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ABSTRACT
We present linear optical absorptions of photo/thermochromic molecules interacting with a
gold nanoparticle. The photo/thermochromic system is the dihydroazulene/vinylheptafulvene
(DHA/VHF) system and our aim is to study the effects of the interaction between the gold
nanoparticle and the molecular systems. We consider the changes of the one-photon excitations
of the dihydroazulene/vinylheptafulvene system as we increase the interactions between the
molecules and the nanoparticle by decreasing the distance between them. We utilize a quantum
mechanical/molecular mechanical method for investigating the photo/thermochromic molecular
system interacting with the gold nanoparticle. The photo/thermochromic molecules are described
quantum mechanically using density functional theory whereas the gold nanoparticle is represented
as gold atoms with atomic polarizabillities using molecular mechanics.
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We observed that the optical properties of the photo/thermochromic systems are affected by the
presence of the nanoparticle and the changes depend strongly on the conformer of the molecular
system along with the relative orientation and distance between the photo/thermochromic
molecules and the nanoparticle.

Keywords: Molecular solar thermal systems; photoisomerization; nanoparticle; density functional
theory.

1 INTRODUCTION

An alternative method for capturing and storing
solar energy is to utilize MOlecular Solar Thermal
(MOST) systems [1–17]. For this type of system,
one utilizes that some molecules can undergo
photoisomerization when they are excited by
photons and end up in a meta-stable state.
Thereby, one could ideally store the energy until
it is needed, upon which the stored energy could
be released through an isomerization back to
the starting point. The advantage of the MOST
systems compared to conventional solar cells
is that the energy does not have to be utilized
momentarily or stored externally.

The DHA/VHF system was initially synthesized in
1984 by Daub and co-workers [1] and it has since
then been further investigated and modified for
utilization and exploitation of solar energy [2–19].
The DHA/VHF MOST system represents one of
the promising systems for storing solar energy
in this fashion [1–20]. DHA undergoes a
ring-opening reaction after the photoexcitation
and turns into s-cis-vinylheptafulvene (s-cis-
VHF). Thereafter, a thermal equilibrium is
established between s-cis-VHF and s-trans-
vinylheptafulvene (s-trans-VHF). The stored
energy can be released by the thermal
backreaction to DHA (see Fig. 1).

The two isomers, DHA and VHF, have their
respective absorption bands in different areas
of the UV/Vis spectrum. DHA has an absorption
band from 310-410 nm and VHF has one from
370-500 nm. This means that there is a small
overlap where DHA competes with VHF for
the same solar photons [1–20]. Presently, we
wish to investigate if we are able to change the
positions of the absorption bands within the solar
spectrum for DHA, s-cis-VHF and s-trans-VHF

as the molecules are placed in close proximity of
gold nanoparticles (NPs).

Several research groups have been investigating
photo/thermochromic molecular systems since
these systems are of interest concerning
switches in molecular electronics, use in data
storage, biological systems, and solar energy
harvesting. [21–33]. The utilization of NPs as
anchors or electrodes requires investigations
concerning the influence of the NPs on the
optical and electronic properties and the
photo/thermochromic properties of the molecular
systems [34,34–39].

We consider (8aS)–2–(4nitrophenyl)-1,8a-
dihydroazulene-1,1-dicarbonitril which is a DHA
molecule substituted with a nitro group in
para position on the phenyl group. We are
only considering one stereoisomer since the
investigated properties are independent of
stereoisomerism [12, 18].The VHF molecule has
two conformers, namely s-cis-VHF and s-trans-
VHF.

The main purpose of this investigation is to study
how the absorption spectra change for DHA,
s-cis-VHF and s-trans-VHF as the molecules
interact with the gold NP [40–42].

We wish to study how the absorption bands
change with respect to (i) distance between the
NP and the molecules, (ii) the conformations
of the three molecules, and (iii) the relative
orientations. We want to investigate whether
the interactions between DHA/VHF systems and
the gold nanoparticle are sufficient for redshifting
the first absorption band significantly and thereby
have an absorption of DHA that is closer to the
maximum of solar irradiation. It is certain that
the first absorption band of DHA would improve
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the performance of the MOST system if the
absorption band is in the area of 450-550 nm.
We wish to see if the nanoparticle is able to shift
the first absorption band of the DHA/VHF into
the part of the solar irradiation with the largest
intensities, that is the area of wavelengths within
the interval 450-550 nm.

We have chosen to consider a DHA compound
with a nitro group on the phenyl ring since this
creates a large permanent dipole moment of
the molecule [18, 19]. A large permanent dipole
moment of the molecular compounds will enable
large interactions between the polarizable NP
and the molecules. Thereby, we expect that
the molecular properties of the investigated

molecules will change significantly.

We wish to provide an atomistic description of
the nanoparticle and thereby we go beyond a
dielectric medium approach by assigning the
individual gold atoms a polarizability and allowing
each of them to have different induced dipoles.
The photo/thermochromic system is attached to a
planar surface of the nanoparticle and thereby we
simulate how the DHA/VHF is physisorbed onto a
very large nanoparticle. The present approach
does not include the absorption or frequency
dependent polarizability of the nanoparticle
which has previously been done through the
use of dielectric medium approaches on other
photo/thermochromic systems. [43,44]

Fig. 1. Reaction scheme and energy level diagram for the photoinduced ring opening
isomerization of DHA into the s-cis conformer of VHF and the thermal equilibrium between
the s-cis and s-trans conformer of VHF. The s-trans conformer is more stable than the s-cis

conformer, but it still lies higher in energy than DHA
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2 COMPUTATIONAL APPRO-
ACH

In order to investigate how the absorptions of the
photo/thermochromic molecules DHA, s-cis-VHF
og s-trans-VHF are affected by the interactions
with a gold nanoparticle, we utilize a QM/MM
method where the molecular systems are treated
by quantum mechanics and the gold nanoparticle
is given by molecular mechanics. The molecular
systems are described by density functional
theory using the functional CAM-B3LYP [45]
and the basis set aug-cc-pVDZ [46]. A full
geometry optimization, of the three molecules
studied, has been performed, in gas phase.
Calculations have been done by Gaussian09
program [47]. The geometry optimizations were
followed by frequency calculations in order to
check the local minima for the three molecules
studied. All minima had real frequencies.
The three molecules have the following dipole
moments: 8.2274 D (DHA), 9.3222 D (s-cis-
VHF), and 9.6466 D (s-trans-VHF). The isotropic
polarizabilities for the three molecules are:
248.18 a.u. (DHA), 271.98 a.u. (s-cis-VHF),
and 277.46 a.u. (s-trans-VHF). The optimized
structures were subsequently used in QM/MM
and linear response calculations of the first 15
excitations and associated oscillator strengths
carried out using Dalton [48].

The present investigations do not include larger
gold nanoparticles since we have previously
shown that one photon absorptions do not
change more than 5% when increasing the size
of the nanoparticle [41,42].

Each of the three molecules are placed at the
nanoparticle in three different ways: 1) The
NO2 group points towards the nanoparticle.
2) The 7 membered ring points towards the
nanoparticle. 3) The cyano group points towards
the nanoparticle as displayed in Figs. 2-10.

Furthermore, we investigate the dependence of
the excitation process on the distance between
the photo/thermochromic molecules and the
nanoparticle. We calculate the molecular
properties at three different distances: 1) the
shortest distance between the molecule and the
nanoparticle which is given by the sum of the van

der Waals radii between the atom of the molecule
and the gold atom, that are closest to each other
in the given relative orientation. 2) The other
two distances are, respectively, 1.0 Å and 2.0
Å longer than the shortest distance. Previous
investigations showed that the gold NP only has
a minimal effect on the molecules for distances
greater than 5 Å [40].

The gold nanoparticle is formed as a hemisphere
and the flat surface points towards the photo /
thermochromic molecules. The gold surface is
given by a fcc(111) surface since previous work
has shown this to be the best description of how
molecules are attached to gold nanoparticles.
[49,50] The gold atoms are described by a static
polarizability of 31.040 au [51].

3 RESULTS AND DISCUSSION

We present the calculated linear optical
properties of the photo/thermochromic molecules
for each of the relative orientations of the
molecules with respect to the nanoparticle. The
15 obtained vertical excitations are presented
in calculated UV/Vis spectra while the tables
contain the wavelength and oscillator strength
of the first 5 excitations for each molecule. Each
of the three molecules are placed towards the
nanoparticle in three different ways and at three
distances. Our focus is on the first absorption
band and the most intense transitions when the
molecules are closest to the nanoparticle. The
first absorption band is located within the solar
spectrum.

3.1 The NO2 Orientation
For this orientation, the NO2 group of the three
molecules points towards the nanoparticle (see
Fig. 2). In Fig. 3, we present the UV/Vis
absorption spectrum of DHA and we observe
an effect of the gold nanoparticle on the first
absorption of DHA. We note that decreasing
the distance between the molecule and the
nanoparticle leads to a larger intensity and a
longer wavelength of the first absorption band.
This orientation gives rise to the largest change
for the first absorption band of DHA and the
shift is related to the interactions of the polar
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group with the nanoparticle. The change is
not sufficiently large to shift the absorption of
DHA into the part of the solar spectrum with the
largest intensity. The two most intense transitions
at the shortest distance for DHA are shifted by
around 3nm and the intensities are increased by
7,4 and 230 percent as DHA gets closer to the
nanoparticle (see Table 1).

Generally, the first absorption band for s-cis-
VHF is wider and lower compared to the spectra
of DHA og s-trans-VHF. We note that the
NO2 orientation leads to a small redshift and
a minor decrease of the intensity for s-cis-
VHF (see Fig. 4). For s-cis-VHF, we note
that the wavelengths of the two most intense
transitions have increased by 1.9 nm and 1.2
nm, respectively, as we decrease the distance
between the molecule and the nanoparticle (see
Table 1). Furthermore, the intensities for these

two transitions increase by 7.3 and 11.7 percent
as the distance between the molecule and the
nanoparticle decreases (see Table 1). The huge
increase of the intensity of excitation 3 relates to
a forbidden excitation that becomes allowed as
the molecule approaches the nanoparticle.

In the case of s-trans-VHF, the intensity of the
first absorption band is significantly larger and the
band is narrower compared to the spectrum for s-
cis-VHF (see Fig. 5). We observe a slightly larger
redshift for s-trans-VHF compared to s-cis-VHF.
We note from Table 1 that the wavelengths of the
two most intense transitions increase by 2.5 nm
and 0.4 nm, respectively. For the most intense
transition, there is a decrease of the intensity by
about 5.2 percent as the molecule approaches
the nanoparticle. For the second most intense
transition we see an increase of 21 percent (see
Table 1).

Table 1. The wavelengths (λ) of excitation and associated oscillator strengths (f ) of the first
five excitations for all three molecules in the NO2 orientation.

DHA
Ex. number λ

3.18Å
[nm] f

3.18Å
λ
4.18Å

[nm] f
4.18Å

λ
5.18Å

[nm] f
5.18Å

1 360.4 0.203 358.1 0.193 357.2 0.189
2 307.8 2.20E-05 309.7 2.50E-05 310.4 2.60E-05
3 278.8 0.103 276.2 0.101 275.7 0.0311
4 273.2 0.00118 274.7 0.00811 274.9 0.0797
5 268.7 0.00350 267.8 0.00299 267.5 0.00263

s-cis-VHF
Ex. number λ

3.18Å
[nm] f

3.18Å
λ
4.18Å

[nm] f
4.18Å

λ
5.18Å

[nm] f
5.18Å

1 425.0 0.117 423.6 0.112 423.1 0.109
2 405.6 0.038 405.9 0.0445 406.0 0.0476
3 308.2 0.0618 309.4 0.000172 310.0 8.1E-05
4 307.1 0.0147 302.8 0.0723 300.9 0.0708
5 280.4 0.134 279.4 0.123 279.2 0.120

s-trans-VHF
Ex. number λ

3.18Å
[nm] f

3.18Å
λ
4.18Å

[nm] f
4.18Å

λ
5.18Å

[nm] f
5.18Å

1 412.4 0.0120 412.8 0.0145 413.0 0.0132
2 404.6 0.219 402.8 0.228 402.1 0.231
3 322.8 0.0422 316.7 0.0363 314.6 0.0345
4 306.4 7.10E-05 308.8 7.00E-05 309.4 9.50E-05
5 278.6 0.108 278.2 0.0936 278.2 0.0889
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Fig. 2. The NO2 orientation of DHA, s-cis-VHF, and s-trans-VHF respectively.

Fig. 3. The UV/Vis spectra of DHA in the NO2 orientation with a molecule cluster separation
of 3.18 Å, 4.18 Å, and 5.18 Å, respectively. The extinction coefficient/the molar absorptivity is

denoted by ϵ.

3.2 The CN Orientation
For this molecular orientation, the cyano group
(the other polar group) points towards the
nanoparticle (see Fig. 6). In the case of DHA,
there is hardly any redshift of the first absorption
band but a small increase in the oscillator
strength (see Fig. 7). For DHA, we observe an
increase of the wavelength of 0.8nm for the most
intense transition whereas the wavelength for the
second most intense transition does not change
as the molecule approaches the nanoparticle
(see Table 2). For both transitions, the intensities
are increased by about 3 percent as DHA gets
closer to the nanoparticle (see Table 2).

On the other hand, the effect of the nanoparticle
on s-cis-VHF is substantially larger for the CN
orientation than for the NO2 orientation (see Fig.
8). The two most intense transitions for s-cis-

VHF are the excitations numbered 1 and 5 (see
Table 2). The wavelengths for these transitions
increase 5.3nm and 0.4nm as the molecule gets
closer to the nanoparticle. The corresponding
intensities increase by 18.8 and 8.4 percent (see
Table 2).

In the case of s-trans-VHF in the CN orientation,
we observe significant effects in terms of a
larger redshift and a larger intensity (see Fig.
9). It is clear that the VHF compounds are
influenced significantly when the cyano group
points towards to nanoparticle. We note from
Table 2 that the second lowest transition has a
decrease of the wavelength of 3.0 nm and its
intensity decreases by 35 percent. For the first
excitation the wavelength decreases by 1.6 nm
and the corresponding intensity is increased by
5.2 percent (see Table 2).
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Fig. 4. The UV/Vis spectra of s-cis-VHF in the NO2 orientation with a molecule cluster
separation of 3.18 Å, 4.18 Å, and 5.18 Å, respectively. The extinction coefficient/the molar

absorptivity is denoted by ϵ.

Fig. 5. The UV/Vis spectra of s-trans-VHF in the NO2 orientation with a molecule cluster
separation of 3.18 Å, 4.18 Å, and 5.18 Å, respectively. The extinction coefficient/the molar

absorptivity is denoted by ϵ.

3.3 The 7 Membered Ring
Orientation

This orientation of the three molecules is such
that the 7 membered ring of the three molecules
points towards the nanoparticle (see Fig. 10).
For DHA in this orientation, we observe a larger
effect than for the orientation where the CN group
is pointed towards the cluster, but the redshift is

smaller than that of DHA in the NO2 orientation
(see Fig. 11). Additionally, we observe that the
two most intense transitions are the excitations
numbered 1 and 4 (see Table 3). The intensity
of transition 1/4 increases/decreases by 4.8/10.7
percent as the distance of the molecule and the
nanoparticle gets smaller. The wavelength for
the 1/4 excitation increases by 2.1nm/0.2nm (see
Table 3).
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For s-cis-VHF, we find the same tendencies as
for s-cis-VHF with the CN orientation (see Fig.
12). We note from Table 3 that the excitations
1 and 5 are the most intense and the intensities
increase by 18.3 and 2.6 percent, respectively,
as s-cis-VHF approaches the nanoparticle. The
corresponding wavelengths are increased and
decreased by 3.3 nm and 0.3 nm, respectively.

In the case of s-trans-VHF, we note that the
trends are the same as for s-trans-VHF in
the CN orientation (see Fig. 13). In the
7mem orientation, the s-trans-VHF molecule
has an intense transition for excitation 2 where
the wavelength increases by 3.8 nm and the
intensity decreases by 15.5 percent as the
molecule-particle separation is decreased (see
Table 3). The second most intense transition
hardly changes its intensity but the wavelength
decreases by 0.4nm as the molecule gets closer
to the nanoparticle.

The interactions between DHA and the gold
nanoparticle are not sufficient for redshifting the
first absorption band significantly and bringing
the absorption closer to the maximum of solar
irradiation. Redshifting the first absorption band
would benefit the performance of the MOST
system since there is a larger amount of photons
in the area of 450-550 nm. It is clear that the
obtained results give a valid representation of
how the nanoparticle influences the absorption
spectra in the DHA/VHF molecular system.
We do observe a redshifting of the molecular
spectra and the magnitude of the shift strongly
depends on the orientation of the molecules
and the distance between the nanoparticle and
the photo/thermochromic molecular system. It
is also clear that the distance between the

nanoparticle and the respective polar groups
is crucial for understanding how the absorption
spectra change. The polar groups are able
to induce sizeable induced dipole moments in
the nanoparticle which can then polarize the
molecule even more. This effect can lead to
a larger influence of the nanoparticle on the
properties of the molecular system. Additionally,
it is worth considering that the model used
in this study does not include the frequency
dependence of the properties of the nanoparticle.
This effectively means that one discards the
plasmonic effects which could create an even
larger electrical field for the molecules to be
perturbed by.

Experimentally [52], it has been shown that the
first excitation band of VHF is redshifted by
about the same amount as calculated in the
present investigation. The experiments involved
complexes of VHF and Ag atoms along with
complexes of DHA and Ag atoms. In the case
of the complexes of DHA and Ag atoms there
is no observed shifts of the first absorption [52].
Similar experimental results have been obtained
for the DHF/VHF photo/thermochromic system
and Cu atoms [53].

We have not included the optical properties of
the nanoparticle in the presented calculations
but it would be interesting to investigate how
the excited states of the photo/thermochromic
system are influenced by plasmonic modes of
the nanoparticle using theoretical models that go
beyond the dielectric models. Dielectric models
have been utilized for investigating the effects
of plasmons on photo/thermochromic systems
[43,44].

Fig. 6. The CN orientation of DHA, s-cis-VHF, and s-trans-VHF, respectively. The extinction
coefficient/the molar absorptivity is denoted by ϵ.
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Fig. 7. The UV/Vis spectra of DHA in the CN orientation with a molecule cluster separation of
3.21 Å, 4.21 Å, and 5.21 Å, respectively. The extinction coefficient/the molar absorptivity is

denoted by ϵ.

Table 2. The wavelengths (λ) of excitation and associated oscillator strengths (f ) of the first
five excitations for all three molecules in the CN orientation.

DHA
Ex. number λ

3.21Å
[nm] f

3.21Å
λ
4.21Å

[nm] f
4.21Å

λ
5.21Å

[nm] f
5.21Å

1 357.6 0.192 357.1 0.189 356.8 0.187
2 311.1 2.70E-05 311 2.70E-05 310.9 2.70E-05
3 276.1 0.00389 276 0.00399 276.0 0.00374
4 274.3 0.114 274.3 0.111 274.3 0.110
5 267.2 0.00187 267.2 0.00218 267.2 0.00225

s-cis-VHF
Ex. number λ

3.21Å
[nm] f

3.21Å
λ
4.21Å

[nm] f
4.21Å

λ
5.21Å

[nm] f
5.21Å

1 429.5 0.139 425.7 0.126 424.2 0.117
2 403.6 0.0292 405.2 0.0373 405.7 0.0427
3 311.0 5.30E-05 310.8 5.30E-05 310.7 5.20E-05
4 298.1 0.0689 298.7 0.0692 298.9 0.0693
5 279.5 0.129 279.2 0.122 279.1 0.119

s-trans-VHF
Ex. number λ

3.21Å
[nm] f

3.21Å
λ
4.21Å

[nm] f
4.21Å

λ
5.21Å

[nm] f
5.21Å

1 410.7 0.108 411.6 0.0273 412.3 0.0175
2 405.8 0.150 404.0 0.224 402.8 0.231
3 310.5 0.0235 311.8 0.0315 312.2 0.0321
4 310.3 0.00696 310.1 0.000338 310.0 0.000248
5 279.4 0.0895 278.7 0.0869 278.4 0.0858
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Fig. 8. The UV/Vis spectra of s-cis-VHF in the CN orientation with a molecule cluster
separation of 3.21 Å, 4.21 Å, and 5.21 Å, respectively. The extinction coefficient/the molar

absorptivity is denoted by ϵ.

Fig. 9. The UV/Vis spectra of s-trans-VHF in the CN orientation with a molecule cluster
separation of 3.21 Å, 4.21 Å, and 5.21 Å, respectively. The extinction coefficient/the molar

absorptivity is denoted by ϵ.

Fig. 10. The 7 membered ring orientation of DHA, s-cis-VHF, and s-trans-VHF, respectively.
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Fig. 11. The UV/Vis spectra of DHA in the 7mem orientation with a molecule cluster
separation of 2.86 Å, 3.86 Å, and 4.86 Å, respectively. The extinction coefficient/the molar

absorptivity is denoted by ϵ.

Table 3. The wavelengths (λ) of excitation and associated oscillator strengths (f ) of the first
five excitations for all three molecules in the 7mem orientation.

DHA
Ex. number λ

2.86Å
[nm] f

2.86Å
λ
3.86Å

[nm] f
3.86Å

λ
4.86Å

[nm] f
4.86Å

1 359.2 0.197 357.7 0.191 357.1 0.188
2 310.7 2.60E-05 310.8 2.60E-05 310.9 2.60E-05
3 275.9 0.0164 275.9 0.00643 275.9 0.00447
4 275.0 0.0968 274.6 0.106 274.4 0.108
5 267.4 0.00315 267.3 0.00258 267.2 0.00239

s-cis-VHF
Ex. number λ

2.86Å
[nm] f

2.86Å
λ
3.86Å

[nm] f
3.86Å

λ
4.86Å

[nm] f
4.86Å

1 427.0 0.136 424.6 0.122 423.7 0.115
2 405.0 0.0320 405.7 0.0398 406.0 0.0445
3 310.4 0.000138 310.5 7.80E-05 310.5 6.30E-05
4 302.3 0.0719 300.7 0.0705 299.9 0.0699
5 278.6 0.120 278.8 0.118 278.9 0.117

s-trans-VHF
Ex. number λ

2.86Å
[nm] f

2.86Å
λ
3.86Å

[nm] f
3.86Å

λ
4.86Å

[nm] f
4.86Å

1 410.7 0.0619 411.8 0.0210 412.4 0.0157
2 406.8 0.196 404.3 0.230 403.0 0.232
3 316.2 0.0355 314.5 0.0342 313.7 0.0336
4 309.7 6.50E-05 309.8 9.20E-05 309.8 0.000120
5 277.6 0.0880 277.9 0.0864 278.0 0.0856
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Fig. 12. The UV/Vis spectra of s-cis-VHF in the 7mem orientation with a molecule cluster
separation of 2.86 Å, 3.86 Å, and 4.86 Å, respectively. The extinction coefficient/the molar

absorptivity is denoted by ϵ.

Fig. 13. The UV/Vis spectra of s-trans-VHF in the 7mem orientation with a molecule cluster
separation of 2.86 Å, 3.86 Å, and 4.86 Å, respectively. The extinction coefficient/the molar

absorptivity is denoted by ϵ.

4 CONCLUSION

In conclusion, we find that the resulting linear
optical properties of the photo/thermochromic
DHA/VHF system are promising with respect
to the redshifting of the first absorptions of
DHA and VHF. The redshifting of the absorption
band is expected to potentially provide for an
improved performance of the MOST system.

Furthermore, we observe that the redshifts of
the photo/thermochromic molecules depend
substantially on the molecular orientation and
the distance between the nanoparticle and the
photo/thermochromic molecule.

The influence of the nanoparticle is larger on
the optical properties of s-trans-VHF and s-cis-
VHF than on the corresponding properties of the
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DHA molecule. It is also clear that we observe
the largest changes when one of the two polar
groups (NO2 or CN) is oriented towards the
nanoparticle. Generally, we observe that the
excitation energies are redshifted as we decrease
the molecule-cluster distance and we note that
the stronger interaction of the s-trans-VHF and s-
cis-VHF molecules with the nanoparticle provides
a wider separation between the absorption peaks
of DHA and VHF.
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