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A general coupled KdV equation, which describes the interactions of two long waves with different dispersion relation, is
considered. By employing the Hirota’s bilinear method, the bilinear form is obtained, and the one-soliton solution and two-
soliton solution are constructed. Moreover, the elasticity of the collision between two solitons is proved by analyzing the
asymptotic behavior of the two-soliton solution. Some figures are displayed to illustrate the process of elastic collision.

1. Introduction

In the soliton theory, finding the soliton solutions for the
nonlinear partial equations is becoming more and more
important since the soliton solutions can describe many
complex physical phenomena [1]. Many effective approaches
have been proposed, such as the inverse scattering transfor-
mation method [2], the Bäcklund transformation method
[3], the Darboux transformation method [4–6], the Hirota
bilinear method [7–11], and the Riemann-Hilbert method
[12]. Among them, the Hirota bilinear method is not only
direct but also effective for investigating the soliton solutions.

In the past decades, the coupled Korteweg-de Vries
(KdV) equations have been investigated widely and many
integrable coupled KdV equations are found. For example,
Gurses and Karasu [13] showed that the following coupled
KdV equation was integrable and admitted recursion opera-
tor and a bi-Hamiltonian structure:

ut + uxxx − 6uux − 6vx = 0,
vt − 2vxxx + 6 uvx = 0:

(
ð1Þ

In fact, this equation is Lax integrable, and the Lax
pair was firstly given by Drinfeld and Sokolov [14] and

then by Bogoyavlenskii [15] and Karasu and Yurduşen
[16] independently. Subsequently, this equation was also
derived by Satsuma and Hirota [17] as one case of the
four-reduction of the KP Hierarchy. Moreover, Karasu
and Yurduşen [16] proposed a Bäcklund transformation
and some explicit solutions of Equation (1). As far as we
know, the soliton solutions and the collision between two
solitons have not been investigated. So in this paper, we
investigate the following general coupled KdV equation:

ut + uxxx − 6uux + αvx = 0,
vt − 2vxxx + 6 uvx = 0,

(
ð2Þ

which is just the coupled KdV Equation (1) for α = −6:
The rest of this paper is organized as follows. In “The

Bilinear Form and Soliton Solutions,”, the bilinear form,
the one-soliton, and two-soliton of Equation (2) are
obtained based on the Hirota’s direct method. In “Asymp-
totic Analysis on Two-Soliton Solution,” the asymptotic
behaviors are studied to prove that the two-soliton
collision is elastic. Finally, conclusions are given in
“Conclusion.”
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2. The Bilinear Form and Soliton Solutions

We implement the following dependent variable transforma-
tion to Equation (2):

u = −2 log ϕð Þ½ �xx,

v = g
ϕ
,

8<
: ð3Þ

where g and ϕ are functions of x and t: Then, the following
bilinear equations of Equation (2) are obtained as follows:

DxDt +D4
x

� �
ϕ · ϕ = αϕg,

Dt − 2D3
x

� �
g · ϕ = 0,

(
ð4Þ

where the D-operators [18] are defined by

Dm
x D

n
t a x, tð Þ · b x, tð Þ = ∂

∂x
−

∂
∂x′

� �m ∂
∂t

−
∂
∂t ′

� �n

a x, tð Þb x′, t ′
� �

x=x′,t=t′,
��

ð5Þ

where both m and n are integers.
In order to apply the perturbation method to Equation

(4) to find the soliton solutions of Equation (2), we expand
functions g and ϕ in power series of a small parameter
ε as

g = εg1 + ε2g2 + ε3g3+⋯, ð6Þ

ϕ = 1 + εϕ1 + ε2ϕ2 + ε3ϕ3+⋯, ð7Þ
where gi and ϕiði = 1, 2, 3,⋯Þ are functions of x and t.
Substituting Equations (6) and (7) into the bilinear
Equation (4) and collecting the coefficients of parameter
ε, we have

ε1 : 2 ϕ1xt + ϕ1xxxxð Þ = αg1,
g1t − 2g1xxx = 0,

ð8Þ

ε2 : 2 ϕ2xt + ϕ2xxxxð Þ = − DxDt +D4
x

� �
ϕ1 · ϕ1 + α g2 + ϕ1g1ð Þ,

g2t − 2g2xxx = − Dt − 2D3
x

� �
g1 · ϕ1,

ð9Þ

ε3 : 2 ϕ3xt + ϕ3xxxxð Þ = − DxDt +D4
x

� �
ϕ1 · ϕ2 + ϕ2 · ϕ1ð Þ

+ α g3 + ϕ1 g2 + ϕ2 g1ð Þ,

g3t − 2g3xxx = − Dt − 2D3
x

� �
g1 · ϕ2 + g2 · ϕ1ð Þ, ð10Þ

ε4 : 2 ϕ4xt + ϕ4xxxxð Þ = − DxDt +D4
x

� �
ϕ1 · ϕ3 + ϕ2 · ϕ2 + ϕ3 · ϕ1ð Þ

+ α g4 + ϕ1 g3 + ϕ2 g2 + ϕ3 g1ð Þ,

g4t − 2g4xxx = − Dt − 2D3
x

� �
g1 · ϕ3 + g2 · ϕ2 + g3 · ϕ1ð Þ, ð11Þ

ε5 : 2 ϕ5xt + ϕ5xxxxð Þ = − DxDt +D4
x

� �
ϕ1 · ϕ4 + ϕ2 · ϕ3ð

+ ϕ3 · ϕ2 + ϕ4 · ϕ1Þ + α g5 + ϕ1 g4ð
+ ϕ2 g3 + ϕ3 g2 + ϕ4 g1Þ,

g5t − 2g5xxx = − Dt − 2D3
x

� �
g1 · ϕ4 + g2 · ϕ3 + g3ð

· ϕ2 + g4 · ϕ1Þ:
ð12Þ

2.1. One-Soliton Solution. To obtain the one-soliton solu-
tion for the general coupled KdV Equation (2), set

g1 = eη1 , ð13Þ

where η1 = k1x + ω1t + δ1. Substituting it into Equation
(8), we have ω1 = 2k13 and

ϕ1 = b1 eη1 , b1 =
1
6

α

k1
4 : ð14Þ

Furthermore, from Equation (9), we have

g2 = 0,

ϕ2 = b11 e2 η1 , b11 =
1
288

α2

k1
8 :

ð15Þ

Assuming gj = ϕj = 0, ðj = 3, 4,⋯Þ, it is easy to see
that Equation (10) and other equations from the coeffi-
cients of parameter ε are satisfied automatically. So we
obtain the following one-soliton solution for the general
coupled KdV Equation (2) by setting ε = 1 :

u = −2 log 1 + ϕ1 + ϕ2ð Þ½ �xx,

v = g1
1 + ϕ1 + ϕ2

:

8<
: ð16Þ

Figures 1(a) and 1(b) demonstrate the soliton struc-
tures of one-solutions uðx, tÞ and vðx, tÞ, respectively,
for parameters k1 = 1/2, α = 1.

2.2. Two-Soliton Solution. Likewise, to arrive the two-soliton
solution, we set

g1 = eη1 + eη2 , ð17Þ

where ηi = kix + ωit + δi, i = 1, 2. Plugging Equation (17) into
Equation (8) yields ωi = 2ki3, i = 1, 2, and

ϕ1 = b1 eη1 + b2 eη2 , ð18Þ

with bi = 1/6 ðα/ki4Þ, i = 1, 2.
From Equations (9) and (18), we have

g2 = a12eη1+η2 ,
ϕ2 = b11 e2 η1 + b22 e2 η2 + b12 eη1+η2 ,

ð19Þ
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with

a12 =
1
6
α k1 − k2ð Þ2 k21 − k22

� �
k1

4k2
4 ,

b11 =
1
288

α2

k1
8 , b22 =

1
288

α2

k2
8 ,

b12 =
1
36

α2 k41 + k42
� �

k41 k
4
2 k21 + k22
� �

k1 + k2ð Þ2 :
ð20Þ

Similarly, from Equations (10), (18), and (19), g3 and ϕ3
can be derived as

g3 = a112e2 η1+η2 + a122eη1+2 η2 ,
ϕ3 = b112e2 η1+η2 + b122eη1+2 η2 ,

ð21Þ

with

a112 =
1
288

α2 k1 − k2ð Þ2
k81 k1 + k2ð Þ2

,

a122 =
1
288

α2 k1 − k2ð Þ2
k82 k1 + k2ð Þ2

,
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Figure 1: Time and space evolution of the antibell soliton solution uðx, tÞ and bell soliton solution vðx, tÞ in Equation (16) for parameters
k1 = 1/2, α = 1. (a) uðx, tÞ. (b) vðx, tÞ.
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Figure 2: (a, d) Time evolution of the 2-soliton solutions u and v with parameters k1 = 1/2, k2 = 1/3, α = 1, respectively. (b, e) Soliton
interaction shots of u and v at t = −150, t = 0, and t = 150. Two solitons travel from right to left and pass through each other while
their shapes well-maintained, implying perfect elasticity of the collision. (c, f) Density profile of the collision progress of u and v,
showing the velocity keep invariable and phase shift after interaction. (a) uðx, tÞ. (b) uðx, ·Þ. (c) density of uðx, tÞ. (d) vðx, tÞ. (e) vðx, ·Þ.
(f) density of vðx, tÞ.
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b112 =
1

1728
α3 k1 − k2ð Þ2

k81 k
4
2 k1 + k2ð Þ2 ,

b122 =
1

1728
α3 k1 − k2ð Þ2

k41 k
8
2 k1 + k2ð Þ2 : ð22Þ

Moreover, if we plug the above obtained g1, g2, g3 and
ϕ1, ϕ2, ϕ3 into Equation (11), we get

g4 = 0,
ϕ4 = b1122e2 η1+2 η2 ,

ð23Þ

with b1122 = 1/82944 ðα4ðk1 − k2Þ4/k81 k82 ðk1 + k2Þ4Þ.
Assuming gj = ϕj = 0, ðj = 5, 6,⋯Þ, it is observed that the

left equations are satisfied automatically. By setting ε = 1,
we obtain the two-soliton solutions for the coupled KdV
Equation (2). We i4llustrate the structures of u and v in
Figures 2(a) and 2(b).

3. Asymptotic Analysis on Two-Soliton Solution

Now we analyze the two-soliton solution of Equation (2)
with long-time asymptotic method. Note that the two-
soliton solution can be written as

u = −2 log 1 + ϕ1 + ϕ2 + ϕ3 + ϕ4ð Þ½ �xx,

v = g1 + g2 + g3
1 + ϕ1 + ϕ2 + ϕ3 + ϕ4

,
ð24Þ

where ϕ1, ϕ2, ϕ3, ϕ4 and g1, g2, g3, g4 are shown in Equations
(17)–(23). Without loss of generality, suppose that k2 > k1 > 0.

For fixed η1, note that η2 = ðk2/k1Þη1 + 2k2ðk22 − k21Þt −
ðk2/k1Þδ1 + δ2, then arrive at the following:

(i) Solitons-1 before collision (t→ −∞, η2 ~ −∞)

u1 ~ −
16 k21β1 β2

1 + 4β1 + 8
� �

β2
1 + 8β1 + 8

� �2 ,

v1 ~
8 eη1

β2
1 + 8β1 + 8

,
ð25Þ

where β1 = b1 e
η1

(ii) Solitons-1 after collision (t→ +∞, η2 → +∞)

u1 ~ −
16 k21β1′ β1′

2 + 4β1′ + 8
� �

β1′
2 + 8β1′ + 8

� �2 ,

v1 ~
8 e η1+A12ð Þ

β1′
2 + 8β1′ + 8

,

ð26Þ

where β1′ = b1 e
ðη1+B12Þ, A12 = a122, andB12 = k1 − k2

2/
k1 + k2

2.

For fixed η2, note that η1 = ðk1/k2Þη2 + 2k1ðk21 − k22Þt −
ðk1/k2Þδ2 + δ1, and then we arrive at the following:

(i) ′ Solitons-2 before collision (t→ −∞, η1 → +∞)

u2 ~ −
16 k22β2′ β2′

2 + 4β2′ + 8
� �

β2′
2 + 8β2′ + 8

� �2 ,

v2 ~
8 e η2+A21ð Þ

β2′
2 + 8β2′ + 8

,

ð27Þ

where β2′ = b2 e
ðη2+B21Þ, A21 = a112, B21 = k1 − k2

2/k1 +
k2

2

(ii) ′ Solitons-2 after collision (t→ +∞, η1 ~ −∞)

u2 ~ −
16 k22β2 β2

2 + 4β2 + 8
� �

β2
2 + 8β2 + 8

� �2 ,

v2 ~
8 eη2

β2
2 + 8β2 + 8

,
ð28Þ

where β2 = b2 e
η2 .

The above asymptotic analysis can also be seen in
Figure 3. Comparing the asymptotic expressions Equation
(25) with Equation (26) and Equation (27) with Equation
(28), we find that the amplitudes and velocities remain the
same, but the phases are changed. To illustrate the collision
process exactly, the graphs are presented in Figure 2, which
shows that the collisions of the two-soliton waves are exactly
elastic.

Interaction
range

u2

v2

u1

v1

u1

v1
8eη1+A12

8eη2+A12

(𝛽1′
2+8𝛽1′+8)2

𝛽1′
2+8𝛽1′+8 

𝛽2′
2+8𝛽2′+8 

–16 k1
2 (𝛽1′

2+4𝛽1′+ 8)

–16 k2
2 (𝛽2′

2+4𝛽2′+8)

u2

v2
8eη2 

8eη2 

𝛽2+8𝛽2+8

𝛽1+8𝛽1+8

t

Solitons-1

Solitons-2

Solitons-2

Solitons-1

2

2

–16 k2
2 (𝛽2 +4𝛽2+8) 2

–16 k1 (𝛽1+4𝛽1+8) 22

(𝛽2+8𝛽2+8)2

(𝛽1+8𝛽1+8)2

2

2
(𝛽2′

2+8𝛽2′+8)2

Figure 3: Two-soliton collisions in the coupled KdV system.
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4. Conclusion

In conclusion, we studied a general coupled KdV Equation
(2)via the Hirota’s bilinear method. We first constructed
the bilinear form and then the one-soliton solution and
two-soliton solution. Furthermore, the asymptotic analysis
is given to prove that the collision of the two-soliton solu-
tions is elastic.
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