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Abstract 

 
This study considers test for seasonality in the additive model using the Buys-Ballot table and the nature of 

trending curves (linear, quadratic and exponential). The test is applied to the periodic and overall sample 

variances of the Buys-Ballot table to detect the presence and absence of seasonal indices in time series. 

 

 

Keywords: Additive seasonality; periodic variance; overall variance; buys-ballot table; trending curves; 

seasonal indices. 

 

1 Introduction 

 
It is important to note in time series that, the presence of a seasonal component in a time series is true and 

detection of seasonal periods are quiet easy. Good examples are; for monthly time series data, one time period is 

one twelfth of a year, it displays specific pattern that repeats every 12 observations, so s = 12. Similarly, for 

quarterly series, it is expected that between observations, four time point apart will yield s = 4. Therefore, s = 1 

is for one year time period, s = 2 for observations recorded half yearly, s = 3 for time series data recorded three 

times in a year, s = 6 for observations recorded six time in a year are other common values s. Seasonality in time 

series data can be observed as a pattern that repeats every k elements. Some graphical methods are used to 

detect the presence of seasonal effect in time series are: (1) a run sequence plot Chambers et al. [1]. (2) a 
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seasonal sub-series plot [2]; (3) multiple box plots [1]; (4) the autocorrelation plot [3]. Davey and Flores [4] 

added statistical tests for seasonality. Kendall and Ord [5] studied test of seasonality in time series analysis. 

Chatfield [6] presented the use of Buys-Ballot table for detecting the presence of trend and seasonal component 

in time series. 

  
A seasonal time series with m rows and s columns, m represents the period while s represents the seasons. This 

two-dimensional arrangement of a series is called the Buys-Ballot table (see Table 1). For details of the 

procedure see Iwueze and Nwogu [7], Nwogu et al. [8], Dozie et al. [9], Dozie and Ihekuna [10], Dozie and 

Nwanya [11], Dozie [12], Dozie and Uwaezuoke [13] and Dozie and Ibebuogu [14]. 

 

Iwueze and Nwogu [7] indicated that, for the trending curves (linear, quadratic and exponential), the seasonal 

variances depends only on the trend parameters for the additive model. Also, their study show that, if the 

seasonal variances are functions of trend parameters only, then the suitable model structure is additive. It is the 

series with seasonal effect in the seasonal variances of the Buys-Ballot table that make the proper model 

structure to be multiplicative. 

 

For additive model and selected trending curves (linear, quadratic and exponential) studied in this paper, the 

periodic and overall variances contain both the trending series of the original time series and seasonal indices. 

Hence, the test for seasonality using the periodic and overall variances for selected trending curves for detection 

of the presence and absence of seasonal indices has been developed and the model structure is additive. 

 

2 Methodology 

 
The summary of the Buys-Ballot estimates of the periodic and overall variances with error variances with linear 

trend component obtained by Dozie and Uwaezuoke [13] given in equations (4) and (5) while that of quadratic 

and exponential trend components by Iwueze and Nwogu [7] listed in equations (6), (7), (8) and (9) for additive 

model. 
 

Table 1. Buys-ballot table 
 

Rows (i) Columns j 

1 2                       
1                              

2                                     

3                                        

                    
                                                      

                    
                                                      

                              

                                    

                                   

Where, n = ms = length of the series, m is period and s is seasons 
 

2.1 Periodic and Overall Variances 
 

The Buys-Ballot estimates for periodic variances are listed in equations (1), (2) and (3) and that of overall 

variances are given in (4), (5) and (6) for selected trending curves for the purposes of detection of presence 

seasonal effects 
 

2.2 Linear Trending Curve  a bt   

 

2 2 2 2

. 1

1 1

1 2 1

2 1 1

s s

i j j

j j

s b
b s jS S

s s
 

 

 
    

  
                                                                        (1) 
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 2

2 2 2

1
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n n
 
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                                                                       (2) 

 

2.3 Quadratic Trending Curve  2a bt ct    
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                                     (3) 
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
                     

 (4) 

 

Where 1 2

1 1

,
s s

j j

j j

C jS C jS
 

    

 

2.4 Exponential Trending Curve ( )ctbe  

 

   
2

2 1 1 12 2 2

. 2
1 1
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 

                                  

        (6)  

 

3 Test for Seasonality in Time Series Analysis 

 
3.1 Properties of Additive Model  

 

(1)  . ..jX X
 

                                                                                                                          (7) 

(2) 

1

0. ..

s

j
jX X

 



 
  

 
 

                                                                                                                (8) 
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(3) 
2

.
..

j

XX
 

 
 

                                                                                                               (9) 

 

For properties of some selected trending curve, we observe the following before test of seasonality in the 

additive model (i) equation (7) contains trending parameters and seasonal effect at season j. (ii) for equation (8) 

the difference between the column mean and overall mean is equal to zero (iii) equation (9) depends on the 

trending curves of the original series (iv) for equations (10) and (11), a time series data should be de-trended 

before test of seasonality.  

 

3.2 Application of Test for Seasonality in the Buys-Ballot Table 
 

Matched pairs of data are applied to the periodic and overall variances of the Buys-Ballot For the matched pairs 

of data, ( , ), 1,2,...i iX Y i n , define i i id X Y  . For identification of the presence and absence of 

seasonal indices in time series data. Let iX  represents periodic and overall variances in the presence of seasonal 

indices and denote iY  represents periodic and overall variances in the absence of seasonal indices (Nwogu et al. 

[15]. 

 

3.3 For linear Trend, in the Presence of Seasonal Effect, the Periodic Variance is 

Obtained as 

 

2 2 2 2

. 1

1 1

1 2 1
( ) ( )

2 1 1

s s

i i j j

j j

s b
X L L b s jS S

s s
 
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 
     

  
 

                                          

   (10) 

 

When there is no seasonal indices, 0 1,2,..., ,jS j s    therefore, 

 

2 2

1

1
( )

2
i

s
Y L b s 

 
  

 
                                                                                                                  (11) 

 

and 

 

2

1 1

2 1
( ) ( )
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s s

i i i j j

j j

b
d X L Y L jS S

s s 
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 
                                                                      (12) 

 

Which is zero under null hypothesis ( : 0o jH S  ) 

 

3.4 The Overall Variance is Obtained as 

 

 2
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 
                                               (13) 

 

When there is no seasonal indices, 0 1,2,..., ,jS j s    therefore 

 

 2

2

1

1
( )

12
i

b n n
Y L 


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2

1 1

2
( ) ( ) ( )
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j j
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n n 
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                                                                (15) 

 

Which is zero under null hypothesis ( : 0o jH S  ) 

 

3.5 For Quadratic Trend, in the Presence of Seasonal Effect, the Periodic Variance is 

Obtained as 
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                                         (16)  

 

When there is no seasonal indices, 
2
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                                                            (17) 
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                                                         (18) 

 

Which is zero under null hypothesis ( : 0o jH S  ) 

 

3.6 The Overall Variance is Obtained as 
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Which is zero under null hypothesis ( : 0o jH S  ) 

 

3.7 For Exponential Trend, in the Presence of Seasonal effect, the Periodic Variance is 

Obtained as 
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 When there is no seasonal indices, 0 1,2,..., ,jS j s    therefore 
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Which is zero under null hypothesis ( : 0o jH S  ) 

 

3.8 The overall variance is obtained as 
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Which is zero under null hypothesis ( : 0o jH S  ) 

 

Table 2. Estimates in the presence of seasonal indices for row variances 
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Table 3. Estimates in the absence of seasonal indices for row variance 
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Table 4. Estimates in the presence of seasonal indices for overall variance 
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Table 5. Estimates in absence of seasonal indices for overall variance 
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Additive seasonality in time series is applied using matched pairs of data in the Buys-Ballot table for selected 

trending curves shown in equations (4), (5), (6), (7), (8) and (9). The test has been developed using the periodic 

and overall variances of the Buys-Ballot table. The estimates for the data in the presence of seasonal indices for 

periodic and overall variances are listed in Tables 2 and 4. While the estimates for series without seasonal 

indices for periodic and overall variances are given in Tables 3 and 5. The Buys-Ballot estimates obtained and 

listed in equations (12), (13), (14), (15), (16) and (17) indicate that, all the trending curves are functions of the 

seasonal indices only when the trend parameters are removed, while that of equations (18), (19), (20), (21), (22) 

and (23) are functions of trend parameters. 

 

4 Conclusion 

 
This study has examined the test for seasonality in additive model using the Buys-Ballot table for selected 

trending curves. The emphasis is to construct test for the identification of series with and without seasonal effect 

in time series data. The test has been developed using the periodic and overall variances of Buys-Ballot table for 

selected trending curves. The model structure is additive. The study indicates that, when the trend dominates the 

time series, the presence of the seasonal indices will be difficult to detect. Hence, it important to de-trend time 

series data before constructing test for seasonality in additive model as indicated by Tables 2 and 4 for selected 

trending curves while that of Tables 3 and 4 are functions of trending parameters of the original time series 

when seasonal indices are removed. 
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