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The Nelson-Seiberg theorem relates R-symmetries to F-term supersymmetry breaking and provides a guiding rule for new physics
model building beyond the Standard Model. A revision of the theorem gives a necessary and sufficient condition to supersymmetry
breaking in models with polynomial superpotentials. This work revisits the theorem to include models with nonpolynomial
superpotentials. With a generic R-symmetric superpotential, a singularity at the origin of the field space implies both
R-symmetry breaking and supersymmetry breaking. We give a generalized necessary and sufficient condition for
supersymmetry breaking which applies to both perturbative and nonperturbative models.

1. Introduction

Supersymmetry (SUSY) [1–6] provides a natural solution to
several unsolved problems in the Standard Model (SM),
through its extension to the supersymmetric Standard Model
(SSM). In this framework, bosons and fermions appear in
pairs related by SUSY. So every particle in SM has a SUSY
partner called a sparticle, which has similar properties to its
corresponding SM particle. The mass spectrum of sparticles
will be the same as SM particles if SUSY is a good symmetry
at low energy. Since sparticles have not been discovered yet,
SUSY must be broken to give them heavy masses escaping
the current experimental limit [7]. To avoid the problem of
light sparticles in model building, SUSY must be broken in
a hidden sector [8] which introduces new fields beyond SM,
and then, the SUSY breaking effects are mediated to the
observable SSM sector by a messenger sector, giving sparticle
mass spectrum and coupling constants which may be exam-
ined in future experiments. There are two types of SUSY
breaking models called F-term and D-term SUSY breaking.
The D-term SUSY breaking, usually involving Fayet-
Iliopoulos terms [9], has more difficulties to give appropriate
sparticle masses and to be consistent with quantum gravity

[10–12]. So this work focuses on F-term SUSY breaking,
assuming vanishing D-terms at the vacuum.

F-term SUSY breaking models, also called Wess-Zumino
models [13, 14] or O’Raifeartaigh models [15], involve super-
potentials which are holomorphic functions of chiral super-
fields. In SUSY model building, R-symmetries are often
utilized because of the relation between R-symmetries and
SUSY breaking discovered by Nelson and Seiberg [16].
Metastable SUSY breaking [17] also benefits from approxi-
mate R-symmetries through an approximate version of the
Nelson-Seiberg theorem [18, 19]. A revised version of the
Nelson-Seiberg theorem gives a combined necessary and suf-
ficient condition for SUSY breaking with an assumption of
generic polynomial superpotentials [20], while the original
theorem applies to any generic superpotentials but gives sep-
arate necessary and sufficient conditions. Although counter-
examples with generic coefficients are found [21, 22], they
have nongeneric R-charge assignments so that they do not
violate both the original and the revised theorems. This work
extends the previous analysis to cover models with nonpoly-
nomial superpotentials which are often found in dynamical
SUSY breaking. We give a generalized theorem on a neces-
sary and sufficient condition for SUSY breaking in both
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models with polynomial and nonpolynomial superpotentials.
It provides a guiding rule for low-energy effective SUSY
model building to study new physics beyond SM.

The rest part of this paper is arranged as follows. Section
2 reviews the original Nelson-Seiberg theorem. Section 3
reviews a revision of the Nelson-Seiberg theorem which gives
a necessary and sufficient condition for SUSY breaking with
the assumption of polynomial superpotentials. Section 4
gives a proof for our generalized theorem covering both
models with polynomial and nonpolynomial superpotentials.
Section 5 makes the conclusion and final remarks.

2. The Nelson-Seiberg Theorem

This section reviews the original Nelson-Seiberg theorem
and its proof [16]. The setup is on a Wess-Zumino model
[13, 14] which involves a superpotential WðϕiÞ as a holo-
morphic function of chiral superfields ϕi,  i = 1,⋯, d, and a
Kähler potential Kðϕ∗i , ϕjÞ as a real and positive-definite

function of ϕi
’s and their conjugates ϕ∗i

’s. We use Einstein
notation to sum up terms with repeated indices throughout
this work. Although a minimal Kähler potential Kðϕ∗i , ϕjÞ =
ϕ∗i ϕi is often assumed, most of our analysis in this work is
valid for generic Kähler potentials. Since the vacuum is deter-
mined by the scalar components zi

’s of ϕi
’s once the auxiliary

components Fi
’s are solved, W and K are also viewed as

functions of zi
’s and z∗i

’s. A vacuum corresponds to a mini-
mum of the scalar potential V , which is defined as

V = K�ij ∂iWð Þ∗∂jW, ð1Þ

where K�ijK
�ij′ = δjj′, K�ij = ∂�i∂jK , ∂i = ∂/∂zi, and ∂�i = ∂/∂z∗i .

Whether SUSY breaking happens or not can be checked by
solving the F-term equations:

Fi = ∂iW = 0: ð2Þ

A solution to ∂iW = 0 gives a global minimum of V
which preserves SUSY. Nonexistence of such a solution can
be taken as the criteria for SUSY breaking, although the exis-
tence of SUSY breaking vacua needs to be confirmed by min-
imizing the scalar potential V . For now, we just assume a
global minimum exists in models under discussion. Follow-
ing the work of Nelson and Seiberg, we are to discuss the exis-
tence of a solution to ∂iW = 0, given W with generic terms
and coefficients respecting symmetries in each of the follow-
ing cases:

(i) When there is no R-symmetry, a solution to ∂iW = 0
generically exists, because there are equal numbers
of equations and variables. Introducing a non-R-
symmetry does not change the situation, because it
reduces both equations and variables by the same
number

(ii) When there is an R-symmetry, W must have R-
charge 2 in order to make the Lagrangian R-invari-
ant. So there is at least one field with a nonzero

R-charge. One can choose such a field zd . With
a field redefinition, W is written as

W = xf y1,⋯, yd−1ð Þ, ð3Þ

where x = z2/rdd , yi = zi/z
ri/rd
d , i = 1,⋯, d − 1, and ri

’s
are R-charges of zi

’s. The redefinition makes x to
have R-charge 2 and yi

’s to have R-charge 0. Con-
sider the following two types of vacua:

(a) For a vacuum with x ≠ 0, equations ∂iW = 0
become

f = 0,
∂yi f = 0,  i = 1,⋯, d − 1

ð4Þ

There are d − 1 variables to solve d equations,
which are overdetermined. A generic function
f does not allow such a solution to exist. So if
such a vacuum with x ≠ 0 does exist, it generi-
cally breaks SUSY.

(b) For a vacuum with x = 0, equations ∂iW = 0
become

f = 0,
x∂yi f = 0, i = 1,⋯, d − 1

ð5Þ

The single equation f = 0 can always be solved
for a generic function f , and other equations
are all satisfied at x = 0. But the field redefinition
in (3) is usually singular at x = 0 except for some
special choices of R-charge assignments. So the
existence of a vacuum with x = 0 is unclear.

(iii) Notice that a vacuum with x ≠ 0 spontaneously
breaks the R-symmetry, while a vacuum with spon-
taneous R-symmetry breaking means that there is
at least one field zd ≠ 0 with rd ≠ 0, which can be
used to make the redefinition in (3) with x ≠ 0

In summary, we have proved the original Nelson-Seiberg
theorem.

Theorem 1 (The Nelson-Seiberg theorem). In a Wess-
Zumino model with a generic superpotential, assuming the
existence of a vacuum at the global minimum of the scalar
potential, an R-symmetry is a necessary condition, and a spon-
taneously broken R-symmetry is a sufficient condition for
SUSY breaking at the global minimum.

3. The Revised Theorem with
Polynomial Superpotentials

This section reviews the revised version of the Nelson-
Seiberg theorem and its proof [20]. To avoid singularities in
the field space and other complications from the field
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redefinition in (3), we consider the superpotential without
doing any field redefinition in the following proof:

(i) When there is no R-symmetry, SUSY is generically
unbroken according to the original Nelson-Seiberg
theorem

(ii) When there is an R-symmetry, fields can be classified
to three types according to their R-charges:

r Xið Þ − 2, i = 1,⋯,NX ,
r Y j

� �
= 0, j = 1,⋯,NY ,

r Akð Þ ≠ 2, 0,  k = 1,⋯,NA

ð6Þ

Assuming the superpotential W has a polynomial
form, we can write down the generic form of W by
including all monomial combinations of fields with
R-charge 2:

W = Xif i Y j

� �
+W1,

W1 = μijkXiX jAk + νijkXiAjAk + ξijkYiAjAk + κijAiAj

+ λijkAiAjAk + nonrenormalizable termsð Þ:
ð7Þ

Note that not all Ai
’s can appear in every terms ofW1.

Only those field combinations with R-charge 2 con-
tribute to W1 with nonzero coefficients. Each term
of W1 contains at least two Xi

’s or Ai
’s. This feature

is also possessed by nonrenormalizable terms of W1.
We consider the following cases:

(a) In the case of NX ≤NY , setting Xi = Ai = 0makes
all first derivatives ofW1 equal zero, then solving
f iðY jÞ = 0 gives a SUSY vacuum. Such a solution
generically exists because the number of equa-
tions, which equals NX , is less than or equal to
NY , the number of variables

(b) In the case ofNX >NY , we consider the following
two types of vacua:

(1) For a vacuum with Xi = Ai = 0, all first deriv-
atives of W1 are set to zero. But generically,
there is no solution to f iðY jÞ = 0 because
the number of equations is greater than the
number of variables. SUSY is generically bro-
ken if such a vacuum does exist

(2) For a vacuum with some Xi ≠ 0 or Ai ≠ 0,
which carries a nonzero R-charge, the R-sym-
metry is spontaneously broken by this field.
Then, SUSY is generically broken according
to the original Nelson-Seiberg theorem

(c) If there are more than one consistent R-charge
assignments, one should explore all possibilities
of R-charge assignments to see whether NX ≤
NY can be satisfied with one assignment. SUSY

is broken only if NX >NY is satisfied for all pos-
sible consistent R-charge assignments

These exhaust all cases with and without R-symmetries.
In summary, we have proved a necessary and sufficient con-
dition for SUSY breaking:

Theorem 2 (The Nelson-Seiberg theorem revised). In a
Wess-Zumino model with a generic polynomial superpoten-
tial, assuming the existence of a vacuum at the global mini-
mum of the scalar potential, SUSY is spontaneously broken
at the vacuum if and only if the superpotential has an
R-symmetry and the number of R-charge 2 fields is greater
than the number of R-charge 0 fields for any possible con-
sistent R-charge assignment.

The extra freedom to assign different R-charges can be
viewed as a non-RUð1Þ symmetry in addition to the R-sym-
metry [23]. Ak

’s, the fields with R-charges other than 2 and
0, do not appear in the SUSY breaking condition of the revised
theorem but are needed for spontaneous R-symmetry break-
ing to generate gauginomasses [24–28]. In addition, according
to the above proof procedure, a SUSY vacuum from a model
with an R-symmetry and NX ≤NY also preserves the R-sym-
metry and gives a zero expectation value to W [29]. Such
vacua play important roles in string phenomenology [30–32].

4. Generalization to Include
Nonpolynomial Superpotentials

The generic form of the superpotential (7) is an essential step
of the previous proof, which comes from the assumption of
an R-symmetry and a polynomial W. So a superpotential
beyond the polynomial expansion may invalidate the proof
of the revised theorem. But the proof of the original
Nelson-Seiberg theorem does not rely on the polynomial
form of W. Models in the scope of the original Nelson-
Seiberg theorem but out of the scope of the revised theorem
often appear in dynamical SUSY breaking. To achieve a more
general theorem to cover these models, we need to analyzeW
as an arbitrary generic function of fields.

(i) When there is no R-symmetry, SUSY is generically
unbroken according to the original Nelson-Seiberg
theorem

(ii) When there is an R-symmetry, we suppose fields are
properly defined so that the origin of the field space
preserves the R-symmetry. Thus, every field trans-
forms by a complex phase angle under the R-sym-
metry and can be assigned an R-charge. Fields can
be classified to Xi

’s, Yi
’s, or Ai

’s according to their
R-charges, just like what has been done in (6). There
are NY degrees of freedom to choose the origin
because any expectation values of Yi

’s are invariant
under the R-symmetry. The superpotentialW is sup-
posedly a generic holomorphic function of fields. We
consider the following two cases:
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(a) IfW is smooth at the origin, it has a Taylor series
expansion with a nonzero radius of convergence.
The expansion only needs to be done in variables
Xi

’s and Ai
’s, and all constant coefficients can be

replaced with arbitrary functions of Yi
’s. The

generic expansion from the origin Xi = Ai = 0 is

W = Xif i Y j

� �
+W1,

W1 = μijk Ylð ÞXiXjAk + νijk Ylð ÞXiAjAk

+ ξij Ykð ÞAiAj + κijk Ylð ÞAiAjAk

+ termswithmore than threeXi′s andAi ′s
� �

ð8Þ

Note again that each term ofW1 contains at least
two Xi

’s or Ai
’s. All the previous proof can be

carried on to reach the revised Nelson-Seiberg
theorem by considering the following two types
of vacua:

(1) The discussion on vacua with Xi = Ai = 0 in
the previous proof proceeds without change.
Any nonzero radius of convergence of the
polynomial expansion (8) ensures the valid-
ity of such a vacuum at the origin

(2) The discussion on vacua with Xi ≠ 0 or Ai ≠ 0
in the previous proof only involves the origi-
nal Nelson-Seiberg theorem, which does not
rely on the expansion form (8)

(b) IfW is singular at the origin, the vacuum, if exist-
ing, must be away from the origin to ensure a
reliable effective theory calculation. The R-sym-
metry is broken by some field expectation values
at the vacuum, and SUSY is broken according to
the original Nelson-Seiberg theorem

By identifying whether W has a singularity at the origin
of the field space, all cases with polynomial and nonpolyno-
mial W’s are covered in our discussion. Note that singulari-
ties away from the origin, if existing, do not affect the
proofing process. In summary, we have proved a generalized
condition for SUSY breaking in models with generic
superpotentials:

Theorem 3 (The Nelson-Seiberg theorem revised and gener-
alized). In a Wess-Zumino model with a generic superpoten-
tial, assuming the existence of a vacuum at the global
minimum of the scalar potential, SUSY is spontaneously bro-
ken at the vacuum if and only if the superpotential has an R
-symmetry, and one of the following conditions is satisfied:

(i) The superpotential is smooth at the origin of the field
space, and the number of R-charge 2 fields is greater
than the number of R-charge 0 fields for any possible
consistent R-charge assignment

(ii) The superpotential is singular at the origin of the field
space

Nonpolynomial superpotentials often appear as low-
energy effective descriptions of dynamical SUSY breaking
models, which come from nonperturbative effects in super-
symmetric quantum chromodynamics (SQCD) for various
numbers of colors Nc and number of flavors Nf [33–37]. A
nonpolynomial Affleck-Dine-Seiberg (ADS) superpotential
[38, 39] is generated from gaugino condensation in the case
of Nf <Nc − 1 or from instantons in the case of Nf =Nc −
1. As and example, the 3-2 model [40] has a gauge group
SUð3Þ × SUð2Þ, a global Uð1Þ symmetry, and an R-symme-
try Uð1ÞR, with the following chiral superfields:

Q :   3, 2ð Þ1/3,1,
L :   1, 2ð Þ−1,−3,
~u :   �3, 1ð Þ− 4/3ð Þ,−8,

~d :   �3, 1ð Þ2/3,4,

ð9Þ

where the representations of SUð3Þ and SUð2Þ are written in
parentheses and the subscripts indicate Uð1Þ and Uð1ÞR
charges. Assuming SUð3Þ interactions are much stronger
than SUð2Þ interactions, the superpotential is

W = Λ7
3

QQ~u~d
+ λQ~dL: ð10Þ

The first term is the ADS superpotential coming from
SUð3Þ instantons, and the latter is the only renormalizable
tree-level polynomial term respecting all symmetries. If a
vacuum does exist, the singular nonpolynomial term pushes
field expectation values away from the origin and breaks
the R-symmetry and SUSY according to the generalized the-
orem. On the other hand, as a result of vanishing SUð3Þ and
SUð2ÞD-terms, we can assume all fields have their vacuum
expectation values of the same order v. With an approxi-
mately minimal Kähler potential at weak coupling limit,
the vacuum is calculated by minimizing the scalar poten-
tial V = ∥∂iW∥2. Omitting constant coefficients, the vac-
uum expectation values of fields and V are estimated to be

Qh i ~ Lh i ~ ~uh i ~ ~d
D E

~ v ~ Λ3
λ1/7

,  Vh i ~ λ10/7Λ3: ð11Þ

Note that for simplicity, we used the same set of sym-
bols for superfields (9) and their scalar components. The
nonzero hVi indicates a SUSY breaking vacuum, which
verifies the prediction of the theorem.

5. Conclusion

The generalized theorem proved in this work provides a tool
to build SUSY models with R-symmetries and give either
SUSY breaking or SUSY vacua. For models smooth at the
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origin of the field space, one can arrange R-charges of fields
to satisfy either NX >NY or NX ≤NY and get the needed
vacua. For models singular at the origin of the field space,
field expectation values are pushed away from the origin if
a vacuum does exist, and SUSY is broken with a generic
superpotential. The theorem applies to both perturbative
and nonperturbative models. It allows one to efficiently
survey a large number of different models without solving
the F-term equations and select the models with desired
vacua to continue explicit model building. It provides a
guiding rule for low-energy effective SUSY model building
to study phenomenology of new physics beyond SM as
well as string phenomenology.

The existence of a global minimum must be assumed in
the proof of both the Nelson-Seiberg theorem and its revi-
sions discussed in this work. Indeed, there are models which
have no minimum, only maxima, saddle points, and run-
away directions asymptotically approaching SUSY at infin-
ity [41–44]. The nonperturbative superpotential (10) of the
3-2 model, if lacking the requirement of vanishing D
-terms, also has a runaway behavior. These runaway direc-
tions may be lifted up by other effects such as D-terms
and give SUSY breaking vacua, just like what happens to
the 3-2 model (10). Such a lift-up mechanism can also
be built into runaway models with polynomial superpoten-
tials [43]. For phenomenology model building purpose, it
is reasonable to classify such runaway models as the SUSY
breaking type, which can also be covered by both the
Nelson-Seiberg theorem and its revisions discussed in this
work.

It should be noted that nonperturbative effects do not
necessarily lead to nonpolynomial superpotentials. The form
of the superpotential depends on how it is parameterized. For
example, in the Kachru-Kallosh-Linde-Trivedi (KKLT) con-
struction for de Sitter vacua in type IIB flux compactifications
[45], the superpotential

W =W0 +Wcorr =W0 + Aeiaρ ð12Þ

has a tree-level contribution W0 from fluxes and a nonper-
turbative correction Wcorr from D3 brane instantons or gau-
gino condensation of the gauge theory on a stack of D7
branes, which stabilizes the volume modulus ρ. The expo-
nential form of Wcorr is smooth at any value of ρ, and no R
-charge can be consistently assigned to ρ. A supersymmetric
anti-de Sitter vacuum is found at finite ρ by minimizing the
supergravity scalar potential with a nonminimal Kähler
potential. This model is based on supergravity and thus lies
out of the scope of all theorems discussed in this work.
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