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Lepton mixing patterns from the modular group PSL2(7) with generalized CP symmetries are studied. The residual symmetries in
both charged lepton and neutrino sectors are Z2 × CP. Seven types of mixing patterns at the 3σ level of the new global fit data are
obtained. Among these patterns, three types of patterns can give the Dirac CP phase which is in the 1σ range of the global fit data.
The effective mass of neutrinoless double-beta decay for these patterns is also examined.

1. Introduction

CP violation in the hadron sector was observed in 1964 [1].
Whether there is a counterpart in the lepton sector is still a
mystery. Recent neutrino oscillation experiments show that
the 1-3 mixing angle of leptons is nonzero [2–5]. It intrigues
experiments to detect the Dirac CP-violating phase. Particu-
larly, some fit results [6, 7] hint that this phase is around −π/2.
In the theoretical respect, how to predict nontrivial lepton CP
phases is interesting. In order to obtain mixing parameters of
leptons, discrete flavor symmetries are widely used [8–41].
However, if no perturbation is considered, only finite groups
of large orders could accommodate the results of new
experiments [35]. Furthermore, they give a trivial Dirac
CP-violating phase [35]. In order to improve predictions
of flavor groups, some efforts have been made in generaliza-
tions of symmetries [42, 43]. Particularly, an intriguing
method called generalized CP (GCP) symmetry was intro-
duced [44–66]. In this scenario, the leptonic lagrangian sat-
isfies both flavor and GCP symmetries. After spontaneous
symmetries breaking, the residual flavor and GCP symme-
tries constrain the structures of mass matrices of leptons.
Then, information on leptonic mixing angles and CP phases
is obtained. From groups S4 and A5 with GCP symmetries, a
trivial or maximal Dirac CP phase is obtained [46, 56]. The
maximal Dirac phase satisfies the 1σ constraint from the

new recent global fit data in case of inverted mass ordering
[67]. However, it is not in the 1σ range for the normal mass
ordering. S4 and A5 are small modular groups. We want to
know whether a large one could give a more fit CP phase.

In this paper, we study the predictions of the modular
group PSL2(7) with the GCP symmetry in the case of Major-
ana neutrinos. We suppose that residual symmetries in neu-
trino and charged lepton sectors are both Z2 × CP. Here, CP
denotes a GCP symmetry. After examinations of combina-
tions of residual symmetries, we find seven types of mixing
patterns at the 3σ level of the fit data [67]. Among them,
three types satisfy the 1σ constraint. So the group PSL2(7)
with the GCP symmetry may serve as a candidate for expla-
nations to experiment accommodable mixing patterns. We
note that lepton mixing patterns from large finite modular
group have been studied in the recent Refs. [32, 68, 69]. In
Refs. [32, 68], no GCP symmetry is considered. In Ref. [32],
residual GCP symmetries are considered either in the neu-
trino sector or the charged lepton sector. Namely, there is
only one unfixed parameter in the lepton mixing matrix.
Here, we consider the case that residual GCP symmetries
constrain both charged leptons and neutrinos. So two param-
eters are contained in our mixing patterns.

This paper is organised as follows. In Section 2, the
framework for the application of the group PSL2(7) with
the GCP symmetry is introduced. In Section 3, the results
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from examination of the residual symmetries are presented.
Finally, a summary is made.

2. Framework

In this section, we describe the basic facts of the group
PSL2(7) and introduce the method of deriving lepton mixing
patterns from the residual flavor and GCP symmetries.

2.1. Group Theory of PSL2(7)

2.1.1. Generic Facts. The group PSL2(7) is also named ∑
ð168Þ. It could be constructed with two generators which sat-
isfy following relations [68]:

S2 = T7 = E,
STð Þ3 = ST−1ST

� �4 = E,
ð1Þ

where E is the identity element. This group has 6 conjugacy
classes listed as follows [68]:

1C1 : E,
21C2 : S,
56C3 : ST ,
42C4 : ST

3,
24C1

7 : T ,
24C2

7 : T
3,

ð2Þ

where iCj denotes that the class contains i elements of
order j. Accordingly, there are 6 irreducible representations,
namely,

1, 3, 3∗, 6, 7, 8: ð3Þ

Without loss of generality, we consider the 3-dimensional
representation 3 in the following sections. Accordingly, the
generators could be expressed as [68]

S = 2ffiffiffi
7

p
s1 s2 s3

s2 −s3 s1

s3 s1 −s2

0
BB@

1
CCA,

T =
φ2
7 0 0
0 φ7 0
0 0 φ∗3

7

0
BB@

1
CCA,

ð4Þ

where sk = sin ðkπ/7Þ, φ7 = ei2π/7.
Resorting to the conjugacy classes, we can obtain abelian

subgroups of PSL2(7). These groups are candidates of the
residual symmetries for leptons. In this paper, we consider
the residual symmetry Z2 × CP for leptons. So Z2 subgroups

are relevant. There are 21 Z2 subgroups which are identified
with the generators of them [68], i.e.,

A1 : S,
A2 : T

2ST3ST ,
A3 : TST

3ST2,
A4 : T

4ST3,
A5 : T

3ST4,
A6 : T

2ST4ST2,
A7 : ST

2ST4ST2S,
A8 : ST

4ST3S,
A9 : ST

3ST4S,
A10 : T

5ST2,
A11 : T

2ST5,
A12 : T

6ST ,
A13 : TST

6,
A14 : ST

4ST4,
A15 : ST

3ST3,
A16 : ST

2ST ,
A17 : ST

5ST6,

A18 : T2ST3S
� �2,

A19 : T5ST4S
� �2,

A20 : ST3ST4� �2,
A21 : ST4ST3� �2

:

ð5Þ

2.1.2. Automorphism of PSL2(7). An automorphism of a
group is a transformation which permutate elements of the
group. These transformations form a group, namely, the
automorphism group. For the group PSL2(7), the structure
of the automorphism group is simple. It is listed as follows:

Z PSL2 7ð Þð Þ = Z1,
Aut PSL2 7ð Þð Þ ≅ PS L 2, Z7ð Þ⋊Z2,
Inn PSL2 7ð Þð Þ ≅ PSL2 7ð Þ,
Out PSL2 7ð Þð Þ ≅ Z2 = id, uf g,

ð6Þ

where Z, Aut, Inn, and Out denote the centre, the auto-
morphism group, the inner automorphism, and the outer
automorphism group, respectively. In detail, the inner
automorphism group is composed of permutations of ele-
ments in the same conjugacy class. The outer automor-
phism group swaps conjugacy classes and representations.
So it reflects the symmetries of the character table shown
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in Table 1. The unique nontrivial outer automorphism of
the group PSL2(7) is

u : 24C1
7 ⟷ 24C2

7,
3⟷ 3∗:

ð7Þ

The representation of u could be obtained from its
action on the generators S, T , i.e.,

u : S⟷ S,
T ⟷ T∗ = T6:

ð8Þ

In the 3-dimensional representation, the specific equa-
tions of the transformation read

X uð ÞS∗X−1 uð Þ = S−1 = S,
X uð ÞT∗X−1 uð Þ = T−1 = T∗:

ð9Þ

The solution is

X uð Þ = eiα diag 1, 1, 1ð Þ: ð10Þ

Since the global phase is trivial for the lepton mixing
patterns, we choose eiα = 1 in the following sections. A
general automorphism is the product of the inner and
the outer one. It could be expressed as

X gið Þ = ρ3 gið ÞX uð Þ = ρ3 gið Þ, withgi ∈ PSL2 7ð Þ, ð11Þ

where ρ3ðgiÞ is the 3-dimensional representation of the
group element.

2.2. Approach

2.2.1. GCP Compatible with PSL2(7). The GCP transforma-
tion acts on the flavor space as

Φ⟶ XΦC , ð12Þ

where Φ is a multiplet of fields, X is a unitary matrix, and ΦC

is the CP conjugation of Φ. In contrast, the flavor group acts
on the fields as

Φ⟶ ρ gið ÞΦ, withgi ∈ PSL2 7ð Þ: ð13Þ

Accordingly, the consistence condition of GCP is [45]

X−1ρ gð ÞX� �∗ = ρ g′
� �

: ð14Þ

Therefore, X is an automorphism of the flavor group
PSL2(7). These GCP transformations form an automor-
phism group CP. The general theory satisfies the symmetry
PSL2ð7Þ⋊CP. After fermions obtain masses from the vacuum
expectation values of scalar fields, the original symmetry
PSL2ð7Þ⋊CP is broken to Ge⋊CPe in the charged lepton
sector and Gv⋊CPv in the neutrino sector. Thus, the mass
matrices of charged leptons and Majorana neutrinos satisfy
the relations

ρ+ geð Þmem
+
e ρ geð Þ =mem

+
e , withge ∈Ge,

ρT gνð Þmνρ gνð Þ =mν, withgν ∈ Gν:
ð15Þ

The CP transformation X follows the relations

X+
e mem

+
e Xe = mem

+
eð Þ∗,

X−1
e ρ geð ÞXe

� �∗ = ρ ge′
� �

,

XT
νmνXν =m∗

ν ,

X−1
ν ρ gνð ÞXν

� �∗ = ρ gν′
� �

:

ð16Þ

Since masses of leptons are nondegenerate, the CP trans-
formation X should be a symmetric unitary matrix [56], i.e.,

Xα = XT
α , XαX

∗
α = E, with α = e, ν no sumð Þ: ð17Þ

So Xα can be decomposed as Xα =ΩαΩ
T
α . This kind of CP

transformations is called Bickerstaff-Damhus automorphism
(BDA) [70, 71]. For the group PSL2(7), all BDAs in the
3-dimensional representation are listed as follows:

T3ST3, TST4ST , TST5ST , ST3ST3S, STST4STS, STST5STS, 
E, Ti, STiS, with i = 1, 2, 3, 4, 5, 6,

T2ST2� �j, ST2ST2S
� �j, T2ST5ST2� �j, with j = 1, 2, 3:

ð18Þ

2.2.2. Mixing Patterns from Residual Symmetries Z2 × CP.
Once the residual symmetries are fixed, the lepton mixing
pattern could be obtained up to permutations of rows and
columns. In the direct method, the mixing matrix is
completely determined by the symmetries. In the semidirect
method, only several elements of the matrix are certain
because of degeneracy of the eigenvalues of the residual sym-
metries. We concern on the semidirect method in this paper.
The residual symmetry is Z2e × CPe, Z2ν × CPν in charged
lepton and neutrino sectors, respectively. The consistence
equation is written as

Xρ∗ ge,ν
� �

X∗ = ρ ge,ν
� �

, withge,ν ∈ Z2: ð19Þ

Table 1: Character table of the group PSL2(7) [68].

Rep. 1C1 21C2 56C3 42C4 24C1
7 24C2

7
1 1 1 1 1 1 1

3 3 -1 0 1 φ∗
7 + φ∗2

7 + φ∗4
7 φ7 + φ2

7 + φ4
7

3∗ 3 -1 0 1 φ7 + φ2
7 + φ4

7 φ∗
7 + φ∗2

7 + φ∗4
7

6 6 2 0 0 -1 -1

7 7 -1 1 -1 0 0

8 8 0 -1 0 1 1
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Accordingly, the lepton mixing matrix UPMNS ≡U+
e Uν is

obtained from the matrix [46]

Ue,ν =Ωe,νO θe,vð ÞPe,ν, ð20Þ

where Re,ν is a rotation matrix with an angle parameter θe,ν,
and Pe,ν is a phase matrix, i.e.,

Pe,ν = diag 1, ij, ik
� �

, with j, k = 0, 1, 2, 3: ð21Þ

Because Pe gives nonphysical phases, it is omitted in the
following sections.

2.2.3. Similar Transformations. In order to obtain viable mix-
ing patterns, all possible combinations of residual symme-
tries should be examined. However, if two combinations are
connected by a similarity transformation, namely,

ρ ge,ν′
� �

=Vρ ge,ν
� �

V+,

Xe,ν′ = VXe,νV
T ,

ð22Þ

they would correspond to the same mixing matrix. There-
fore, we could just examine nonequivalent combinations. In
the following sections, Z2ν is fixed on the subgroup ZS

2 which
is generated by the group element S. The consistent GCP
transformations for ZS

2 are listed as follows:

X1 = E,
X2 = S,
X3 = T2ST5ST2,
X4 = T5ST2ST5� �

= T2ST5ST2� �∗,
ð23Þ

where X1 and X2 correspond to the equivalent mixing
patterns, so do X3 and X4. Z2e, Xe can be obtained from the
similar transformations. In detail, for generators of Z2 sub-
groups, we have ρðAiÞ =ViSV

+
i with Vi listed as follows:

V2 =
0 0 1
φ3
7 0 0
0 −φ7 0

0
BB@

1
CCA,

V3 =
0 0 1
φ∗3
7 0 0
0 −φ∗

7 0

0
BB@

1
CCA,

V4 =
1 0 0
0 φ3

7 0
0 0 −φ7

0
BB@

1
CCA,

V5 =
1 0 0
0 φ∗3

7 0
0 0 −φ∗

7

0
BB@

1
CCA,

V6 =
0 0 −1
−1 0 0
0 1 0

0
BB@

1
CCA,

V7 =
0 −1 0
0 0 1
−1 0 0

0
BB@

1
CCA,

V8 =
0 0 1
φ∗
7 0 0
0 −φ2

7 0

0
BB@

1
CCA,

V9 =
0 0 1
φ7 0 0
0 −φ∗2

7 0

0
BB@

1
CCA,

V10 =
1 0 0
0 φ2

7 0
0 0 φ3

7

0
BB@

1
CCA,

V11 =
1 0 0
0 φ∗2

7 0
0 0 φ∗3

7

0
BB@

1
CCA,

V12 =
1 0 0
0 φ7 0
0 0 φ∗2

7

0
BB@

1
CCA,

v13 =
1 0 0
0 φ∗

7 0
0 0 φ2

7

0
BB@

1
CCA,

v14 =
0 1 0
0 0 −φ3

7

φ7 0 0

0
BB@

1
CCA,

v15 =
0 1 0
0 0 −φ∗3

7

φ∗
7 0 0

0
BB@

1
CCA,

v16 =
0 0 1
φ2
7 0 0
0 −φ3

7 0

0
BB@

1
CCA,
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v17 =
0 0 1
φ∗2
7 0 0
0 −φ∗3

7 0

0
BB@

1
CCA,

V18 =
0 1 0
0 0 −φ∗

7

φ2
7 0 0

0
BB@

1
CCA,

V19 =
0 1 0
0 0 −φ7

φ∗2
7 0 0

0
BB@

1
CCA,

V20 =
0 1 0
0 0 −φ2

7

φ3
7 0 0

0
BB@

1
CCA,

V21 =
0 1 0
0 0 −φ∗2

7

φ∗3
7 0 0

0
BB@

1
CCA: ð24Þ

Particularly, V1 is the identity matrix. So a general com-
bination of the residual symmetries is of the form

ZAi
2e , Xej Aið Þ, ZS

2ν, Xνk Sð Þ� �
, ð25Þ

with j, k = 1, 3. The corresponding lepton mixing matrix is
written as

UPMNS =OT θeð ÞΩ+
j V

+
i ΩkO θνð ÞPν, ð26Þ

where

O θe,νð Þ =
1 0 0
0 cos θe,ν sin θe,ν

0 −sin θe,ν cos θe,ν

0
BB@

1
CCA,

Ω1 =
r1 −sin θ1 −cos θ1 sin θ2

r2 0 cos θ2
r3 cos θ1 −sin θ1 sin θ2

0
BB@

1
CCA,

Ω3 =Ω1 ⋅

1 0 0
0 eiπ/4 cos ϕ ei3π/4 sin ϕ

0 −eiπ/4 sin ϕ ei3π/4 cos ϕ

0
BB@

1
CCA,

ð27Þ

with

r1 = 2
ffiffiffi
2
7

r
sin 2π

7 sin 3π
7 ,

r2 = 2
ffiffiffi
2
7

r
sin π

7 sin 2π
7 ,

r3 = 2
ffiffiffi
2
7

r
sin π

7 sin 3π
7 ,

θ1 = arcsin r3ffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 + r23

p ,

θ2 = arcsin r2 cos θ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 + r22 cos2θ1

p ,

ϕ = arcsin 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 + x21

p ,

ð28Þ

where x1 is a real root of the equation

x12 − 48x10 + 323x8 − 608x6 + 323x4 − 48x2 + 1 = 0, ð29Þ

x1≃±0:449807.

3. Results

3.1. Viable Mixing Matrices from Combinations of Residual
Symmetries. Given the recent global fit data of neutrino oscil-
lations [67], we examine the predictions of combinations of
residual symmetries of the form ðZAi

2e , XejðAiÞ, ZS
2ν, XνkðSÞÞ

with the χ2 function defined as

χ2 = 〠
ij=13,23,12

sin2θij − sin2θij
� �ex
σij

 !2

, ð30Þ

where ðsin2θijÞex is the best fit data from Ref. [67] and σij is
the 1σ error. The viable combinations at the 3σ level (up to
equivalent ones) are listed as follows.

Type Ia:

ZST4ST4

2e , X3e =V16 T2ST5ST2� �
VT

16, ZS
2ν, X1ν = E

� �
, ð31Þ

Type Ib:

ZST4ST4

2e , X1e = V16V
T
16, ZS

2ν, X3ν = T2ST5ST2
� �

, ð32Þ

Type Ib∗:

ZST3ST3

2e , X1e = V17V
T
17, ZS

2ν, X3ν = T2ST5ST2
� �

, ð33Þ

Type IIa:

ZT4ST3

2e , X1e =V4V
T
4 , ZS

2ν, X1ν = E
� �

, ð34Þ
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Type IIa∗:

ZT3ST4

2e , X1e =V5V
T
5 , ZS

2ν, X1ν = E
� �

, ð35Þ

Type IIb:

ZT4ST3

2e , X1e = V4V
T
4 , ZS

2ν, X3ν = T2ST5ST2
� �

, ð36Þ

Type IIb∗:

ZT3ST4

2e , X1e =V5V
T
5 , ZS

2ν, X3ν = T2ST5ST2
� �

: ð37Þ

The corresponding mixing matrices are dependent on
permutations of rows and columns. For every combination,
the matrix which fits the data best is listed as follows.

U Ia = S13O
T θeð ÞΩ+

3V
+
16Ω1O θνð ÞPν,

U Ib = S12O
T θeð ÞΩ+

1V
+
16Ω3O θνð ÞPνS12,

U Ib∗ =U∗
Ib = S12O

T θeð ÞΩ+
1V

+
17Ω

∗
3O θvð ÞPνS12,

U IIa = S13O
T θeð ÞΩ+

1V
+
4Ω1O θνð ÞPν,

U IIa∗ =U∗
IIa = S13O

T θeð ÞΩ+
1V

+
5Ω1O θνð ÞPν,

U IIb = S12O
T θeð ÞΩ+

1V
+
4Ω3O θνð ÞPν,

U IIb∗ =U∗
IIb = S12O

T θeð ÞΩ+
1V

+
5Ω

∗
3O θνð ÞPν,

ð38Þ

where

S12 =
0 1 0
1 0 0
0 0 1

0
BB@

1
CCA,

S13 =
0 0 1
0 1 0
1 0 0

0
BB@

1
CCA:

ð39Þ

We note that the mixing matrices except U Ia are paired
through the complex conjugation. The predictions of the
matrices in a pair are identical except the signs of the CP
phases. So we can consider U Ia, U Ib, U IIa, and U IIb as
representatives.

3.2. Mixing Angles and CP Invariants. Employing the param-
etrization of the form

UPMNS =

c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23

0
BBB@

1
CCCA

�
1 0 0

0 eiα/2 0

0 0 ei β/2+δð Þ

0
BBB@

1
CCCA,

ð40Þ

where sij ≡ sin θij, cij ≡ cos θij, δ is the Dirac CP-violating
phase, and α and β are Majorana phases; we could obtain
lepton mixing angles and the CP invariants Jcp [72], J1, and
J2 defined as

Jcp ≡ Im U11U
∗
13U

∗
31U33½ � = 1

8 sin 2θ13 sin 2θ23 sin 2θ12 cos θ13 sin δ,

J1 ≡ Im U∗
11ð Þ2U2

12

h i
= sin2θ12 cos2θ12 cos4θ13 sin α,

J2 ≡ Im U∗
11ð Þ2U2

13

h i
= sin2θ13 cos2θ13 cos2θ12 sin β:

ð41Þ

Their specific forms are listed as follows.
U Ia:

sin2θ13 θe, θνð Þ ≃ 0:3125 − 0:1758 cos 2θν + 0:02073 cos 2θν − 2θeð Þ − 0:1654 cos 2θe + 0:2786 cos 2θν + 2θeð Þ + 0:065086 sin 2θν − 0:02338 sin 2θν − 2θeð Þ − 0:08839 sin 2θe + 0:03824 sin 2θν − 2θeð Þ,

sin2θ23 θe, θνð Þ ≃ 0:002647 cos2θe cos2θν + 0:05023 cos2θe sin 2θν + 0:9531 cos2θe sin2θν + 0:02677 sin 2θe cos2θν + 0:2579 sin 2θe sin 2θν + 0:27067 sin2θe cos2θν + 0:150 sin 2θe sin2θν + 0:07994 sin2θe sin 2θν + 0:02361 sin2θe sin2θν
� �

1 − sin2θ13 θe, θνð Þ ,

sin2θ12 θe, θνð Þ = sin2θ23 θe + π/2, θν + π/2ð Þ 1 − sin2θ13 θe + π/2, θν + π/2ð Þ� �
1 − sin2θ13 θe, θνð Þ ,

Jcp θe, θνð Þ = 0,
J1 θe, θνð Þ = 0,
J2 θe, θνð Þ = 0:

ð42Þ
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U Ib:

sin2θ13 θe, θνð Þ ≃ 0:2438 cos2θe cos2θν + 0:1871 cos2θe sin 2θν
+ 0:01618 cos2θe sin2θν + 0:264 sin 2θe cos2θν
+ 0:1659 sin 2θe sin 2θν − 0:16566 sin 2θe sin2θν
+ 0:712 sin2θe cos2θν − 0:187 sin2θe sin 2θν
+ 0:13245 sin2θe sin2θν,

sin2θ23 θe, θνð Þ ≃ 0:375 − 0:3307 cos 2θν½ �
1 − sin2θ13 θe, θνð Þ ,

sin2θ12 θe, θνð Þ ≃ 0:375 + 0:2194 cos 2θe − 0:2475 sin 2θe½ �
1 − sin2θ13 θe, θνð Þ ,

Jcp θe, θνð Þ ≃ 0:001543 + 0:008446 cos 2θν
+ 0:006903 cos 4θν
+ 0:002733 cos 2θν − 4θeð Þ
− 0:003911 cos 4θν − 2θeð Þ
+ 0:003405 cos 2θν − 2θeð Þ
+ 0:000384 cos 4θν − 4θeð Þ
− 0:002896 cos 2θe
+ 0:001353 cos 4θe
− 0:008932 cos 2θν + 2θeð Þ
− 0:002234 cos 4θν + 4θeð Þ
− 0:00114 cos 4θν + 2θeð Þ
− 0:00323 cos 2θν + 4θeð Þ
− 0:00951 sin 2θν
+ 0:000585 sin 4θν
+ 0:002935 sin 2θν − 4θeð Þ
− 0:000292 sin 4θν − 2θeð Þ
− 0:02566 sin 2θν − 2θeð Þ
+ 0:000304 sin 4θν − 4θeð Þ
+ 0:00328 sin 2θe
− 0:00591 sin 4θe

− 0:000519 sin 2θν + 2θeð Þ
+ 0:00715 sin 4θν + 4θeð Þ
− 0:00775 sin 4θν + 2θeð Þ
+ 0:00388 sin 2θν + 4θeð Þ,

J1 θe, θνð Þ ≃ ± 0:05167 − 0:00391 cos 2θν½
− 0:00304 cos 2θν − 4θeð Þ
− 0:01371 cos 2θν − 2θeð Þ
+ 0:01037 cos 2θe
+ 0:006185 cos 4θe
+ 0:04114 cos 2θν + 2θeð Þ
− 0:00491 cos 2θν + 4θeð Þ
+ 0:02521 sin 2θν − 4θeð Þ
− 0:01546 sin 2θν − 2θeð Þ
− 0:1169 sin 2θe
+ 0:0153 sin 4θe
− 0:0464 sin 2θν + 2θeð Þ
− 0:0407 sin 2θν + 4θeð Þ�,

J2 θe, θνð Þ ≃ ± 0:00726 cos 2θν − 4θeð Þ½
− 0:0248 cos 2θν − 2θeð Þ
+ 0:05787 cos 2θν + 2θeð Þ
− 0:05079 cos 2θν + 2θeð Þ
− 0:07308 sin 2θν
− 0:000875 sin 2θν − 4θeð Þ
+ 0:02199 sin 2θν − 2θeð Þ
+ 0:0513 sin 2θν + 2θeð Þ
+ 0:00612 sin 2θν + 4θeð Þ�:

ð43Þ

U IIa:

sin2θ13 θe, θνð Þ ≃ 0:616 cos2θe cos2θν − 0:133 cos2θe sin 2θν + 0:0769 cos2θe sin2θν − 0:1328 sin 2θe cos2θν + 0:01762 sin 2θe sin 2θν − 0:1322 sin 2θe sin2θν
+ 0:0769 sin2θe cos2θν − 0:1322 sin2θe sin 2θν + 0:4155 sin2θe sin2θν,

sin2θ23 θe, θνð Þ ≃ 0:2963 + 0:0502 cos 2θν − 0:1185 cos 2θν − 2θeð Þ − 0:0502 cos 2θe − 0:101 cos 2θν + 2θeð Þ − 0:01325 sin 2θν + 0:01325 sin 2θe + 0:000294 sin 2θν + 2θeð Þ½ �
1 − sin2θ13

,

sin2θ12 θe, θνð Þ = sin2θ23 θe + π/2, θν + π/2ð Þ 1 − sin2θ13 θe + π/2, θν + π/2ð Þ� �
1 − sin2θ13 θe, θνð Þ ,

JCP θe, θνð Þ ≃ 0:00919 cos 2θν − 2θeð Þ − 0:01601 cos 2θν + 2θeð Þ + 0:06163 sin 2θν + 2θeð Þ,
J1 θe, θνð Þ ≃ ± −0:00475 − 0:0474 cos 2θν + 0:0144 cos 2θν − 4θeð Þ½

+ 0:0203 cos 2θν − 2θeð Þ + 0:0541 cos 2θe − 0:0461 cos 4θe + 0:0188 cos 2θν + 2θeð Þ
− 0:03285 cos 2θν + 4θeð Þ + 0:002649 sin 2θν − 0:0101 sin 2θν − 4θeð Þ + 0:02699 sin 2θν − 2θeð Þ
+ 0:02349 sin 2θe + 0:05424 sin 4θe − 0:01937 sin 2θν + 2θeð Þ − 0:04581 sin 2θν + 4θeð Þ�,

J2 θe, θνð Þ = J1 θe, θν +
π

2
� �

:

ð44Þ
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Figure 1: Parameter space for the mixing patterns constrained by the global fit data [67] at the 3σ level in the normal mass ordering (NO).
The parameter spaces for θ12 are the strips with blue boundaries, and those for θ23 are with green boundaries. The strips for θ13 are tiny, i.e.,
almost reduced to black curves. Their intersection areas are signed by the red dots. The parameter spaces in the case of inverted mass ordering
(IO) are similar. So they are not shown here.
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U IIb:

sin2θ13 θe, θνð Þ ≃ 0:2963 − 0:1324 cos 2θν
+ 0:199 cos 2θν − 2θeð Þ
− 0:0502 cos 2θe − 0:05315 cos 2θν + 2θeð Þ
+ 0:1464 sin 2θν − 0:00634 sin 2θν − 2θeð Þ
+ 0:1325 sin 2θe − 0:01973 sin 2θν + 2θeð Þ,

sin2θ23 θe, θνð Þ ≃ 0:4074 + 0:2648 cos 2θν − 0:2927 sin 2θ½ �
1 − sin2θ13

,

sin2θ12 θe, θνð Þ = sin2θ13 θe, θν + π/2ð Þ
1 − sin2θ13 θe, θνð Þ ,

JCP θe, θνð Þ ≃ 0:0261 cos 2θν − 2θeð Þ
+ 0:02447 cos 2θν + 2θeð Þ
+ 0:04 sin 2θν − 2θeð Þ
+ 0:01804 sin 2θν + 2θeð Þ,

J1 θe, θνð Þ ≃ ± 0:01355 + 0:01357 cos 2θν½
+ 0:02594 cos 2θν − 4θeð Þ
+ 0:00115 cos 2θν − 2θeð Þ
− 0:02127 cos 2θe
+ 0:0643 cos 4θe
− 0:03256 cos 2θν + 2θeð Þ
+ 0:0213 cos 2θν + 4θeð Þ − 0:03385 sin 2θν
− 0:04857 sin 2θν − 4θeð Þ
− 0:02714 sin 2θν − 2θeð Þ − 0:001069 sin 2θe
+ 0:03351 sin 4θe − 0:007202 sin 2θν + 2θeð Þ
− 0:002316 sin 2θν + 4θeð Þ�,

J2 θe, θνð Þ = J1 θe, θν +
π

2
� �

: ð45Þ

The sign of J1 and J2 is uncertain. It is dependent on the
index j and k in the diagonal phase matrix Pν.

3.3. Constraints on (θe, θν) and Best Fit Data. The param-
eter space of (θe, θν) is shown in Figure 1. The best fit
data of lepton mixing angle and CP phases are listed in
Table 2. We make some comments on the numerical
results:

(i) In a period of the parameters (θe, θν), there are two
best fit points for the mixing matrices U Ia and U Ib. For

U Ib, these two points give the same magnitude of sin δ
with different signs. For the mixing matrices U IIa and
U IIb, there is only one best fit point in a period. sin δ
for them are both positive. Even so, U∗

IIa and U∗
IIb could

give negative sin δ while the mixing angles are kept the
same. (ii) The best fit value of θ23 from the global fit data
[67] is in the second octant. Accordingly, our fit data is in
the same octant. In the case of normal mass ordering
(NO), the best fit value of δ in U Ib and U∗

IIb could be
around −0.3π. It is in the 1σ range of the global fit data.
In the case of inverted mass ordering (IO), the best fit
value of δ in U∗

IIa is around −0.5π. It is also in the 1σ
range of the global fit data.

3.4. The Effective Mass of Neutrinoless Double-Beta Decay
<mee > . Although the residual symmetries (Z2e × CPe,
Z2ν × CPν) cannot restrain the masses of neutrinos mi
with i = 1,2,3, they may affect the effective mass of neutrino-
less double-beta decay <mee > through the mixing angles
and Majorana phases. Here, <mee > is expressed as

meeh i ≡ m1U
2
11 +m2U

2
12 +m3U

2
13

		 		: ð46Þ

Employing the lepton mixing matrix Uðθbfe , θbfν Þ and the
best fit data on Δm2

12, jΔm2
13j [67], we plot <mee > against

the mass of the lightest neutrino m0 in Figure 2. For (θe, θν)
taken from the 3σ range around the best fit data, the
curves of <mee > in every pattern are shown in Figure 3.
We make some comments on the main results shown in
these figures.

(i) In the case of IO, these patterns give stringent con-
straints on the ranges of <mee > . Particularly, <mee >
for patterns with the indexes (1, 0) and (1, 1) is
independent of the parameters (θe, θν).

In the range of m0 favored by cosmology, <mee > is
around 0.045 eV for patterns Ia, IIa, and IIb. For pat-
tern Ib, it is 0.04 eV. These values approximate the
upper limit from the global fit data at the 3σ level.
They are in the reach of future double-beta decay
experiments [73]. Interestingly, similar observations
still hold for the patterns from the group S4 with
GCP [62]

Table 2: Best fit data of lepton mixing angles and CP phases. “N” and “I” denote the normal ordering of neutrino masses and the inverted
ordering, respectively.

Patterns (θbfe , θ
bf
ν ) χ2

min sin2θ13 sin2θ23 sin2θ12 sin δj j sin αj j sin βj j
Ia(N) (0.18725π, 0.1644π), (-0.0297π, 0.72267π) 0.000016 0.0216 0.547 0.320 0 0 0

Ia(I) (0.18596π, 0.16544π), (-0.0297π, 0.72172π) 0.021 0.0220 0.549 0.318 0 0 0

Ib(N) (-0.4028π, 0.3393π), (-0.8663π, -0.3393π) 2.33 0.0217 0.563 0.345 0.813 0.952 0.43

Ib(I) (-0.4037π, 0.340π), (-0.8654π, -0.340π) 1.97 0.0221 0.565 0.343 0.817 0.953 0.42

IIa(N) (0.3694π, 0.0767π) 0.064 0.0216 0.549 0.316 0.997 0.769 0.588

IIa(I) (0.3701π, 0.0745π) 0.057 0.022 0.553 0.316 0.998 0.774 0.547

IIb(N) (-0.2345π, 0.06297π) 0.79 0.02156 0.5507 0.304 0.800 0.617 0.747

IIb(I) (-0.2348π, 0.06145π) 0.81 0.0220 0.5546 0.304 0.742 0.616 0.730
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Figure 2: The effectivemass of neutrinoless double-beta decay hmeei against themass of the lightest neutrinom0 with the best fit data (θ
bf
e , θ

bf
v ).

The bound onm0 from cosmology is taken fromRef. [74]. The constraint on hmeei is fromRef. [75]. The best fit data ofΔm2
12 and jΔm2

13j is from
Ref. [67]. The legends for every pattern are shown in the top left panel. The indexes (j, k) are defined in Equation (21). The best fit data (θbfe , θ

bf
v )

for pattern Ia and that for pattern Ib take the second one in Table 2, respectively.
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Figure 3: The effective mass of neutrinoless double-beta decay hmeei against the mass of the lightest neutrino m0 in the 3σ ranges of (θe, θν).
The conventions follow those in Figure 2. The dashed boundary lines at the 3σ level are obtained from the global fit data [67].
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(ii) In the case of NO, the variance of <mee > is notice-
able for every pattern. Particularly, for patterns Ia
and Ib, <mee > with the indexes (1, 1) could reach
the upper limit at the 3σ level. Even so, it is not
accessible to near future experiments

(iii) In both NO and IO case, without the precise con-
straint on the Dirac CP phase, these four mixing
patterns cannot be discriminated by future double-
beta decay experiments because of the overlaps of
ranges of <mee >

4. Summary

For the group PSL2(7) with GCP symmetries, the predic-
tions of the residual symmetries Z2 × CP in both neutrino
and charged lepton sectors are examined. Seven types of
viable mixing patterns at the 3σ level of the global fit data
are obtained. Among them, six types are paired through
the complex conjugation. Three types of patterns can give
the Dirac CP phase which is in the 1σ range of the global
fit data. With the parameters (θe, θν), the constraints of
residual symmetries on the effective mass of neutrinoless
double-beta decay are also examined. In the case of IO,
every pattern can give the effective mass accessible to the
future experiments.
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