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Abstract

In this study, a new generalization of the normal distribution called the unit half logistic normal (UHLN)
distribution has been proposed by introducing a shape parameter into the normal distribution to make it more
flexible. Several statistical properties of the new distribution which include; the cumulative hazard function,
reversed hazard function, hazard rate average function, quantile function, moments, moment generating
function and order statistics has been derived. Estimators such as the maximum likelihood, ordinary least
squares, weighted least squares and Cramér-von Mises were developed for the new model. The performances
of the estimators were investigated via Monte Carlo simulation using six different sample sizes and replicated
5000 times. The maximum likelihood was observed to be the most consistent and the best technique, hence
was used to estimate the parameters of the new distribution. The applications of the UHLN distribution was
demonstrated using three different datasets and compared with the normal, transmuted normal, beta normal,
McDonal normal and logistic distributions. The results revealed that the UHLN distribution performs better
for the given datasets.
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1 Introduction

Researchers in the field of statistical distribution continue to develop new parametric distributions or generalize
the existing ones in the quest to obtain more flexible distributions or improve upon the performances of the
existing ones in modeling datasets. This has become necessary because most of the existing statistical
distributions always fail to give best fit to the new forms of data evolving randomly on daily basis with varied
characteristics. In statistical data analysis, the choice of an appropriate model for the analysis is done based on
which of them provides the best fit for a given dataset.

The normal distribution is the most popular classical distribution with wider applications in several fields.
However it is only best at modeling symmetric data and fails to provide best fit to asymmetric and heavy tailed
datasets. As a result several researchers have proposed the generalization of the normal distribution to improve
upon its flexibility in modeling real data sets with varying degrees of skewness and kurtosis. These include the
lognormal [1], folded normal [2], skew normal [3], beta normal [4], the generalized normal [5], McDonald
normal [6], gamma normal [7], odd-log logistic normal [8] and transmuted normal [9] distributions among
others. This study therefore proposes another generalization of the normal distribution called the unit half
logistic normal (UHLN) using the unit half logistic generated (UHL-G) family of distribution proposed by [10]
by introducing a shape parameter into the normal distribution.

The remaining part of the article is organized as follows: Section 2 presents the UHLN distribution. Section 3
presents the statistical properties of the UHLN distribution. Section 4 presents the estimation methods for the
parameters of the new distribution. Section 5 presents a simulation experiment to assess the performance of the
estimators of the UHLN distribution. Empirical applications of the UHLN using three different datasets are
presented in section 6. Section 7 presents the conclusion of the study.

2 UHLN Distribution

For any random variable Y that follows the half logistic distribution, [10] proposed that, a random variable
22t

T =e™" follows the unit half logistic distribution with its PDF given as f (t) = m,/i >0,0<t<1.They
+

applied the T - X transformation technique proposed by [11], to transform the PDF of the unit half logistic
distribution to obtain the unit half logistic-generated (UHL-G) family with CDF given as

St 26 (k)
W) 14G(x¢)
vector of parameters and G (X; 5) is the CDF of the baseline distribution with corresponding PDF ¢ (X; é‘) of

F(x)

— XeR,4>0, where, A is an extra shape parameter, & is a px1

A-1
209(%E)G(X;
the UHL-G family is given as f(x)= 9(x£)6( i) ,xeR.  Suppose that the cumulative
A
[1+G(x;§) ]
distribution function (CDF) of normal distribution is given by

G ( Yi G) = (D(y%"uj ,—0 <y <00,—00< 1 <0,0< o and the corresponding probability density

1 . 2
exp {__(uj },—oo <y <. The CDF, PDF and
(o2

function (PDF) given by g (y;,u,a) = >

Hazard rate function of the random variable Y that follow the UHLN distribution, using [10] UHL-G family of
distribution are respectively given by
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where, —oo < 1 < oois the location parameter, o > O'is the scale parameter and A > Q is the shape parameter.

Henceforth, we represent a random variable Y that follows the UHLN distributionas Y ~ UHLN (,u, o, /1).
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Fig. 1. (a) PDF and (b) Hazard plot of the UHLN distribution

Fig. 1 gives the plot of the PDF and hazard rate functions respectively for different parameter values. From Fig.
1, it can be observed that the density of the UHLN distribution exhibits different shapes such as right skewed,
left skewed and nearly symmetric with varying degrees of kurtosis measures. The hazard rate function also
exhibits different monotonically increasing shapes for different combination of parameter values.
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3 Statistical Properties of the UHLN Distribution

3.1 Mixture Representation

The mixture representation of the density of the UHLN distribution is very helpful in deriving the properties of
the UHLN distribution. The mixture representation is presented in this subsection.

Lemma 1. The PDF of the UHLN distribution can be expressed in a mixture form as

A(i+1)1
f(y;u,0,4) 2/12 [y ”j{q{ﬁﬂ ,—00 < Y <00, (4)

O O

where, ¢(u) is the PDF of the normal distribution.
o

Proof. Using the generalized binomial expansion,

0 n+k-1 -
y+a :Z [ jyka”k,|y|<aandthatO<CD(yO_’uj<l.Thenwehave
=0

[o{r5) o =g (5]

Substituting equation (5) into the PDF of the UHLN distribution stated in equation (2), we get

T il S

Hence
- . A(i+1)-1
f(yipo,2)=22> (1) (' leq{ﬁ}[q)(y—_ﬂﬂ yeR.
i=0
This completes the proof of lemma 1.
3.2 Cumulative Hazard Function
Cumulative hazard function (CHF) is the accumulated probability of failures up till timet. The CHF is very

useful in survival and reliability data analysis in the field of biology and engineering. By definition, the CHF is
given by

H(y) =—logS(y) = joyh(t)dt.

Hence the CHF H (y; U, o, /1) of the UHLN distribution is given by
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(6)

3.3 Hazard Rate Average Function

Hazard rate average function (HRAF) is a function that is used to determine the average rate of increase or
decrease of the hazard rate. By definition the HRAF is given by

w(y)zw

y

where, H ( y) is the CHF. Therefore the HRAF of the UHLN distribution is given by

log

(Yo d)=—= O]

3.4 Reversed Hazard Function

Reversed hazard rate function (RHRF) also known in literature as the retro hazard is very crucial in survival
data analysis. It is used in the estimation of survival function and the analysis of censored data. The reversed

hazard rate function is the ratio of the PDF to the corresponding CDF. Let r(y;y,a,i)denote the reversed
hazard rate function of the UHLN distribution. By definition, the retro hazard is given by

f(y;u.0,2)

r(y,u,o,1)= (o 7)

Therefore the HRAF of the UHLN distribution is given by
1 2 A-1
2)Lexp{—(y_ﬂj }[qb(y_ﬂﬂ
2\ o o
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3.5 Quantile Function

The quantile function is the inverse of the CDF and it is very useful in generating random numbers for a given
probability distribution. It is also useful in describing some properties of a given distribution such as the median,

quartiles, skewness and kurtosis [12]. Let the quantile function of UHLN distribution be denoted as Qy (u)
The quantile function of the UHLN distribution is given by

1
Q, (u)=o~2erf* Z(ﬁy 1|+ muel01], ©

where erf () is the inverse of the error function.

The mean is usually overlooked for the median as the most appropriate measure of central tendency required for
data that contain outliers or extreme values [12]. The median of UHLN distribution Qy (0.5) is obtained by

substituting U = 0.5 into the quantile function expressed in equation (9).

Therefore the median of the UHLN distribution is given by
1
Q, (0.5)=o2erf {2(3)& —1} + 4. (10)

Similarly, the lower quartile Q, (0.25) and the upper quartile Q, (0.75) are obtained by substituting
U=0.25 and u=0.75 respectively into the quantile function. The inter quartile range (IQR) is

{Q,(0.75)-Q, (0.25)}
2

and the

IQR=Q, (0.75)—Qy (0.25), the quartile deviation (QD) is QD =

Q,(0.75)-Q, (025)}
{Q,(0.75)+Q, (0.25)}

skewness (BS)proposed by [13] and Moors’ coefficient of kurtosis (MK) proposed by [14] are both useful

coefficient of quartile deviation (CQD) is CQD =

. Bowley’s coefficient of

measures of shapes of a distribution and are respectively calculated using the quantiles as follows;

{Q,(0.75)+Q, (0.25)-2Q, (0.5)}

= ,and

{Q,(0.75)-Q, (0.25)}

MK =

{Q,(0.375)-Q, (0.125)+Q, (0.875)-Q, (0.625)}
{Q,(0.75)-Q, (0.25)} '

Table 1 shows the lower quartile, median, upper quartile, inter quartile range, quartile deviation, coefficient of
quartile deviation, Bowley’s coefficient of skewness and Moor’s coefficient of kurtosis for some chosen
parameter values of the UHLN distribution. From Table 1, it can be observed that the Bowley’s coefficient of
skewness shows that the quantile of the UHLN distribution can be left skewed, right skewed or approximately
symmetric and the Moor’s coefficient of kurtosis shows the quantile of the UHLN distribution can only be
leptokurtic.
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Table 1. Quantiles and quantile measures of shapes

H o 3 Q,(025) Q,(05) Q(07) IQR QD CQD BS MK
10 5 0200  -29.2409 -23.2123 -17.1015 12.1394 6.0697 -0.2620 0.0068 1.2276
0500  -20.2270 -16.1032 -11.7923 8.4347 4.2173 -0.2634 0.0221 1.2369
0.100  -38.9451 -30.7288 -22.5471 16.3980 8.1990 -0.2667 -0.0021 1.2217
0.600  -18.8097 -14.9672 -10.9223 7.8874 3.9437 -0.2653 0.0256 1.2389
125 15 1.585 43288 125003 21.4435 17.1147 85573 0.6641 0.0451  1.2492
1.000 -35136  6.0391 16.3002 19.8138 9.9069 1.5496 0.0358  1.2443
2.600 11.4882 18.4982 26.3236 14.8354 7.4177 0.3923 0.0550 1.2542
10.500 26.8620 31.7796 37.5461 10.6841 5.3420 0.1659 0.0794 1.2666
0 27 5.000  12.4478 22.9893 35.0498 22.6020 11.301 0.4759 0.0672  1.2604
14.000 30.4424 38.7775 48.6344 18.1920 9.0960 0.2301 0.0837 1.2688
28.000 40.4314 47.7535 56.5693 16.1379 8.0690 0.1664 0.0926  1.2736
9.000 23.2650 32.4220 43.1081 19.8432 99216 0.2990 0.0771 1.2654
3.6 Moments

Moments are very useful in statistical data analysis. They are used to obtain the measures of central tendencies,

measures of dispersion and measures of shapes. The following proposition gives the r™ non-central moment of
the UHLN distribution.

Proposition 1. The r™ non-central moment of the UHLN distribution is given by
. © i o ] r & K
i3S (2 o [ S|

where, 1, _j 29(z)[1-@(z ]dzwdl

Proof. By definition

:Ij:o y"dF (y).

Substituting the mixture form of the PDF from Lemma 1, into the definition and letting z :(

J

k=0

A(i+1)-1

A(i+1)-1

K ]I jik +(_1)j Ij,/l(i+1)—1:|’

i+1)-1

dz.

-],

Y =o0Z+ u, which also implies % =cordy=0dz.
z

Thus

Uy = Z/Ii(—l
i—0

+1 O'j ,u+0'Z

(z)[@(z

e

)[1-o(2)]"

(11)

(o3

(12)

Simplifying using binomial expansion and further evaluating the integral in equation (12) thus

[ Zo)fo(2)]" " =Y (-

k=0

[w11)_1jszj¢<z>[1—®<zﬂ de+(-1) [, 2(z)[1-

Combining equations (12) and (13) we have

k

uj , then

A(i+1)-1

o(2)]

dz. (13)
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H k=0

2333 143 2 o [;]{im)k i ) m}

This completes the proof of proposition 1.

Table 2 shows the first six moments, standard deviation (SD), coefficient of variation (CV), coefficient of
skewness  (CS) and  coefficient of  kurtosis (CK) for |:u=50c=40and A=34,

l: u=27,06=16.3and 1 =0.5,11l: x=3,0=20and 1 =33

and IV: u=250=24and A =20 parameter values of the UHLN distribution. The SD, CV, CS and CK
values are calculated using;

: T ' 3
SD=\i, 2, cv=2= |2 1 cs= b ?ﬂﬂzjiﬂ and
H H (,uz_lu)

CK = Ha=AHps+61" 1ty = 34"
' 2 2
(/Jz_,u )

From Table 2, the CS values show that the UHLN distribution can be left skewed, right skewed or nearly
symmetric. Also, the values of the CK show that the UHLN distribution can be leptokurtic, platykurtic and
closely mesokurtic. This implies the UHLN distribution can model heavy or light tailed data as well as left, right
or symmetric datasets. These characteristics of the UHLN distribution signify it is highly flexible.

, respectively.

Table 2. First six moments, SD, CV, CS and CK

u I T i v

u, 92116436 7.204978 3.861621x10" 1952992 x10"
4,  2793911x10° 4.472179x10° 160729010’ 1.055911x10°
4,  1536615x10* 8.924934x10° 6.933251x10" 5.749423x10*
4,  8503834x10° 5.628270x10° 3.091270x10° 3.150428x10°
u.  4731781x10’ 1619216x10’ 1420577 x10° 1736130x10°
4,  2.645545x10° 1043645x10° 6.709021x10° 9.616622x10°
SD  1.591267x10" 1.988231x10" 1.077397 x10" 2.597101x10"
CV 3110109 2.759524 2 790011x10™* 1329806

CS 2815767 8.135320x10™ —1.359280 6.009370x10™"
CK  9.010588 2.795356 6.794911 1404617
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3.7 Moment Generating Function

MGF is an alternative representation of the PDF of a random variable. If the MGF of a random variable exist, it
can be used to obtain all the moments of the random variable. The MGF of the UHLN distribution is given by
the following proposition.

Proposition 2. The MGF of the UHLN distribution is given by

Proof. By definition, the MGF is given by

M, (t)= E tY J' eVdF (y).

Using the Taylors series,

Hence

M, (=213 3 3L () 1)[;j(€jjwf [i(—lr[“”kl)‘lju,k+<—1>" m}

r=0 i=0 j=l

This completes the proof of proposition 2.
3.8 Order Statistics

Order statistics is an elementary tool but vital in non-parametric statistics and statistical inference. It helps in
computing the minimum and maximum values as well as the range of a sampled random variable. It is also

useful in estimating the sample median and other quantiles. Suppose that Y,Y,,...,Y, is an independent
identically distributed random sample from the UHLN distribution, that isY ~ UHLN (,u, 0',/1), where, Yi's

are sorted in increasing order of magnitude withY; <Y, , <...<Y, VY ,i=1,2,...,n. The PDF of the pth

i+1

order statistics of the UHLN distribution for p =1,2,..., nis given by

fon (¥) =m FNFWIT-FO™ 9

where, f (y)and F(y)are the PDF and the CDF of the UHLN distribution respectively, and B(,-)is the
beta function. Since 0 < F (y) <1for—oo < y < oo. Using binomial series to expand and evaluate the CDF in

equation (15) the PDF of the pth order statistics of the UHLN distribution in equation (15) becomes
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l n p n— p p+j-1
f ()2 . (16)
()= pen 2 ( ][ ()]

Further substituting the PDF and the CDF of the UHLN distribution into equation (16), yields the PDF of the
pth order statistics of the UHLN distribution.

4 Parameter Estimation

This section presents the parameter estimation methods for the UHLN distribution. Four estimation methods are
used to estimate the parameters. These include: Maximum likelihood estimation (MLE), ordinary least squares
(OLS), weighted least squares (WLS) and Cramér-von Mises (CVM).

4.1 Maximum Likelihood Estimation

Supposed that Y, Y,,..., ¥, are independent identically distributed random observations of size N obtained

from UHLN(y; U, 0, /1). If 9= (,u, o, Z)' is the vector of parameters, then total log-likelihood function is
given by

g(y;s):nmg(m)_[nlog(a Zﬂ)}lég[%ﬂ{(i—ﬂgbg[ (1 j}”

el

The maximum likelihood estimates of the parameters can be obtained by maximizing directly the total log-
likelihood function in equation (18). Alternatively, the score functions can be equated to zero and solving the
system of equations to obtain the maximum likelihood estimates. The score functions are obtained by
differentiating equation (18) with respect to each of the parameters. The score functions are:

o1(y9) \F eXp{ (y' ]] {‘{Mrf(of )}erx'{ (yl )] -Z ) a9

)

R e
{ } )exp{_;(w)zHM(ﬁf j}uﬂiﬁ(%’f@m

P e ¢

(18)

and

10
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ol(y:9) : {1+erf[a\/_j}l 1+erf(2y_ﬂj
y n+ 0 +e )i + n . 21
Mt

o2

The score functions are then solved simultaneously by equating equations (19), (20) and (21) to zero to obtain
or(y;9 ol(y;9
the maximum likelihood estimates of each parameter. That is, % =0, % =0 and
1] o

ol(y:9)
oA

equations are solved numerically to obtain the parameter estimates z, o andA.

= 0. However the score functions do not have closed form, therefore the resulting system of

4.2 Least Squares Estimation

[15] developed the least squares estimation method for estimating the parameters of a distribution which
comprise of the ordinary least squares (OLS) and the weighted least squares (WLS). Supposed that

y(l),y(z),...,y(n) are independent identically distributed random observations of size N obtained from

UHLN(y; U, O, l), where, y('is) are sorted in order statistics. If 3 = (,u, o, l)’ is the vector of parameters,

then the OLS parameter estimates £y, 0oLs and Aovs of the UHLN distribution are obtained by minimizing
the function:

n

L(y;8)=Z[F(y(i);8)—LT, (22)

Y n+1

with respect to the parameters g, and A . Similarly, the WLS estimates Aws, £ s and ows are
obtained by minimizing the function

WL(y;s):z":W{F(ym;S)—LT, @3)

= i(n-i+1) n+1
with respect to the parameters £z, and A to obtain the following equations.

4.3 Cramér-von Mises Estimation

The CVM approach is an alternative parameter estimation technique that is based on the minimum distance
estimation methods and observed to have the least bias relative to the other minimum distance estimation

techniques. For independent identically distributed random observations, Yoy Y2y Yo of size N sorted in

order statistics obtained from UHLN ( Y, i, o, ﬂ,). If 9= (,u, o, ﬂ)' is the vector of parameters, then CVM

parameter estimates Acwm, Loy @nNd ocvm. of the UHLN distribution are obtained by minimizing the
function:

11
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19 2i-17
CVM(y;S):ﬁ+;[F(yﬁ);8)—?} : (24)

with respect to the parameters zz, o and A.

5 Simulation Study

A simulation experiment was carried out with three different sets of parameter values:
l:u=44,0=951=0.5 II:u=-05,0=125,A=29and Ill:u=0.3,06=1451=6.6
using six different sample sizes: n = 25,50, 75,100,125,150 and the process was replicated N =5000.

The average absolute bias (AB) and root mean square error (RMSE) of the estimators of the parameters are
computed and compared to identify the best estimation techniques for the parameters. The outcome of the
simulation experiments are presented in Tables 3, 4 and 5. The AB and RMSE of the parameters are calculated
using,

N ’
,and RMSE = %Z(S—S)Z,respectively, where, 8:(;1 o /1) .From

i=1

i=1

AB:‘%ZN:(S—S)

Tables 3, 4 and 5 it can be seen that, the MLE is the most efficient and the only consistent estimator of the
UHLN distribution since it has the least AB and RMSE values and its AB and RMSE values reduces as the
sample sizes increases. This implies that the MLE has clearly shown dominance over all the other proposed
estimators and hence it is considered the best techniques to estimate the parameters of the UHLN distribution.

Table 3. Monte Carlo simulation results for yz=4.4,0=9.5and 2 =0.5

Parameter N AB RMSE
MLE OLS WLS CVM MLE OLS WLS CVM
p=44 25 31556 31404 29104  3.4385 52935 52847 50927 55667
50  2.3897 2.3966 2.3940 2.8500 46202  4.6506 45758 4.9582
75 2.2459 2.5698 2.4143 2.7920 4.4389 4.6463 4.1180 4.8767
100 18392 19023 17993 2.0502 4.1478 4.2082 4.1085 44132
125 17267 2.2199 17790 2.1378 4.0080 4.3804 4.0568 4.3929
150 12970 19545 18018 2.0307 36721 4.1623 4.5434 4.2575
o=95 25 0.4495 0.7372 0.7968 0.2435 2.0452 2.1297 2.0611 2.2416
50 0.4768 0.8414 0.8850 0.6318 18849 2.0355 19713 2.0124
75 0.5401 0.9046 0.8503 0.7325 17429 18695 18112 18806
100 0.4622 0.7919 0.6873 0.6372 16949 17890 17302 17867
125 0.4236 0.8266 0.6655  0.6420 16015 17644 16582 17443
150 0.3000 0.7869 0.6778 0.6705 14984 17090 16358 16916
1=05 25 02128 02069 02044  0.2078 0.3541 03351  0.3296  0.3542
50 0.1716 0.1814 0.1835 0.1958 0.3231 0.3162 0.3146 0.3338
75  0.1637 0.1935 0.1873  0.2003 0.3131  0.3181  0.3165 0.3324
100 0.1348 0.1526 0.1439 0.1547 0.2929 0.2900 0.2884 0.3005
125 0.1258 0.1723 0.1432 0.1607 0.2817 0.3051 0.2868  0.3043
150 0.0983 0.1603 0.1454 0.1601 0.2598 0.2958 0.2867 0.3014

12
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Table 4. Monte Carlo simulation results for 1z=-5,0=12.4and 1 =2.9

Parameter N AB RMSE
MLE OLS WLS CVM MLE OLS WLS CVM
H=-D 25 26338 30224 31895 2.8604 85629 87407 88564 8.7900
50  2.6297 29503 30833 30112 8.4652 89002 88170 89713
75 23788 23827 22474 25721 82035 86286 83631 8.6837
100 2.6922 28917 25788 3.2448 81241 86692 83836 8.9348
125 27140 30816 2.8845 3.0943 8.0561 88038 84965 8.9503
150 22135 2.6031 24478 2.6544 74250 8.2325 7.9472 85210
o=124 25 15032 0.9033 10070 15416 34348 33142 33091 36513
50 12299 10242 11010 13690 31738 32232 32390 33825
75 11087 0.9298 0.8792 12200 29478 3.0840 29856 31994
100 11518 10398 0.9743 13168 2.8993 3.0985 29224 32046
125 11436 11689 11357 13236 28791 31288 3.0296 3.2389
150 0.8929 0.9927 0.9274 11411 25722 29056 27628 30372
A=29 25 0.0043 0.2018 0.2065 0.0812 18137 17131 17364 18050
50 0.0912 0.1852 0.2149 0.1516 17460 17328 17384 17893
75 0.0462 0.0434 0.0282 0.0535 17211 17417 17143 17737
100 0.1735 0.2155 0.1508 0.2623 16718 17023 16721 17463
125 0.1905 0.2340 0.2053 0.2006 16655 17333 17030 17785
150 0.1341 0.1605 0.1496 0.1255 15606 16662 16323 17217
Table 5. Monte Carlo simulation results for 1z=0.3,0=14.5and 1 =6.6
Parameter N AB RMSE
MLE OLS WLS CVM MLE OLS WLS CVM
=03 25 04355 04911 04765 0.4533 10367 10577 10540 10406
50 0.4581 0.5516 0.4946 0.5364 10565 10767 10644 10770
75 04530 0.4719 04734 0.4871 10598 10621 10696 10762
100 0.3636 0.4208 0.3668 0.4429 10444 10536 10346 10624
125 0.3403 0.4351 0.3659 0.4441 10354 10546 10444 10610
150 0.2842 0.4156 0.3026 0.4189 10212 10577 10174 10562
o=145 25 0.4821 0.4220 0.3451 0.7723 15395 15392 14975 17488
50 0.1492 0.0296 0.0235 0.2637 11624 11438 11520 12175
75 0.0453 0.0255 0.0035 0.1962 0.9529 10274 0.9746 10876
100 0.0046 0.0690 0.0757 0.0286 0.8673 0.9325 0.8963 0.9566
125 0.0237 0.0697 0.0501 0.0578 0.7831 0.8743 0.8238 0.8852
150 0.0167 0.1080 0.0686 0.0064 0.7423 0.8318 0.7697 0.8539
A=66 25 09231 0.7344 0.6581 11059 18265 17940 17389  2.0037
50 0.6323 0.4751 0.4790 0.6832 13837 13310 12846 14275
7505022 0.3610 0.4274 0.5635 11869 11543 11693 12920
100 0.3432 0.2809 0.2563 0.3935 10191 10125 0.9549 10728
125 0.3332 0.3038 0.2830 0.4105 0.9599 0.9858 0.9346 10347
150 0.2759 0.2865 0.2322 0.3837 0.8477 09184 0.8414 0.9702
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6 Applications

This section presents the application of the UHLN distribution using three empirical datasets. The flexibility of
the UHLN distribution is also demonstrated in this section and compared with normal (N), transmuted normal
(TN) [9], beta-normal (BN) [4], McDonald normal (McDN) [6] and logistic (L) distribution based on their log-

likelihood (ﬁ), Akaike Information Criterion (AIC), Corrected Akaike Information Criterion (AICc) and

Bayesian Information Criterion (BIC) selection criteria and also on Anderson-Darling (A-D) and Cramér-von
Mises (CVM) goodness-of-fit tests. When comparing candidate statistical distributions for any given data, the

distribution with the highest log-likelihood (f), whiles having the least AIC, AlCc, BIC, A-D and CVM is
considered the best for that data.

6.1 Dataset I: Deep Groove Ball Bearings

Table 6 presents the descriptive statistics of the number of million revolutions before failure of ball bearings. It
can be seen from Table 6 that the minimum number of million revolutions before failure of ball bearings is
17.88 million and the maximum is 173.4 million. Also, the median number of million revolutions before failure
is 67.8 million. The mean and standard deviation are 72.2296 million and 37.4804 million respectively. From
Table 6, it is observed that the coefficient of skewness is 0.8812 and the excess kurtosis is 0.1921 which
indicates that the data is right skewed and leptokurtic. The deep groove ball bearings data is a life test involving
23 balls, it is found in [16] and it was used previously by [17].

Table 6. Descriptive statistics for dataset |

Min. Max. Median Mean Std. Skewness Kurtosis
17.8800 173.4000 67.8000 72.2296 37.4804 0.8812 0.1921

Table 7 presents the maximum likelihood estimates of the parameters of fitted distributions with their
corresponding standard errors and p-values both in brackets using dataset 1. The significance of the parameter
estimates were tested using their p-values. From Table 7, it is observed that the UHLN, N and L distributions
have all their parameters to be significant at 5% level. One each of the parameters of TN and McDN are
observed not to be significant at 5% level. Table 7 also indicated that all the four parameters of the BN are not
significant at 5% level.

Table 7. Maximum likelihood estimates of parameters for data set |

Model a b c U o 1
UHLN -405.0937 127.3305 10000
SE (77.0664) (21.6921) (0.4853)
p-value (<0.0001) (<0.0001) (<0.0001)
N 72.2343 36.6585
SE (7.6438) (5.4054)
p-value (<0.0001) (<0.0001)
TN 82.4460 37.6004 0.5226
SE (12.5428) (6.2907) (0.4786)
p-value (<0.0001) (<0.0001) (0.2744)
BN 4.1288 0.1792 8.2819 22.6891
SE (2.1855) (0.1993) (3.4488) (12.5002)
p-value 0.0589) (0.3687) (0.0163) (0.0695)
McDN 139.7333 364.2013 2.1053 -13.3090 783.9879
SE (21.4472) (47.9309) (0.0572) (18.4637) (54.1208)
p-value (<0.0001) (<0.0001) (<0.0001) (0.471) (<0.0001)
L 68.3494 20.4664
SE (7.4551) (3.5584)

p-value (<0.0001) (<0.0001)

14



Kobilla and Nasiru; AJPAS, 18(4): 1-21, 2022; Article no.AJPAS.89640

Table 8 presents the log-likelihood, model selection criteria and goodness-of-fit test for all the six distributions
under consideration using dataset I. From Table 8, it is observed that all the six distributions have passed the
goodness-of-fit test for dataset I. Even though the goodness-of-fit test indicated that data follows all the
distributions under consideration, but the UHLN distribution has the least chances of committing type | error.
Results from Table 8 shows that UHLN distribution has the highest value of { and the least values of AIC,
AlCc, BIC, A-D, and CVM which indicate that it has shown absolute dominance since the model with the
highest values of { and the least values of AIC, AlCc, BIC, A-D, and CVM is the best. Therefore the UHLN
distribution is the best model for dataset I.

Table 8. Log-likelihood and goodness-of-fit statistics for dataset |

Model Y4 AlIC AlCc BIC A-D CVM
UHLN -113.18 232.3556 233.6187 235.7620 0.2296 0.0403
p-value (0.9801) (0.9357)
N -115.47 234.9445 235.5445 237.2155 0.6122 0.1070
p-value (0.6347) (0.5552)
TN -115.05 236.1054 237.3685 239.5119 1.8969 0.3970
p-value (0.1052) (0.0728)
BN -113.38 234.7671 236.9893 239.3091 0.3615 0.0704
p-value (0.8848) (0.7537)
McDN -115.51 241.0101 2445395 246.6875 0.6166 0.1077
p-value (0.6305) (0.552)
L -115.35 234.6992 235.2992 239.3091 0.5122 0.0752
p-value (0.7326) (0.7246)

The probability probability plot gives the display of the goodness-of-fit tests of the fitted distributions in
describing dataset 1l. From Fig. 2, it can be seen that the UHLN distribution fit the data better than the others
since it matches the diagonal line closely.
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Fig. 2. Probability probability plot of the fitted distributions for dataset I

6.2 Datasets I1: Counts of White Blood Cell

Table 9 presents the descriptive statistics of white blood cell counts per litre of Australian Sports Athletes. From
Table 9, the minimum count of white blood cell is 3.3 and the maximum is 14.3. The median count is 6.85 and
the average and standard deviation of the counts of white cell are 7.1089 and 1.8003 respectively. It is also
observed that the coefficient of skewness and excess kurtosis of the data are 0.8290 and 1.4055 respectively.
This means that the data is skewed to the right and heavy tailed. Data Il is the counts of white blood cell per litre
of 202 Australian sports athletes and it is found in [18].
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Table 9. Descriptive statistics for dataset 11

Min. Max. Median Mean Std. Skewness Kurtosis
3.3000 14.3000 6.8500 7.1089 1.8003 0.8290 1.4055

Table 10 presents the maximum likelihood estimates of the parameters of fitted distributions with their
corresponding standard errors and p-values both in brackets using dataset Il. From Table 10, it is observed that

all the parameters of the UHLN and the other five distributions under consideration are significant except a of
BN distribution.

Table 10. Maximum likelihood estimates of parameters for data set 11

Model a b ¢ U o 1

UHLN -5.7348 4.9556 198.2556
SE (0.6449) (0.2705) (0.0110)
p-value (<0.0001) (<0.0001) (<0.0001)
N 7.1089 1.7959

SE (0.1264) (0.0893)

p-value (<0.0001) (<0.0001)

TN 7.8249 1.9154 0.6865
SE (0.2409) (0.1228) (0.1747)
p-value (<0.0001) (<0.0001) (<0.0001)
BN 224.1906 1195.3563 52.1533 44.8738

SE (218.7320) (3.9220) (11.6640) (12.7910)

p-value (0.3053) (<0.0001) (<0.0001) (0.0004)

McDN 276.1720 611.5821 12.8034 -101.2062 79.7462

SE (0.0693) (0.1007) (1.1734) (0.3869) (2.5425)

p-value (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

L 6.9965 0.9905

SE (0.1212) (0.05802)

p-value (<0.0001) (<0.0001)

Table 11 presents the log-likelihood, model selection criteria and goodness-of-fit test for all the six distributions
under consideration using dataset Il. The results of the goodness-of-fit tests contained in Table 11 shows that
dataset Il follows all the distributions under consideration except TN distribution. It is also observed that UHLN
distribution has the least values of AIC, AlCc, BIC, A-D and CVM and the highest of (. This simply means that
UHLN distribution is the best model for dataset I1.

Table 11. Log-likelihood and goodness-of-fit statistics for dataset 11

Model { AlC AlCc BIC A-D CVvM
UHLN -395.75 797.5013 797.6225 807.4261 0.3635 0.047182
p-value (0.8838) (0.8937)
N -404.90 813.7902 813.8505 820.4067 1.3570 0.22581
p-value (0.2146) (0.2226)
TN -401.47 808.9469 809.0681 818.8717 19.161 3.9836
p-value (<0.0001) (<0.0001)
BN -405.49 818.9858 819.1888 832.2188 1.4285 0.23737
p-value (0.1945) (0.2054)
McDN -404.66 819.3199 819.626 835.8612 1.3236 0.22049
p-value (0.2248) (0.2311)
L -401.58 807.1620 807.2223 813.7786 0.8736 0.10902
p-value (0.4307) (0.5429)
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Fig. 3 gives the probability probability plot of the fitted distributions using dataset I1. The probability probability
plot is used to check how well the fitted distributions respectively describe dataset Il. Fig. 3 shows clearly the
UHLN distribution gives the best fit than the other five fitted distributions.
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Fig. 3. Probability probability plot of the fitted distributions for dataset 11
6.3 Dataset 111: Weight of Pregnant Women

Table 12 presents the descriptive statistics of the weights of the 311 pregnant women at War Memorial Hospital-
Navrongo. Table 12 shows that the minimum weight of the pregnant women is 46kg and the maximum weight is
101kg. Also, the average weight of the pregnant women is 73.49587kg. The median and standard deviation are
75kg and 13.5459kg respectively. From Table 12, it is observed that the coefficient of skewness is -0.1598 and
the excess kurtosis is -0.8602 which indicates that the data is skewed to the left and less peaked relative to the
kurtosis of the normal distribution. Data Il is the weights in kilograms of 311 pregnant women during their last
antenatal visit to the Navrongo War Memorial Hospital before delivery and it was sourced from the Navrongo
War Memorial Hospital in January, 2022. The data on the weights of pregnant women obtained from the
Navrongo War Memorial Hospital is presented in Appendix.

Table 12. Descriptive statistics for dataset 111

Min. Max. Median Mean Std. Skewness Kurtosis
46 101 75 73.4958 13.5459 -0.1598 -0.8602

Table 13 presents the maximum likelihood estimates of the parameters of fitted distributions with their
corresponding standard errors and p-values both in brackets using dataset I11. The significance of the parameter
estimates were tested using their p-values. From Table 13, it is observed that all the parameters of the UHLN, N,

and L distributions are significant at 5% level. Two parameters, u and o for both BN and TN are significant at

5% level but the parameters @ ,b and o for BN, A for TN and all the parameters of the McDN distribution are
not significant at 5% level.

Table 14 presents the log-likelihood, information selection criteria and goodness of fit statistics for the six
distributions under consideration using dataset I1l. The A-D test in Table 14 fail to reject the hypotheses that
dataset Il follows the UHLN, N BN and McDN distributions. The CVM fail to reject that dataset 111 follows
UHLN, N, BN, McDN and L distributions. The results contained in Table 14 indicate that the UHLN
distribution is the best model for the data. The superiority of the UHLN distribution over the other models is
very obvious since it has the highest value of the log-likehood and the least values of AIC, BIC, AlCc, A-D and
CVM as shown in Table 14.
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Table 13. Maximum likelihood estimates of parameters for data set 111

Model a b N L o 1
UHLN 101.0219 2.2149 0.0138
SE (0.4514) (0.5284) (0.0061)
p-value (<0.0001) (<0.0001) (0.0247)
N 73.4958 13.5242
SE (0.7669) (0.5423)
p-value (<0.0001) (<0.0001)
TN 72.4902 13.5558 -0.1375
SE (1.6582) (0.5578) (0.1996)
p-value (<0.0001) (<0.0001) (0.4909)
BN 2.2940 21.2789 123.9667 36.5054
SE (3.0513) (48.9181) (60.9410) (30.4714)
p-value (0.4522) (0.6636) (0.0419) (0.2309)
McDN 1.3768 36.4615 13.0726 19.8469 76.4386
SE (1.6966) (158.0893) (59.0268) (346.7416) (198.4442)
p-value (0.4171) (0.8176) (0.8247) (0.9544) (0.7001)
L 73.7911 8.0608
SE (0.8119) (0.3716)

p-value (<0.0001) (<0.0001)

Table 14. Log-likelihood and goodness-of-fit statistics for dataset 111

Model ( AIC AlICc BIC A-D CVM
UHLN -1245.94 2497.884 2497.962 2509.104 1.8348 0.3192
p-value (0.1135) (0.1194)
N -1251.28 2506.564 2506.603 2514.044 2.2035 0.3647
p-value (0.0712) (0.0897)
TN -1251.05 2508.092 2508.171 2519.312 3.3454 0.6075
p-value (0.0184) (0.0214)
BN -1250.47 2508.945 2509.076 2523.904 1.9926 0.3385
p-value (0.0927) (0.1056)
McDN -1250.55 2511.103 2511.300 2529.802 1.9913 0.3397
p-value (0.0929) (0.1049)
L -1261.79 2527.573 2527.612 2535.053 2.7346 0.4258
p-value (0.0374) (0.0617)
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Fig. 4. Probability probability plot of the fitted distributions for dataset 111
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Fig. 4 displays the probability probability plot of the fitted distributions using dataset Ill. The probability
probability plot is a plot used to assess how well a distribution describes a given dataset. From Fig. 4, the UHLN
distribution provides the best fit for the data than the other five fitted distributions.

7 Conclusions

This study has developed a new generalization of the normal distribution called the unit half logistic normal
distribution (UHLN) by introducing a shape parameter A into the normal distribution. The UHLN distribution
turns out to be very flexible when it was fitted with three empirical datasets and compared to the modeling
abilities of normal, transmuted normal, beta normal, McDonald normal and logistic distributions. The density
and quantile functions of the UHLN distribution has shown that the distribution is highly flexible and capable of
modeling left, right or symmetric datasets as well as leptokurtic, platykurtic or mesokurtic data. The maximum
likelihood estimation technique was used in estimating the parameters of the UHLN distribution. Finally, three
datasets were used to demonstrate the flexibility of the UHLN distribution and it was revealed that the new
distribution provides the best fit for all the three datasets than several other competing models.
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Table Al1.1. Dataset I: Weights of 311 pregnant women at War Memorial Hospital-Navrongo
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