studied the extended versions of the gen-
eralized Mittag-Leffler function. Nadir and Khan [21, 22]
used fractional integral operator associated with extended
Mittag-Leffler function. Nadir and Khan [23] applied Weyl

fractional calculus operators on the extended Mittag-Leffler
function.

Srivastava et al. [24] defined the following function:
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where Θðfkngn∈N0
; xÞ is considered to be analytical with jxj

<R, 0 <R<∞fkngn∈N0
which is a sequence of Taylor-

Maclaurin coefficients m0 and ϖ which are constants and
depend upon the bounded sequence fkngn∈N0

.
As the series,

E
knf gn∈N0 ;γð Þ

ε,μ x, pð Þ = 〠
∞

k=0

B
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B γ, 1 − γð Þ
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Γ εk + μð Þ ,
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where

x, μ, γ ∈ C ;R εð Þ > 0
R μð Þ > 0,R γð Þ > 1 : ρ ≥ 0

 !
ð3Þ

is known as the extension of the Mittag-Leffler function. It is
defined by Parmar [25].

Mittag-Leffler function with special cases is given as
follows.

(i) When Kn = ðρÞn/ðσÞn, then the extended form of
Equation (2) takes the form:

E ρ,σð Þ: γ
ε,μ x ; ρð Þ = 〠

∞

k=0

B ρ,σð Þ
ρ γ + k, 1 − γ : ρð Þ

B γ, 1 − γð Þ
xk

Γ εk + μð Þ ⋅

ð4Þ

Under the condition,

x, μ, γ ∈ C ;R εð Þ > 0,R σð Þ > 0
R εð Þ > 0,R μð Þ > 0,R γð Þ > 1 ; ρ ≥ 0

 !
: ð5Þ

(ii) If we select a bounded sequence Kn = 1, then
Equation (2) reduces to the definition of Özarslan
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and Yilmaz [26]
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:

ð6Þ

(iii) Another special case of Equation (2) is when Kn = 1
and ρ = 0, then Equation (2) reduces to the Prabha-
kar’s function (Prabhakar [20]) of three parameters:

Eε,μ
γ x ; ρð Þ = 〠

∞

k=0

γkð Þxk
Γ εk + μð Þk! ,

ε, μ, γ ∈ c ;R εð Þ > 0,R μð Þ > 0ð Þ:
ð7Þ

(iv) If we set ε = μ = 1, then our expression for

E
ðfkngn∈N0 ;γÞ
ε,μ Eðρ,σÞ: γ

ε,μ and Eγ
ε,μ reduces to the extended

confluent hypergeometric functions:
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2. The Confluent Hyper Geometric Function

The confluent hypergeometric function by Rainville [27] is
well defined as 2F1ða, b ; c ; xÞ which is represented by hyper-
geometric series.

2F1 a, b ; c ; xð Þ = 〠
∞
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:
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3. The Hadamard Product of the Power Series

As indicated in Pohlen [28],
let

g zð Þ = 〠
∞

m=0
xm zm,
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∞
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ð10Þ

be the two power series, then the Hadamard product of
power series is defined as follows:
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where Rg and Rh stand for radii of convergence of the
above series gðzÞ and hðzÞ, respectively. Therefore, in gen-
eral, it is to be noted that if the one power series is an analyt-
ical function, then the series of Hadamard products are also
the same as an analytical function.

4. Beta Function

The beta function by Saigo and Maeda [29] is defined as
follows:

B f zð Þ, p, qð Þ =
ð1
0
zp−1 1 − zð Þq−1dz = Γ pð ÞΓ qð Þ

Γ p + qð Þ ⋅ ð13Þ

5. Appell Function

Appell function by Rainville [27] of first kind F3 is basically a
two-variable hypergeometric function defined as follows:
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6. The Left-Sided MSM Fractional
Differential Operator

The left-sided Marichev-Saigo-Maeda fractional differential
operator containing Appell F3 function in their kernel by
Saigo and Maeda [29] is defined as follows:

Let

α, α1, ω, ω1, μ, ρ ∈ C, x > 0 Dα,α1,ω,ω1,μ
0+ f

	 

xð Þ = I−α,−α1,−ω,−ω1,−μ

0+ f
	 


xð Þ

= dn

dxn
Iα,−α1,−ω,−ω1+n,+μ+n
0+ f

	 

xð Þ,

ð15Þ

where RðμÞ > 0 and n = ½Rð−μÞ + 1�.

7. The Right-Sided MSM Fractional
Differential Operator

The right-sided Marichev-Saigo-Maeda fractional differen-
tial operator containing Appell function F3 in their kernel
by Saigo and Maeda [29] is as follows:
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Let

α, α1, ω, ω1, μ, ρ ∈ C, x > 0 Dα,α1,ω,ω1,μ
0− f

	 

xð Þ = I−α,−α1,−ω,−ω1,−μ
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xð Þ

= −1ð Þn dn

dxn
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x,∞ f
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where RðμÞ > 0 and n = ½Rð−μÞ + 1�.

Lemma 1. Let ω, λ, β, ρ ∈ c, x > 0 be such thatRðωÞ > 0, then

Dω,λ,β
+ tρ−1

� �
xð Þ = Γ ρð ÞΓ ρ + β + ω + λð Þ

Γ ρ + βð ÞΓ ρ + λð Þ xρ+λ+1, ð17Þ

where

R ρð Þ>− min 0,R ω + λ + βð Þf gð Þ: ð18Þ
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Dω,λ,β
− tρ−1

� �
xð Þ = Γ 1 − ρ − λð ÞΓ 1 − ρ + ω + βð Þ

Γ 1 − ρ + β − λð ÞΓ 1 − ρð Þ xρ+λ+1,
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where
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8. The Left-Sided MSM Fractional Differential
Operator with Mittag-Leffler Function

Theorem 5. Let ω, λ, β, ρ ∈ CR > 0 be such that ðRðρ + σkÞ
>− min f0,Rðω + λ + βÞgÞ, then the following result holds
true:
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where

Δ = p, σð Þ, ρ, σð Þ, ρ + β + ω + λ, σð Þ, 1, σð Þf g,
Δ′ = p + q, σð Þ, ρ + β, σð Þ, ρ + ν, σð Þf g:

ð26Þ

Proof.
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By using the definition of beta function (Equation (13)), by
using Lemma (Equation (17)), and changing ρ by ρ + σk,
we get the following:
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+ tρ−1E
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By using Hadamard product (Equation (11)), we get the
following:

B Dω,λ,β
+ tρ−1E
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ε,μ

� �
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:
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Corollary 6. Let ω, λ, β, ρ ∈ CR > 0 be such that ðRðρ + σkÞ
>− min f0,Rðω + λ + βÞgÞ. Under the stated conditions, the
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right-sided Caputo fractional differential operator of extended
Mittag-Leffler function is defined as follows:

B Dω,λ,β
+ tρ−1Eγ

ε,μ

� �
x tsð Þσð Þ
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zð Þ ; p, q

n o
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,

ð30Þ

where

Δ = p, σð Þ, ρ, σð Þ, ρ + β + ω + λ, σð Þ, 1, σð Þf g,
Δ′ = p + q, σð Þ, ρ + β, σð Þ, ρ + λ, σð Þf g:

ð31Þ

Select a bounded sequence kn = 1 and then proceed (Equation
(30)).

Corollary 7. Let ω, λ, β, ρ ∈ CR > 0, such that ðRðρ + σkÞ>
− min f0,Rðω + λ + βÞgÞ. Under the stated conditions, the
right-sided Caputo fractional differential operator of extended
Mittag-Leffler function is defined as follows:
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where

Δ = p, σð Þ, ρ, σð Þ, ρ + β + ω + λ, σð Þ, 1, σð Þf g,
Δ′ = p + q, σð Þ, ρ + β, σð Þ, ρ + λ, σð Þf g:

ð33Þ

If we select ξ = μ = 1, then an extension of the Mittag-
Leffler function can be expressed in terms of the extended con-
fluent hypergeometric functions.

Theorem 8. Let β, β′, ε, ε′, η, ρ ∈ C and m = ½RðηÞ� + 1,
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R −β − β′ − ε′ + η
� �

8<
:

9=
;, ð34Þ

then
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where
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� �
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n o
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Proof.
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� �
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By using the definition of beta function (Equation (13))
and by using lemma (Equation (22)), we get the following:

B Dβ,β
+ ′,ε,ε′,η tρ−1E

knf gn∈N0 ;γð Þ
ε,μ

� �
x tsð Þσð Þ zð Þ ; p, q

� �

= 〠
∞
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Γ p + q + σkð Þ

�
Γ ρð ÞΓ ρ − ε + βð ÞΓ β + β′ + ε′ − η + ρ

� �
Γ −ε + ρð ÞΓ β + ε′ − η + ρ

� �
Γ β + β′ − η + ρ
� � × xβ+β′−η+ρ−1:
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By changing ρ by ρ + σk,

B Dβ,β
+ ′,ε,ε′,η tρ−1E

knf gn∈N0 ;γð Þ
ε,μ

� �
x tsð Þσð Þ zð Þ ; p, q

� �

= 〠
∞
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xk
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� �
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� �
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By using the Hadamard product which is given in
(Equation (11)), we get the following:
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� �
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� �
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Δ
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; xzσ

" #
:
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Corollary 9. Let the parameters β, β′, ε, ε′, η, ρ ∈ C and
m = ½RðηÞ� + 1, and under the stated conditions, the left-
sided Caputo fractional differential operator of extended
Mittag-Leffler function is defined as follows:

B Dβ,β
+ ′,ε,ε′,η tρ−1Eγ

ε,μ

h i
x tsð Þσð Þ zð Þ ; p, q

n o

= Zβ+β′−η+ρ−1Γ qð ÞEγ
ε,μ xzσð Þ∗5Ψ4

Δ

Δ′
; xzσ

" #
,

ð41Þ

where

Δ = ρ, σð Þ, −ε + ρ + β, σð Þ, β + β′ + ε′ − η + ρ, σ
� �

, 1, σð Þ, p, σð Þ
n o

,

Δ′ = −ε + ρ, σð Þ, β + β′ − η + ρ, σ
� �

, β + ε′ − η + ρ, σ
� �

, p + q, σð Þ
n o

:

ð42Þ

Select a bounded sequence kn = 1and then proceed (Equa-
tion (41)).

Corollary 10. Let the parametersβ, β′, ε, ε′, η, ρ ∈ C and m =
½RðηÞ� + 1, and under the stated conditions, the left-sided
Caputo fractional differential operator of extended Mittag-
Leffler function is defined as follows:

B Dβ,β
+ ′,ε,ε′,η

�
tρ−1Φ

knf gn∈N0ð Þ
p γ ; 1 ; x tsð Þσð Þ

�
zð Þ ; p, q

� �

= zβ+β′−η+ρ−1Γ qð ÞEγ
ε,μΦ

knf gn∈N0ð Þ
p γ ; 1 ; xzσð Þ∗5Ψ4

Δ

Δ′
; x z/sð Þσ

" #
,

ð43Þ

where

Δ = ρ, σð Þ, β − ε + ρ, σð Þ, β + β′ + ε′ − η + ρ, σ
� �

, 1, σð Þ, p, σð Þ
n o

,

Δ′ = −ε + ρ, σð Þ, β + β′ − η + ρ, σ
� �

, β + ε′ − η + ρ, σ
� �

, p + q, σð Þ
n o

:

ð44Þ

If we select ξ = μ = 1, then an extension of theMittag-Leffler
function can be expressed in terms of the extended confluent
hypergeometric functions.

9. The Right-Sided MSM Fractional Differential
Operator with Mittag-Leffler Function

Theorem 11. Let ω, λ, β, ρ ∈ CR > 0 where ðRðρ − σkÞ < 1
+min fRð−λ − nÞ,Rðβ + ωÞg and n = ½RðωÞ� + 1, then the
following result holds true:

B Dω,λ,β
− tρ−1E

knf gn∈N0
;γð Þ

ε,μ

� �
x t/sð Þ−σð Þ

� �
zð Þ ; p, q

� �

= zρ+λ+1Γ −q + 2ð ÞE knf gn∈N0
;γð Þ

ε,μ xz−σð Þ∗4Ψ3

Δ

Δ′
; xz−σ

" #
,

ð45Þ

where

Δ = −p + 2, σð Þ, 1 − ρ − λ, σð Þ, 1 − ρ + ω + β, σð Þ, 1, σð Þf g,
Δ′ = −p − q + 4, σð Þ, 1 − ρ + β − λ, σð Þ, 1 − ρð Þf g:

ð46Þ

Proof.

B Dω,λ,β
− tρ−1E

knf gn∈N0 ;γð Þ
ε,μ

� �
x t/sð Þ−σð Þ

� �
zð Þ ; p, q

� �

=
ð1
0
s− p−σk−1ð Þ 1 − sð Þ− q−1ð Þ Dω,λ,β

− tρ−1E
knf gn∈N0 ;γð Þ

ε,μ

� �
x tð Þ−σð Þ

� �
zð Þ,

=
ð1
0
s−p+σk+1 1 − sð Þ−q+1 〠

∞

k=o

B
knf gn∈N0ð Þ

p r + k, 1 − γ ; pð Þ
B γ, 1 − γð Þ

xk

Γ εk + μð Þ

× Dω,λ,β
− tρ−σk−1

� �
xð Þ, =

ð1
0
s−p+σk+2−1 1 − sð Þ−q+2−1

� 〠
∞

k=o

B
knf gn∈N0ð Þ

p r + k, 1 − γ ; pð Þ
B γ, 1 − γð Þ

xk

Γ εk + μð Þ × Dω,λ,β
− tρ−σk−1

� �
xð Þ:

ð47Þ

By using the definition of beta function (Equation (13)), by
using lemma (Equation (19)), and changing ρ by ρ − σk, we
get the following:

B Dω,λ,β
− tρ−1E

knf gn∈N0 ;γð Þ
ε,μ

� �
x t/sð Þ−σð Þ

� �
zð Þ ; p, q

� �

= 〠
∞

k=o

B
knf gn∈N0ð Þ

p r + k, 1 − γ ; pð Þ
B γ, 1 − γð Þ

xk

Γ εk + μð Þ

× Γ −p + 2 + σkð ÞΓ −q + 2ð ÞΓ 1 − ρ + σk − λð ÞΓ 1 − ρ + σk + ω + λð Þ
Γ −p − q + 4 + σkð ÞΓ 1 − ρ + σk + β − λð ÞΓ 1 − ρ + σkð Þ zρ+λ+1:

ð48Þ

By using Hadamard product (Equation (11)), we get the
following:

B Dω,λ,β
− tρ−1E

knf gn∈N0 ;γð Þ
ε,μ

� �
x t/sð Þ−σð Þ

� �
zð Þ ; p, q

� �

= Zρ+λ+1Γ −q + 2ð ÞE knf gn∈N0 ;γð Þ
ε,μ xt−σð Þ∗4Ψ3

Δ

Δ′
; xt−σ

" #
:

ð49Þ

Corollary 12. Let ω, λ, β, ρ ∈ CR > 0where ðRðρ − σkÞ < 1
+min fRð−λ − nÞ,Rðβ + ωÞg, ½RðωÞ� + 1Þ; under the stated
conditions, the left-sided Caputo fractional differential
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operator of extended Mittag-Leffler function is defined as
follows:

B D
ω,λ,β

− tρ−1Eγ
ε,μ

� �
x t/sð Þ−σð Þ

� �
zð Þ ; p, q

n o

= zω,λ,β− Γ −q + 2ð ÞEγ
ε,μ xz−σð Þ∗4Ψ3

Δ

Δ′
; xz−σ

" #
,

ð50Þ

where

Δ = −p + 2, σð Þ, 1 − ρ − λ, σð Þ, 1 − ρ + β + ω + λ, σð Þ, 1, σð Þf g,
Δ′ = −p − q + 4, σð Þ, 1 − ρ + β − λ, σð Þ, 1 − ρ, σð Þf g:

ð51Þ

Select a bounded sequence kn = 1 and then proceed (Equa-
tion (50)).

Corollary 13. Let ω, λ, β, ρ ∈ CR > 0 where ðRðρ − σkÞ < 1
+min fRð−λ − nÞ,Rðβ + ωÞg, ½RðωÞ� + 1Þ; under the stated
conditions, the left-sided Caputo fractional differential opera-
tor of extended Mittag-Leffler function is defined as follows:

B Dω,λ,β
− tρ−1Φ

knf gn∈N0ð Þ
p

� �
γ ; 1 ; x t/sð Þ−σð Þ

� �
zð Þ ; p, q

� �

= zω,λ,βΓ −q + 2ð ÞΦ knf gn∈N0ð Þ
p γ ; 1 ; xz−σð Þ∗4Ψ3

Δ

Δ′
; xz−σ

" #
,

ð52Þ

where

Δ = −p + 2, σð Þ, 1 − ρ − λ, σð Þ, 1 − ρ + β + ω + λ, σð Þ, 1, σð Þf g,
Δ′ = −p − q + 4, σð Þ, 1 − ρ + β − λ, σð Þ, 1 − ρ, σð Þf g:

ð53Þ

If we select ξ = μ = 1, then an extension of the Mittag-
Leffler function can be expressed in terms of the extended con-
fluent hypergeometric functions.

Theorem 14. Letβ, β′, ε, ε′, η, ρ ∈ C and m = ½RðηÞ� + 1 be
such that

R ρð Þ +m >max
R −ε′
� �

,R β′ + ε − η
� �

R β + β′ − η
� �

+mÞ

8><
>:

9>=
>;, ð54Þ

then

B Dβ,β
− ′,ε,ε′,η tρ−1E

knf gn∈N0
;γð Þ

ε,μ

� �
x t/sð Þ−σð Þ zð Þ ; p, q

� �

= Zβ+β′−η+ρ−1Γ −q + 2ð ÞE knf gn∈N0
;γð Þ

ε,μ xz−σð Þ∗5Ψ4

Δ

Δ′
; xz−σ

" #
,

ð55Þ

where

Δ = 1 + ε′ − ρ, σ
� �

, 1 − β − β′ + η − ρ, σ
� �

, 1 − β′ − ε + η − ρ, σ
� �

, 1, σð Þ, −p + 2, σð Þ
n o

,

Δ′ = 1 − ρ, σð Þ, 1 − β′ + ε′ − ρ, σ
� �

, 1 − β − β′ − ε + η − ρ, σ
� �

, −p − q + 4, σð Þ
n o

:

ð56Þ

Proof.

B Dβ,β
− ′,ε,ε′,η tρ−1E

knf gn∈N0 ;γð Þ
ε,μ

� �
x t/sð Þ−σð Þ zð Þ ; p, q

� �

=
ð1
0
s− p−σk−1ð Þ 1 − sð Þ− q−1ð Þ Dβ,β

− ′,ε,ε′+η tρ−1E
knf gn∈N0

;γð Þ
ε,μ

� �
x tð Þ−σð Þ

� �
zð Þ,

=
ð1
0
s−p+σk+1 1 − sð Þ−q+1 Dβ,β

− ′,ε,ε′+η tρ−1E
knf gn∈N0;γð Þ

ε,μ

� �
x tð Þ−σð Þ

� �
zð Þ,

=
ð1
0
s−p+σk+1 1 − sð Þ−q+1 〠

∞

k=o

B
knf gn∈N0ð Þ

p r + k, 1 − γ ; pð Þ
B γ, 1 − γð Þ

xk

Γ εk + μð Þ

× Dβ,β
− ′,ε,ε′,ηtρ−σk−1

� �
xð Þ, =

ð1
0
s−p+σk+2−1 1 − sð Þ−q+2−1

� 〠
∞

k=o

B
knf gn∈N0ð Þ

p r + k, 1 − γ ; pð Þ
B γ, 1 − γð Þ

xk

Γ εk + μð Þ × Dβ,β
− ′,ε,ε′,ηtρ−σk−1

� �
xð Þ:

ð57Þ

By using a definition of beta function (Equation (13)) and
by using lemma (Equation (24)), we get the following:

B Dβ,β
− ′,ε,ε′,η tρ−1E

knf gn∈N0 ;γð Þ
ε,μ

� �
x t/sð Þ−σð Þ zð Þ ; p, q

� �

= 〠
∞

k=o

B
knf gn∈N0ð Þ

p r + k, 1 − γ ; pð Þ
B γ, 1 − γð Þ

xk

Γ εk + μð Þ × Γ −p + 2 + σkð ÞΓ −q + 2ð Þ
Γ −p − q + 4 + σkð Þ

×
Γ 1 + ε′ − ρ
� �

Γ1 − β − β′ + η − ρ
� �

Γ 1 − β′ − ε + η − ρ
� �

Γ 1 − ρð ÞΓ 1 − β′ + ε′ − ρ
� �

Γ 1 − β − β′ − ε + η − ρ
� � xβ+β ′−η+ρ−1:

ð58Þ

By putting ρ = ρ − σk,

B Dβ,β
− ′,ε,ε′,η tρ−1E

knf gn∈N0
;γð Þ

ε,μ

� �
x t/sð Þ−σð Þ zð Þ ; p, q

� �

= 〠
∞

k=o

B
knf gn∈N0ð Þ

p r + k, 1 − γ ; pð Þ
B γ, 1 − γð Þ

xkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εk + μð Þp × Γ −p + 2 + σkð ÞΓ −q + 2ð Þ

Γ −p − q + 4 + σkð Þ

×
Γ 1 + ε′ − ρ + σk
� �

Γ1 − β − β′ + η − ρ + σk
� �

Γ 1 − β′ − ε + η − ρ + σk
� �

Γ 1 − ρ + σkð ÞΓ 1 − β′ + ε′ − ρ + σk
� �

Γ 1 − β − β′ − ε + η − ρ + σk
� �

× xβ+β′−η+ρ−σk−1:

ð59Þ

By Hadamard product (Equation (11)), we get the
following:

B Dβ,β
− ′,ε,ε′,η tρ−1E

knf gn∈N0 ;γð Þ
ε,μ

� �
x t/sð Þ−σð Þ zð Þ ; p, q

� �

= Zβ+β′−η+ρ−1Γ −q + 2ð ÞE knf gn∈N0 ;γð Þ
ε,μ xtσð Þ∗5Ψ4

Δ

Δ′
; xzσ

" #
:

ð60Þ
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Corollary 15. Let the parameters β, β′, ε, ε′, η, ρ ∈ C and
m = ½RðηÞ� + 1, and under the stated conditions, the right-
sided Caputo fractional differential operator of extended
Mittag-Leffler function is defined as follows:

B Dβ,β
− ′,ε,ε′,η tρ−1Eγ

ε,μ

h i
x t/sð Þ−σð Þ zð Þ ; p, q

n o

= Zβ+β′−η+ρ−1Γ −q + 2ð ÞEγ
ε,μ xz−σð Þ∗5Ψ4

Δ

Δ′
; xz−σ

" #
,

ð61Þ

where

Δ = 1 + ε′ − ρ, σ
� �

, 1 − β − β′ + η − ρ, σ
� �

, 1 − β′ − ε + η − ρ, σ
� �

, 1, σð Þ, p, σð Þ
n o

,

Δ′ = 1 − ρ, σð Þ, 1 − β′ + ε′ − ρ, σ
� �

, 1 − β − β′ − ε + η − ρ, σ
� �

, p + q, σð Þ
n o

:

ð62Þ

Select a bounded sequence kn = 1 and then proceed
(Equation (61)).

Corollary 16. Let the parameters β, β′, ε, ε′, η, ρ ∈ C and
m = ½RðηÞ� + 1, and under the stated conditions, the right-
sided Caputo fractional differential operator of extended
Mittag-Leffler function is defined as follows:

B Dβ,β
− ′,ε,ε′,η tρ−1Φ

knf gn∈N0ð Þ
p

� �
γ ; 1 ; x t/sð Þ−σð Þ zð Þ ; p, q

� �

= Zβ+β′−η+ρ−1Γ −q + 2ð ÞΦ knf gn∈N0ð Þ
p γ ; 1 ; xz−σð Þ∗5Ψ4

Δ

Δ′
; xz−σ

" #
,

ð63Þ

where

Δ = 1 + ε′ − ρ, σ
� �

, 1 − β − β′ + η − ρ, σ
� �

, 1 − β′ − ε + η − ρ, σ
� �

, 1, σð Þ, p, σð Þ
n o

,

Δ′ = 1 − ρ, σð Þ, 1 − β′ + ε′ − ρ, σ
� �

, 1 − β − β′ − ε + η − ρ, σ
� �

, p + q, σð Þ
n o

:

ð64Þ

If we select ξ = μ = 1, then an extension of the Mittag-
Leffler function can be expressed in terms of the extended
confluent hypergeometric functions.

Remark 17. In this paper, beta operator was applied on
Caputo MSM fractional differentiation of extended Mittag-
Leffler function. New results and some corollaries had been
demonstrated. Above corollaries can easily be derived if we
select ξ = μ = 1, and then, the above results reduce for classi-
cal confluent hypergeometric functions.

10. Conclusion

We accomplish our current consideration by commenting
further the outcomes acquired here by the beta operator with
Caputo MSM fractional differentiation of extended Mittag-
Leffler function. It is to be noted that the results in our study

will sufficiently be significant, most generally in nature and
capable for the differential transform techniques with the
numerous special functions through appropriate selections
by means of arbitrary parameters that will be elaborated in
these consequences. So, the outcomes existing in our explora-
tion will be relied upon leading some potential application in
various fields like numerical, physical, measurable, and
design sciences. Differential operators are very useful for
solving problems. In many fields of applied sciences, espe-
cially in extended form of functions like beta function,
gamma function, Gauss hypergeometric function, confluent
hypergeometric function, and Mittag-Leffler function, the
Mittag-Leffler function rises certainly in the solution of
fractional-order integral equations and in the examinations
of the fractional generalization of the kinetic equation.
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