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It was first observed at the end of the last century that the universe is presently accelerating. Ever since, there have been several
attempts to explain this observation theoretically. There are two possible approaches. The more conventional one is to modify
the matter part of the Einstein field equations, and the second one is to modify the geometry part. We shall consider two
phenomenological models based on the former, more conventional approach within the context of general relativity. The
phenomenological models in this paper consider a Λ term firstly a function of €a/a and secondly a function of ρ, where a
and ρ are the scale factor and matter energy density, respectively. Constraining the free parameters of the models with the
latest observational data gives satisfactory values of parameters as considered by us initially. Without any field theoretic
interpretation, we explain the recent observations with a dynamical cosmological constant.

1. Introduction

Type Ia high-redshift supernova observations indicate that
the universe is presently accelerating [1, 2]. This is mostly
thought to be due to the presence of some unknown fluid
known as dark energy. Soon after the first cosmological solu-
tion to the Einstein field equations (EFE), Einstein had put an
additional Λ term (known as the cosmological constant)
which produced a repulsive effect, in order to modify the
EFE so that the cosmological solution could lead to a static
universe. He later called the introduction of this term to be
the greatest blunder of his life. However, after observations
suggested an accelerating universe, there was a revived inter-
est in the Λ term as a possible candidate for the dark energy.
Theoretically, the cosmological constant is assumed to be the
contribution from vacuum energy given by Λ = 8πGρvac,
arising out of quantum vacuum fluctuations of some funda-
mental field. Although the calculated value of ρvac turns out
to be much larger than the value of Λ determined from
observations, but there is no theoretical argument of making
the ρvac term vanish to exactly zero [3]. So Λ models are
favored for dark energy (DE). Λ has also been thought to

be generated from a particle creation effect or dynamical sca-
lar field [4]. If we consider that the Λ term is responsible for
the dark energy, whatever is the generation mechanism, it is
clear that contrary to Einstein, Λ is not a constant but a
dynamical cosmological term [5].

DE is also sometimes considered without the presence of
any fluid orΛ term, just as a consequence of the modification
of the geometric part or the left hand side of the EFE, but
such efforts are not possible in the context of standard gen-
eral relativity (GR) [6, 7]. There are also dynamically evolv-
ing scalar field models which have been used to describe
DE. The popular dynamical physical field models that have
been utilized for this purpose are quintessence [8–11],
k-essence [12–17], phantom [18], and tachyonic field
[19–26]. Phenomenological models of a dynamical Λ term
are also being popularly considered candidates of DE. “Phe-
nomenological” simply means that there is no derivation of
the dynamical Λ term from any underlying quantum field
theory. Such models may be categorized into three types: (i)
kinematic, (ii) hydrodynamic, and (iii) field theoretic. The
first means that Λ is a function of time or scale factor aðtÞ.
The second means that Λ is treated as a barotropic fluid with
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some equation of state (EOS). The third means that Λ is
treated as a new physical classical field with phenomenolog-
ical Lagrangian. We will be concerned here with (i) and (ii)
only. Such kinematic and hydrodynamic models have been
treated in some depth before. A dynamical model with Λ =
αH2, whereHðtÞ = _a/a, has been explored by Mukhopadhyay
et al. [27]. A similar model with _Λ ∼H3 has been considered
in [28, 29]. The main motivation of considering Λ ∼ €a/a and
Λ ∼ ρ is to prove that these two dynamical models are equiv-
alent for both open and closed universes in addition to the
flat space, which has already been proved previously. The
value of Λ obtained theoretically from particle physics is sev-
eral orders of magnitude greater than the observed value for
Λ, if Λ has to be considered dark energy. This is explained in
various models as it is obtained that Λ ∼ 1/t2 for flat space-
time and it is presently very small but nonzero, and this fact
is well supported by our models.

The most frequently used forms of Λ for phenomenologi-
cal models are Λ = αð _a/aÞ2, Λ = βð€a/aÞ, and Λ = 8πGγρ,
where α, β, and γ are constants whose values can be con-
strained from observations. In general, the sign constraints
on β and γ are imposed in order to ensure a positive value
of the matter density parameter Ωm. The first type of model
has been considered by [30–37]. The second model has been
dealt with by [5, 38–40]. The third type of model has been con-
sidered by [41]. The equivalence of these three forms has been
shown by Ray et al. [42, 43], connecting the free parameters of
themodels with thematter density and vacuum energy density
parameters in the first paper and by application of numerical
methods in the later one. This paper is basically an in-depth
extension of the work done by Mukhopadhyay et al. [44]
where they have considered the first type of model and
obtained cosmological solutions for any possible value of the
curvature constant and equation of state parameter ω. They
have also analysed the physical features of the solutions. We
shall do the same for the second and third models and also
compare our results to the latest observational data constrain-
ing our free parameters. The constraints are found to be
exactly compatible with our initial considerations.

The paper is organized as follows. In the second section,
we consider the mathematical model in the background of
an isotropic and homogeneous Friedmann–Lemaître–Rob-
ertson–Walker (FLRW) space-time, which is the generally
used cosmological metric in GR. We calculate the various
cosmological and physical parameters for the two different
phenomenological models in consideration. In the next
section, we constrain the free parameters associated with
the models based on recent observational data. The final
section summarizes the physical insights of the results we
have obtained.

2. Mathematical Model

The Einstein field equation (EFE) in the presence of a cosmo-
logical constant, ΛðtÞ, is given by

Gμv = −8πG Tμv −
Λ

8πGgμv
� �

, ð1Þ

where we shall take the cosmological constant as a function
of time in order to account for the dark energy. We obtain
the EFE for the cosmological FLRW metric:

ds2 = −dt2 + dr2

1 − kr2
+ r2 dθ2 + sin2θdϕ2

� �" #
, ð2Þ

which yields the equations

_a
a

� �2
+ k
a2

= 8πGρ
3 + Λ

3 , ð3Þ

€a
a

� �
= −

4πG ρ + 3pð Þ
3 + Λ

3 , ð4Þ

where aðtÞ and k are the scale factor and curvature constant,
respectively.

The energy-momentum conservation gives

8πG p + ρð Þ _a
a

� �
= −

8πG
3 _ρ −

_Λ

3 : ð5Þ

We consider the barotropic fluid with equation of state
(EOS) of the form:

p = ωρ, ð6Þ

where ω denotes the EOS parameter which can assume spe-
cific values during the evolution of the universe for different
phases. By plugging this relation in equation (4), the energy
density is obtained as

ρ = 3
4πG 1 + 3ωð Þ

Λ

3 −
€a
a

� �
: ð7Þ

Substituting equation (6) into equation (4) multiplied by
a factor of 2/ð1 + 3ωÞ and adding equation (3) to it, we get the
differential equation

_a
a

� �2
+ k
a2

+ 2
1 + 3ω

€a
a

� �
= 1 + ω

1 + 3ω

� �
Λ: ð8Þ

The above equation describes the cosmological
dynamics for a barotropic fluid in the presence of the
cosmological constant Λ.

2.1. Solutions for Phenomenological Model Λ ∼ €a/a. In this
phenomenological model, we consider Λ = βð€a/aÞ, where
β < 0 which is justified in the light of the latest observational
data [45] as shown in Section 3. Using this form of Λ in
equation (8), we obtain

€a
a
= −

1 + 3ωð Þ
2 − 1 + ωð Þβ

_a
a
−

1 + 3ωð Þk
2 − 1 + ωð Þβ

1
a _a

: ð9Þ
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This equation can be simplified to

a _a
d
dt

ln _aa−A
� �� 	

= Ak, ð10Þ

where A = −ðð1 + 3ωÞ/ð2 − ð1 + ωÞβÞÞ. We choose A = −1 ½?�,
such that ω = ð1 − βÞ/ð3 + βÞ. Any arbitrary value can be
taken. We take A = −1 and later B = −1 so that the differential
equation can be solved analytically and complex numerical
calculations may be avoided.

The above equation now takes the form

a _a
d
dt

ln _aað Þ½ � = −k: ð11Þ

The scale factor turns out to be

a tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0t + A1 − kt2

q
, ð12Þ

where A0 and A1 are integration constants.
As we are considering a universe evolving from a singu-

larity, aðt = 0Þ = 0. This gives A1 = 0. So

a tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0t − kt2

q
: ð13Þ

We show the evolution of the scale factor with time for
different values of k in Figure 1. As expected, we obtain flat,
open, and closed universes for k = 0, k = −1, and k = 1,
respectively. The Hubble parameter is computed as

H tð Þ = A0 − 2kt
2 A0t − kt2
� � : ð14Þ

The cosmological constant is given by

Λ tð Þ = −
βA0

2

4 A0t − kt2
� �2 : ð15Þ

The variation of the cosmological parameter λ with time
is shown in Figure 2 and is found to be monotonically
decreasing for all considered values of k. The energy density
is given by

ρ tð Þ = 3 − βð Þ
16πG

A2
0

A0t − kt2
� �2 : ð16Þ

The variation of the scale factor and cosmological con-
stant with time has been plotted for k = 0,±1 in Figures 1
and 2.

We obtain a closed universe for k = 1 and an open uni-
verse for k = −1 as expected.

The density parameters for matter, a cosmological con-
stant, and curvature, respectively, can be computed for this
phenomenological model as

Ωm = 8πGρ
3H2 = −

4β
3

k A0t − kt2
� �
A0 − 2kt2
� �2 + 1

4

" #
, ð17Þ

ΩΛ = Λ

3H2 = 4 3 + βð Þ
3

k A0t − kt2
� �
A0 − 2kt2
� �2 + 1

4

" #
, ð18Þ
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Figure 1: Plot of aðtÞ versus t for different values of k.
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Figure 2: Plot of ΛðtÞ versus t for different values of k.
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Ωk = −
k

a2H2 = −
4k A0t − kt2
� �
A0 − 2kt2
� �2 : ð19Þ

We plot the time evolution of the density parameters for
all contributing components, i.e., matter, curvature, and dark
energy, for k = −1 in Figure 3. The contribution to the density
parameter due to curvature increases while contributions due
to Λ and matter decrease, but the overall density parameter
due to all three components remains the same.

We also plot the time evolution of the density parameters
for matter, curvature, and dark energy for k = 1 in Figure 4.
The contribution to the density parameter due to curvature
decreases and is negative while contributions due to Λ and
matter increase, but again the overall density parameter
remains the same.

For the flat space (k = 0), we see from the above
expressions that the sum total of the density parameters of
the above components is equal to 1, such that Ωk = 0, ΩΛ =
−ðβ/3Þ, and Ωm = ð3 + βÞ/3.

Also, for both the limiting cases, t⟶ 0 and∞, the sum
total of the density parameters is equal to 1. In these two
cases, both Ωm and ΩΛ become independent of k. Hence,
for both early and late times, the universe exhibits similar
behaviour as far as the k dependency of Ωm and ΩΛ is
concerned.

In general, it can be observed on taking the sum of equa-
tions (17)–(19) that

Ωm +ΩΛ +Ωk = 1: ð20Þ

This analytical approach is consistent with the observa-
tional constraints Ω = 1 ± 0:016 [45].

2.2. Solutions for the Phenomenological Model Λ ∼ ρ. In this
phenomenological model, we consider Λ = 8πGργ, where
γ > 0 which is consistent with the observation as can be
seen in Section 3. Using this form of Λ in equation (8),
we obtain

€a
_a
= −

1 + 3ω − 2γð Þ
2 1 + γð Þ

_a
a
−

1 + 3ω − 2γð Þ
2 1 + γð Þ

k
a _a

: ð21Þ

This equation can be simplified to

a _a
d
dt

ln _aa−B
� �� 	

= Bk, ð22Þ

where B = ð1 + 3ω − 2γÞ/2ð1 + γÞ. We choose B = −1, such
that ω = ð4γ + 1Þ/3.

The above equation now takes the form

a _a
d
dt

ln _aað Þ½ � = −k: ð23Þ

The scale factor turns out to be

a tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0 ′t + A1′ − kt2

q
, ð24Þ

where A0 ′ and A1 ′ are integration constants.
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Figure 3: Plot of ΩðtÞ versus t for k = −1.
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Figure 4: Plot of ΩðtÞ versus t for k = +1.
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As we are considering a universe evolving from a singu-
larity, aðt = 0Þ = 0. This gives A1′ = 0. So

a tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0′t − kt2

q
: ð25Þ

The Hubble parameter is computed as

H tð Þ = A0′ − 2kt
2 A0′t − kt2
� � : ð26Þ

The cosmological constant is given by

Λ tð Þ = −
3γA0′

2

2 1 + 3ω − 2γð Þ A0′t − kt2
� �2 : ð27Þ

Time evolution of the cosmological constant is plotted in
Figure 5 and is found to be monotonically decreasing for all
considered values of k, similar to the β model. The energy
density is given by

ρ tð Þ = 3
16πG 1 + 3ω − 2γð Þ

A0′
2

A0′t − kt2
� �2 : ð28Þ

Variation of the scale factor aðtÞ is the same as shown in
Figure 1.

The density parameters for matter, a cosmological con-
stant, and curvature, respectively, can be computed in a sim-
ilar manner as the above for this phenomenological model as

Ωm = 4γ
1 + γ

k A0′t − kt2
� �

A0′ − 2kt2
� �2 + 1

4

2
64

3
75,

ΩΛ = 4
1 + γ

k A0′t − kt2
� �

A0′ − 2kt2
� �2 + 1

4

2
64

3
75,

Ωk = −
k

a2H2 = −
4k A0′t − kt2
� �

A0′ − 2kt2
� �2 :

ð29Þ

Similar to the previous model, we again plot the time evo-
lution of the density parameters for all contributing compo-
nents, i.e., matter, curvature, and dark energy, for k = −1 in
Figure 6. The contribution to the density parameter due to
curvature increases while contributions due to Λ and matter
decrease, but the overall density parameter due to all three
components remains the same; also, the time evolution of
the density parameters for matter, curvature, and dark energy
for k = 1 has been plotted in Figure 7. Similarly, as for the pre-
vious model, the contribution to the density parameter due to
curvature decreases and is negative while contributions due
to Λ and matter increase, but again the overall density
parameter remains the same.
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Figure 5: Plot of ΛðtÞ versus t for different values of k.
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Figure 6: Plot of ΩðtÞ versus t for k = −1.
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For the flat space (k = 0), we see from the above
expressions that the sum total of the density parameters
of the above components is equal to 1, such that Ωk = 0,
Ωm = 1/ð1 + γÞ, and ΩΛ = γ/ð1 + γÞ.

In the case of t→ 0 and ∞, the sum total of the density
parameters is equal to 1 in a similar manner as for the previ-
ous model.

In general, it can be observed on taking the sum of the
above three equations that

Ωm +ΩΛ +Ωk = 1, ð30Þ

which is again consistent with [45].

3. Constraints on the Different Parameters with
the Latest Observational Results

Although we deal with simple phenomenological models
which are not dependent on any quantum field theory, differ-
ent cosmological pictures can be reflected successfully.

Considering the cosmology of base-Λ-CDM, late uni-
verse parameters can be observed in ranges: Hubble con-
stant H0 = 67:4 ± 0:5 km/s/Mpc and matter density
parameter Ωm0 = 0:315 ± 0:007 [45]. Using the above
ranges of Ωm0, the model parameters can be constrained
as −2:076 ≤ β0≤−2:034 and 2:105 ≤ γ0 ≤ 2:247. Using more
recent data [46] where the present value of the Hubble
parameter is given as H0 = 74:03 ± 1:42 km/s/Mpc, we
obtain −2:0717 ≤ β0≤−2:06 and 1:785 ≤ γ0 ≤ 1:821.

The present value of the cosmological constant Λ0 can be
obtained using the relation Λ0 = 3H2

0γ0Ωm0. It lies within the

range 0:9 × 10−35 s−2 ≤Λ0 ≤ 1:042 × 10−35 s−2, which is in
sync with the observation [45]. We know the quintessence
equation of state as pQ = ωQρQ, ωQ = −ΩΛ = −γΩm. Using
the above ranges we have −0:724 ≤ ωQ≤−0:648. This range
is in good agreement with the accepted range of ωQ which
is −1 ≤ ωQ≤−0:6 [45, 47, 48], although, in either of our
models, we do not consider quintessence and present the
range only as a qualitative check.

Also, there are upcoming observational surveys like the
Euclid survey [49] which is aimed at obtaining more precise
and accurate data concerning dark energy and dark matter.
The survey plans to use redshift selected baryon acoustic
oscillation (BAO) to study dark energy and its time evolu-
tion. The phenomenological models which consider Λ dark
energy in the kinematic and hydrodynamic forms can also
be constrained more stringently using precise data from this
survey. This may decide the fate of these models in future
study.

4. Conclusion

To summarize, the basic philosophy behind the present
paper is to generalize two phenomenological models. Explicit
expressions of aðtÞ, HðtÞ, ρðtÞ, ΛðtÞ, and also the parameter
ΩðtÞ corresponding to matter, curvature, and DE have been
derived. Cosmic evolution of the universe from the very early
time to the late time has been discussed.

The conclusions of the present work can be jotted down
as follows:

(i) The models Λ ∼ €a/a and Λ ∼ ρ are equivalent for
k = ±1

(ii) Both the models exhibit usual cosmological
behaviour for early and late time universes. Initially
chosen values of the model parameters are found
to be in good agreement with the observational data

(iii) Constraints on the different cosmological variables
have been evaluated using our models, and the
results are in good agreement with the observational
results
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