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We exploit the theoretical strength of the supervariable and Becchi-Rouet-Stora-Tyutin (BRST) formalisms to derive the proper
(i.e., off-shell nilpotent and absolutely anticommuting) (anti-)BRST symmetry transformations for the reparameterization
invariant model of a nonrelativistic (NR) free particle whose space ðxÞ and time ðtÞ variables are a function of an evolution
parameter ðτÞ. The infinitesimal reparameterization (i.e., 1D diffeomorphism) symmetry transformation of our theory is defined
w.r.t. this evolution parameter ðτÞ. We apply the modified Bonora-Tonin (BT) supervariable approach (MBTSA) as well as the
(anti)chiral supervariable approach (ACSA) to BRST formalism to discuss various aspects of our present system. For this
purpose, our 1D ordinary theory (parameterized by τ) is generalized onto a ð1, 2Þ-dimensional supermanifold which is
characterized by the superspace coordinates ZM = ðτ, θ, θÞ where a pair of the Grassmannian variables satisfy the fermionic

relationships: θ2 = θ
2 = 0, θ θ + θ θ = 0, and τ is the bosonic evolution parameter. In the context of ACSA, we take into account

only the ð1, 1Þ-dimensional (anti)chiral super submanifolds of the general ð1, 2Þ-dimensional supermanifold. The derivation of
the universal Curci-Ferrari- (CF-) type restriction, from various underlying theoretical methods, is a novel observation in our
present endeavor. Furthermore, we note that the form of the gauge-fixing and Faddeev-Popov ghost terms for our NR and non-
SUSY system is exactly the same as that of the reparameterization invariant SUSY (i.e., spinning) and non-SUSY (i.e., scalar)
relativistic particles. This is a novel observation, too.

1. Introduction

During the last few years, there has been an upsurge of inter-
est in the study of diffeomorphism invariant theories because
one of the key and decisive features of the gravitational and
(super)string theories is the observation that they respect
the classical diffeomorphism symmetry transformations.
The latter symmetry transformations can be exploited within
the framework of Becchi-Rouet-Stora-Tyutin (BRST) for-
malism [1–4] where the classical diffeomorphism symmetry
transformation is elevated to the quantum (anti-)BRST sym-
metry transformations. In fact, it is the key feature of the
BRST formalism that the classical diffeomorphism transfor-
mation parameter is traded with the fermionic (anti)ghost

fields/variables at the quantum level. In other words, the
(anti-)BRST transformations are of the supersymmetric
(SUSY) kind under which the bosonic type of fields/variables
transforms to the fermionic type of fields/variables and vice
versa. Two of the key properties of the (anti-)BRST transfor-
mations are the on-shell/off-shell nilpotency and absolute
anticommutativity. These key properties encompass in their
folds the fermionic as well as independent natures of the
quantum BRST and anti-BRST symmetries at the level of
physical interpretation. The nilpotency property (i.e., fermi-
onic nature) of the (anti-)BRST symmetries (and their corre-
sponding charges) is also connected with some aspects of the
cohomological properties of differential geometry and a few
decisive features of supersymmetry.
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The BRST formalism has been exploited in the covar-
iant canonical quantization of the gauge and diffeomorph-
ism invariant theories in the past. At the classical level, the
gauge theories are characterized by the existence of the
first-class constraints [5, 6] on them. This fundamental
feature is translated, at the quantum level, into the lan-
guage of the existence of the Curci-Ferrari- (CF-) type
restriction(s) when the classical theory is quantized by
exploiting the theoretical richness of BRST formalism.
Hence, the existence of the CF-type restriction(s) is the
key signature of a BRST-quantized version of the gauge
and/or diffeomorphism invariant theory. The CF-type
restrictions are (i) deeply connected with the geometrical
objects called gerbes [7, 8], (ii) responsible for the absolute
anticommutativity of the quantum (anti-)BRST transfor-
mations, and (iii) the root cause behind the existence of
the coupled (but equivalent) Lagrangians/Lagrangian den-
sities for the (anti-)BRST invariant quantum theories (cor-
responding to the classical gauge/diffeomorphism invariant
theories). The Abelian 1-form gauge theory is an exception
where we obtain a unique (anti-)BRST invariant Lagrang-
ian density because the CF-type restriction is trivial in this
case. However, this restriction turns out to be the limiting
case of the non-Abelian 1-form gauge theory where the
nontrivial CF condition exists [9].

It is the supervariable/superfield approaches [10–21] to
BRST formalism that provide the geometrical basis for the
off-shell nilpotency and absolute anticommutativity of the
(anti-)BRST symmetries as well as the existence of the CF-
type restrictions for a BRST-quantized gauge/diffeomorph-
ism invariant theory. In the usual superfield approaches
(USFA), it is the horizontality condition (HC) that plays a
decisive role as it leads to (i) the derivation of the (anti-)BRST
symmetry transformations for only the gauge and (anti)ghost
fields as well as (ii) the derivation of the CF-type restric-
tion(s). The augmented version of the superfield approach
(AVSA) is an extension of USFA where, in addition to the
HC, the gauge (i.e., (anti-)BRST) invariant restrictions are
exploited together which lead to the derivation of the (anti-
)BRST symmetry transformations for the gauge, (anti)ghost,
and matter fields together in an interacting gauge theory. It
has been a challenging problem to incorporate the diffeo-
morphism transformation within the ambit of the superfield
approach to gauge theories (see, e.g., [14–16]) so that one can
discuss the gravitational and (super)string theories within the
framework of USFA/AVSA. In this direction, a breakthrough
has recently been made by Bonora [22] where the superfield
approach has been applied to derive the proper (anti-)BRST
transformations as well as the CF-type restriction for the
D-dimensional diffeomorphism invariant theory. This
approach has been christened by us as the modified
Bonora-Tonin (BT) superfield approach (MBTSA) to BRST
formalism. In a recent couple of papers [23, 24], we have
applied the theoretical beauty of the MBTSA as well as
ACSA (i.e., (anti)chiral superfield/supervariable approach)
to BRST formalism [25–29] in the context of the 1D diffeo-
morphism (i.e., reparameterization) invariant theories of
the non-SUSY (i.e., scalar) as well as SUSY (i.e., spinning)
relativistic free particles.

The central theme of our present investigation is to
concentrate on the reparameterization (i.e., 1D diffeo-
morphism) invariant theory of a massive nonsupersym-
metric (NSUSY) and nonrelativistic (NR) free particle

where the standard NR Lagrangian LðtÞ0 ðx, _xÞ = ð1/2Þm _x2

(with _x = dx/dt) is rendered reparameterization invariant
by treating the “time” variable on a par with the x variable
[30] parameterized by an evolution parameter τ such that

the new Lagrangian LðτÞ0 ðx, _x, t, _tÞ =m _x2/2 _t, where _x = dx/
dτ and _t = dt/dτ. The latter Lagrangian respects the repar-
ameterization symmetry [31, 32], and it has been dis-
cussed in different theoretical settings where the
noncommutativity of the spacetime appears by the sym-
metry considerations, constraint analysis, redefinitions of
variables, etc. This reparameterization invariant model of
the free particle ( _px = _pt = 0) has been discussed by us
within the frameworks of BRST formalism as well as
quantum groups [32]. However, in the BRST analysis, we
have exploited the gauge symmetry of this NSUSY and
NR system [32] without discussing anything about the
reparameterization transformations. In our present investi-
gation, we have applied the beautiful blend of theoretical
ideas from MBTSA and ACSA to derive the proper
(anti-)BRST symmetries and CF-type restriction for this
NR system. This model is interesting in its own right as
it is a NR system (unlike our earlier discussions [23, 24]
on the relativistic systems), and “time” itself has been
treated as a physical observable that depends on the evolu-
tion parameter τ. The latter property of our present NR
system is important as “time” has also been treated as an
observable in quantum mechanics instead of an evolution
parameter (see, e.g., [30]).

The following motivating factors have been at the heart of
our curiosity in pursuing our present endeavor. First, so far,
we have been able to apply the beautiful blend of theoretical
ideas behind MBTSA and ACSA to BRST formalism in the
cases of reparameterization invariant systems of the (i) rela-
tivistic nonsupersymmetric (NSUSY) scalar free particle
and (ii) supersymmetric (SUSY) (i.e., spinning) relativistic
free particle. Thus, it has been a challenging problem for us
to apply the same theoretical ideas to discuss the NSUSY
and nonrelativistic (NR) system of a reparameterization
invariant free particle. We have accomplished this goal in
our present investigation. Second, we have shown the univer-
sality of the CF-type restriction in the cases of reparameteri-
zation (i.e., 1D diffeomorphism) invariant NSUSY as well as
SUSY systems of the free relativistic particles. Thus, we have
been motivated to see the existence of the same CF-type
restriction in our present case of reparameterization invari-
ant systems of NSUSY and NR free particles. We have been
able to demonstrate that it is the same CF-type restriction
that exists in the BRST approach to our present NSUSY
and NR system. Third, we have found out that the gauge-
fixing and Faddeev-Popov (FP) ghost terms for the systems
of non-SUSY (i.e., scalar) and SUSY (i.e., spinning) relativis-
tic particles are the same within the ambit of BRST formal-
ism. Thus, we have been curious to find out the gauge-
fixing and FP ghost terms for our present non-SUSY and
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NR system. It is surprising that the above terms are the same
for our present system, too. Finally, our present work is
another modest initial step towards our main goal of apply-
ing the theoretical potential of MBTSA and ACSA to the
physical four ð3 + 1Þ-dimensional (4D) diffeomorphism
invariant gravitational and (super)string theories in the
higher dimensions (i.e., D > 4) of spacetime.

The contents of our present endeavor are organized as
follows. In Section 2, we recapitulate the bare essentials of
the Lagrangian formulation of our reparameterization invari-
ant nonrelativistic system and discuss the BRST quantization
of this model by exploiting its infinitesimal gauge symmetry
transformations. Section 3 is devoted to the application of
MBTSA for the derivation of (i) the quantum (anti-)BRST
symmetry transformations for the phase space variables
and (ii) the underlying (anti-)BRST invariant Curci-Ferrari-
(CF-) type restriction (corresponding to the classical infini-
tesimal reparameterization symmetry transformations). The
theoretical content of Section 4 is related to the derivation
of the full set of (anti-)BRST symmetry transformations by
requiring the off-shell nilpotency and absolute anticommuta-
tivity properties. We also show the existence of the CF-type
restriction and deduce the coupled (anti-)BRST invariant
Lagrangians for our theory. In Section 5, we derive the
(anti-)BRST symmetry transformations for the other vari-
ables (i.e., different from the phase variables) within the pur-
view of ACSA. Section 6 deals with the proof of the
equivalence of the coupled Lagrangians within the framework
of ACSA to BRST formalism. In Section 7, we prove the off-
shell nilpotency and absolute anticommutativity of the con-
served (anti-)BRST charges in the ordinary space and super-
space (by exploiting the theoretical richness of ACSA to
BRST formalism). Finally, in Section 8, we discuss our key
results and point out a few future directions for further
investigation(s).

In Appendices A, B, and C, we perform some explicit
computations that supplement as well as corroborate the
key claims that have been made in the main body of our text.

1.1. Convention and Notations.We adopt the convention of
the left derivative w.r.t. all the fermionic variables of our
theory. In the whole body of the text, we denote the fer-
mionic (anti-)BRST transformations by the symbols sðaÞb
and corresponding conserved and nilpotent charges carry
the notations QðaÞb and Qð�BÞB in different contexts. The
general ð1, 2Þ-dimensional supermanifold is parameterized
by ZM = ðτ, θ, θÞ, and its chiral and antichiral super sub-
manifolds are characterized by ðτ, θÞ and ðτ, θÞ, respec-
tively, where the bosonic coordinate is represented by the
evolution parameter ðτÞ and the Grassmannian variables

ðθ, θÞ obey the fermionic relationships: θ2 = 0, θ2 = 0, and
θ θ + θ θ = 0.

2. Preliminaries: Lagrangian Formulation

Our present section is divided into two parts. In Section 2.1,
we discuss the classical infinitesimal reparameterization and
gauge symmetry transformations. Section 2.2 deals with the

BRST quantization of our system by exploiting the classical
gauge symmetry transformations (which are also infinitesi-
mal and continuous).

2.1. Classical Infinitesimal Symmetries. We begin with the
three equivalent reparameterization invariant Lagrangians
for the free nonrelativistic and non-SUSY particle as (see,
e.g., [32] for details)

L0 x, _x, t, _t
� �

= m _x2

2 _t
,

Lf x, _x, t, _t, px, pt
� �

= px _x + pt _t −
1
2 E p2x + 2mpt

� �
,

Ls x, _x, t, _t
� �

= _x2

2 E + m _x2

2 _t
E m
_t

− 1
� �

,

ð1Þ

where the trajectory of the free nonrelativistic particle is
embedded in a 2D configuration space characterized by the
coordinates ½xðτÞ, tðτÞ� and the parameter τ specifies the tra-
jectory of the particle as an evolution parameter. The
momenta variables ðpx , ptÞ are defined by px = ð∂ L/∂ _xÞ and
pt = ð∂ L/∂ _tÞ, where _x = ðd x/d τÞ and _t = ðd t/d τÞ are the
generalized “velocities” w.r.t. the coordinates ½xðτÞ, tðτÞ�
and L stands for any of the three Lagrangians of Equation
(1). It is self-evident that the 4D phase space, corresponding
to the 2D configuration space, is characterized by ½xðτÞ,
tðτÞ, pxðτÞ, ptðτÞ�. In the above Equation (1), the mass
of the nonrelativistic particle is denoted by m and EðτÞ
is the Lagrange multiplier variable that incorporates the
constraint p2x + 2mpt ≈ 0 in the Lagrangians Lf and Ls.
It is straightforward to note that L0 and Ls contain vari-
ables (and their first-order derivative) in the denominator
but Lf (i.e., the first-order Lagrangian) does not incorpo-
rate any variable (and/or its derivative) in its denomina-
tor. Furthermore, the starting Lagrangian (For a free
massive NR particle, the standard action integral is
St =

Ð +∞
−∞d t ðð1/2Þm _x2Þ, where _x = ðdx/dtÞ and time “t” is

the evolution parameter. This action has no reparameteriza-
tion invariance. If the evolution parameter is τ, then the
action integral is Sτ = ðm/2ÞÐ +∞−∞dτðdt/dτÞðdx/dτÞðdτ/dtÞ
ðdx/dτÞðdτ/dtÞ which leads [31, 32] to the final action inte-
gral as Sτ = ðm/2ÞÐ +∞−∞dτ½ðdx/dτÞ2ðdτ/dtÞ�≡Ð +∞−∞dτL0. Hence,

the starting Lagrangian becomes L0ðx, _x, t, _tÞ =m _x2/2 _t,
where _x = ðdx/dτÞ and _t = ðdt/dτÞ.) L0 does not permit the
massless ðm = 0Þ limit but the massless ðm = 0Þ limits are well
defined for Lf and the second-order Lagrangian Ls. We
would like to stress that the Lagrange multiplier variable
behaves like the “gauge” variable due to its transformation
property.It will be worthwhile to dwell a bit on the derivation
of the top entry ði:e:, L0ðx, t, _x, tÞÞ in Equation (1). For a free
massive NR particle, the standard action integral is St =

Ð +∞
−∞

dtð1/2m _x2Þ, where _x = ðdx/dtÞ and time “t” is the evolution
parameter. This action has no repa-rameterization invari-
ance. If the evolution parameter is τ, then the action integral
is Sτ = ðm/2ÞÐ +∞−∞dτðdt/dτÞðdx/dτÞðdτ/dtÞðdx/dτÞðdτ/dtÞ
which leads [31, 32] to the fi-nal action integral as Sτ = ðm/2Þ
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Ð +∞
−∞dτ½ðdx/dτÞ2ðdτ/dtÞ�≡Ð +∞−∞dτL0. Hence, the starting

Lagrangian becomes L0ðx, _x, t, _tÞ =m _x2/2_t where _x = ðdx/dτÞ
and _t = ðdt/dτÞ.

For our further discussions, we shall concentrate on the
first-order Lagrangian Lf because it has the maximum num-
ber of variables (i.e., x, px , t, pt , and E) and allows the massless
limit and there are no variables (and/or their first-order
derivative w.r.t. τ) in its denominator. It is straightforward
to check that under the following infinitesimal and continu-
ous 1D diffeomorphism (i.e., reparameterization) symmetry
transformations ðδrÞ, namely,

δr x = ε _x,
δr px = ε _px,
δr t = ε _t,
δr pt = ε _pt ,

δr E = d
d τ

ε Eð Þ,

δr Lf =
d
d τ

ε Lfð Þ,

ð2Þ

the action integral S =
Ð +∞
−∞dτLf remains invariant (i.e.,

δr S = 0) for the physically well-defined variables in Lf
and the infinitesimal diffeomorphism transformation
parameter εðτÞ in τ⟶ τ′ = gðτÞ = τ − εðτÞ, where gðτÞ
is a physically well-defined function of τ such that it is
finite at τ = 0 and vanishes off at τ = ±∞. In fact, the
infinitesimal and continuous reparameterization symmetry
transformation ðδrÞ is defined as δr ϕðτÞ = ϕ′ðτÞ − ϕðτÞ
for the generic variable ϕðτÞ = xðτÞ, pxðτÞ, tðτÞ, ptðτÞ, EðτÞ
of our present theory.

The above infinitesimal and continuous reparameteriza-
tion symmetry transformations (2) encompass in their folds
the gauge symmetry transformations ðδgÞ which are gener-
ated (see, e.g., [32] for details) by the first-class constraints
ΠE ≈ 0, ðp2x + 2mptÞ ≈ 0, where ΠE is the canonical conju-
gate momentum corresponding to the variable EðτÞ. Using
the following Euler-Lagrange equations of motion (EL-
EOMs) from Lf , namely,

_px = 0,
_pt = 0,
_x = E px,
_t = Em,

ð3Þ

and identifying the transformation parameters εðτÞEðτÞ = ξ
ðτÞ, we obtain the infinitesimal and continuous gauge sym-
metry transformations ðδgÞ, from the infinitesimal and con-
tinuous reparameterization symmetry transformations (2),
as follows:

δgx = ξpx,
δg t = ξm,
δg px = 0,
δg pt = 0,

δg E = _ξ:

ð4Þ

It is elementary now to check that the first-order
Lagrangian ðLf Þ transforms to a total derivative under the
infinitesimal and continuous gauge transformations ðδgÞ,
namely,

δgLf =
d
d τ

ξ

2 p2x

� �
, ð5Þ

thereby rendering the action integral S = Ð +∞
−∞dτLf invariant

(i.e., δg S = 0) under the infinitesimal and continuous gauge
symmetry transformations ðδgÞ.

We end this section with the following decisive com-
ments. First, the 1D diffeomorphism (i.e., reparameteriza-
tion) transformations (2) are more general than the
infinitesimal and continuous gauge symmetry transforma-
tions (4). Second, the Lagrange multiplier variable EðτÞ
behaves like a “gauge” variable due to its transformation
δg E = _ξ in (4). Third, all the three Lagrangians in (1) are
equivalent and all of them respect the infinitesimal and
continuous gauge and reparameterization symmetry trans-
formations [32]. Fourth, all the Lagrangians describe the
free motion ð _px = 0, _pt = 0Þ of the NR particle. Hence,
our system is a nonrelativistic free ð _px = _pt = 0Þ particle.
Fifth, the first-order Lagrangian Lf is theoretically more
interesting to handle because, as pointed out earlier, it
incorporates the maximum number of variables. Finally,
we can exploit the reparameterization and gauge symmetry
transformations (2) and (4) for the BRST quantization.
Following the usual BRST prescription, we note that the
(anti-)BRST symmetry transformations, corresponding to
the classical reparameterization symmetry transformations
(2), are

sabx = �C _x,
sabpx = �C _px ,
sabt = �C_t,
sabpt = �C _pt ,

sabE = d
d τ

�CE
� �

,

sbx = C _x,
sbpx = C _px,
sbt = C_t,
sbpt = C _pt ,

sbE = d
d τ

CEð Þ,

ð6Þ
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where ð�CÞC are the fermionic ðC2 = �C2 = 0, C�C + �CC = 0Þ
(anti)ghost variables corresponding to the classical infini-
tesimal diffeomorphism transformation parameter εðτÞ
(cf. Equation (2)). In an exactly similar fashion, the
(anti-)BRST symmetry transformations, corresponding to
the classical gauge symmetry transformations (4), are

sab x =�c px,
sab px = 0,
sab t =�cm,
sab pt = 0,
sab E = _�c,
sb x = c px ,

sab px = 0,
sb t = cm,
sb pt = 0,
sb E = _c,

ð7Þ

where the fermionic ðc2 =�c2 = 0, c�c +�cc = 0Þ variables ð�cÞc
are the (anti)ghost variables corresponding to the classical
gauge symmetry transformation parameter ξðτÞ of Equa-
tion (4). In addition to the (anti-)BRST symmetry trans-
formations in (6) and (7), we have the following
standard (anti-)BRST transformations:

sabC = i�B,
sab�B = 0,
sb�C = iB,
sbB = 0,
sabc = i�b,
sab�b = 0,
sb�c = ib,
sbb = 0,

ð8Þ

where the pairs ðB, �BÞ and ðb, �bÞ are the Nakanishi-
Lautrup auxiliary variables in the context of the BRST
quantization of our reparameterization and gauge invari-
ant system by exploiting the classical reparameterization
and gauge transformations, respectively.

2.2. Quantum Nilpotent (Anti-)BRST Symmetries
Corresponding to the Classical Gauge Symmetry
Transformations. We have listed the quantum (anti-)BRST
symmetries corresponding to the classical gauge symmetry
transformations (4) in our Equations (7) and (8). It is ele-
mentary to check that these quantum symmetries are off-
shell nilpotent ðs2ðaÞb = 0Þ of order two. The requirement of

the absolute anticommutativity ðsbsab + sabsb = 0Þ leads to
the restriction b + �b = 0⇒ �b = −b. As a consequence, we have

the full set of (anti-)BRST symmetry transformations (corre-
sponding to the classical gauge symmetry transformations
(4)) as follows:

sab x =�c px,
sab px = 0,
sab t =�cm,
sab pt = 0,
sab E = _�c,
sab �c = 0,
sab c = −i b,
sab b = 0,
sb x = c px,
sb px = 0,
sb t = cm,
sb pt = 0,
sb E = _c,
sb c = 0,
sb �c = i b,
sb b = 0:

ð9Þ

It is straightforward to check that the above (anti-)BRST
symmetry transformations are off-shell nilpotent ðs2ðaÞb = 0Þ
and absolutely anticommuting ðsb sab + sab sb = 0Þ in nature.
The (anti-)BRST invariant Lagrangian Lb (which is the gen-
eralization of the classical Lf to its quantum level) can be
written as (The structure of gauge-fixing and FP ghost terms
is exactly like the Abelian 1-form ðAð1Þ = dxμ AμÞ gauge the-
ory where we have the BRST invariant Lagrangian density:
Lb = −ð1/4ÞFμνF

μν + sb½−i�cð∂μAμ + ðb/2ÞÞ�≡−ð1/4ÞFμνF
μν +

sab½−icð∂μAμ + ðb/2ÞÞ�≡−ð1/4ÞFμνF
μν + sbsab½ði/2ÞAμAμ − ð1/

2Þ�cc�. Here, Aμ is the vector potential, Fμ ν = ∂μAν − ∂νAμ is
the field strength tensor, and the rest of the symbols are
the same as in Equations (10) and (11). Note that the
2-form Fð2Þ = dAð1Þ = ð1/2Þðdxμ ∧ dxνÞFμν defines the field

strength tensor Fμν (where d = dxμ∂μ in Fð2Þ = dAð1Þ

stands for the exterior derivative of the differential
geometry).):

Lb = Lf + sb −i�c _E + b
2

� �� �
≡ Lf + sab ic _E + b

2

� �� �

≡ Lf + sbsab
i E2

2 −
�c c
2

� �
≡ Lf − sabsb

i E2

2 −
�c c
2

� �
:

ð10Þ

In other words, we have expressed the gauge-fixing
and Faddeev-Popov (FP) ghost terms in three different
ways which, ultimately, lead to the following expression
for Lb, namely,
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Lb = Lf + b _E + b2

2 − i_�c_c ≡ px _x + pt _t −
1
2 E p2x + 2mpt

� �

+ b _E + b2

2 − i_�c_c:

ð11Þ

It should be noted that we have dropped the total
derivative terms in obtaining Lb from (10). The above
equation demonstrates that we have obtained a unique
(anti-)BRST invariant Lagrangian. This has happened
because the CF-type restriction is trivial (i.e., b + �b = 0)
in our simple case of the NR system. We can explicitly
check that

sbLb =
d
d τ

c
2 p

2
x + b_c

h i
,

sabLb =
d
dτ

�c
2 p

2
x + b_�c

� �
,

ð12Þ

which lead to the derivation of the conserved (anti-)BRST
charges ½QðaÞb� as follows:

Qab = b_�c + 1
2�c p2x + 2mpt

� �
≡ b_�c − _b�c,

Qb = b_c + 1
2 c p2x + 2mpt

� �
≡ b_c − _bc:

ð13Þ

In the last step, we have used _b = −ð1/2Þðp2x + 2mptÞwhich
emerges out as the EL-EOM from Lb w.r.t. the Lagrange mul-
tiplier variable EðτÞ. The structure of gauge-fixing and FP
ghost terms in Equation (10) is exactly like the Abelian 1-form
ðAð1Þ = dxμAμÞ gauge theory where we have the BRST invari-
ant Lagrangian density: Lb = −1/4FμvF

μv + sb½−i�cð∂μAμ + b/
2Þ�≡−1/4FμvF

μv + sab½−icð∂μAμ + b/2Þ�≡−1/4FμvF
μv + sbsab½1

/2AμAμ − 1/2�cc�. Here, Aμ is the vector potential, Fμv = ∂μAv

− ∂vAμ is the field strength tensor, and the rest of the symbols
are the same as in Equation (10) and (11). Note that the 2-
form Fð2Þ = dAð1Þ = 1/2ðdxμΛdxvÞFμv defines the field

strength tensor Fμv(where d = dxμ∂μ in Fð2Þ = dAð1Þ which
stands for the exterior derivative of the differential geometry).

We close this section with a few crucial and decisive
remarks. First, we can check that the (anti-)BRST charges
are conserved ½ _QðaÞb = 0� by using the EL-EOMs. Second,

the (anti-)BRST charges ½QðaÞb� are off-shell nilpotent ½Q2
ðaÞb

= 0� of order two due to the direct observations that sb Qb

= sb ½b _c − _b c� = 0 and sab Qab = sab ½b _�c − _b�c� = 0 which
encode in their folds sb Qb = −i fQb,Qbg = 0⇒Q2

b = 0 and
sabQab = −ifQab,Qabg = 0⇒Q2

ab = 0. Third, the above nilpo-
tency is also encoded in Qb = sb½bE + i_�cc� implying that sbQb
= 0 due to s2b = 0 and we also point out that sab Qab = 0 due
to the nilpotency ðs2ab = 0Þ of sab because Qab = sab½bE + i�c_c�.
Fourth, we observe that sabQb = ifQb,Qabg ≡ −ib _b + i _bb = 0
and sbQab = −ifQab,Qbg = ib _b − ib _b = 0 which explicitly lead
to the conclusion that the off-shell nilpotent charges QðaÞb

are also absolutely anticommuting ðQbQab +QabQb = 0Þ in
nature. Fifth, the above observation of the absolute anticom-
mutativity can be also expressed in terms of the nilpotency
property because we observe that Qb = sabð−i_ccÞ and Qab =
sbði_�c�cÞ which imply that sabQb = −ifQb,Qabg = 0 and sbQab
= −ifQab,Qbg = 0 (due to the off-shell nilpotency ðs2ab = 0Þ
of the anti-BRST as well as the off-shell nilpotency ðs2b = 0Þ
of the BRST symmetry transformations). Sixth, it can be seen
that the physical space (i.e., jphys > ) in the total Hilbert
space of states is defined byQbjphys > = 0 which implies that
bjphys > ≡ΠEjphys> = 0 and _bjphys > ≡ðp2x + 2mptÞjphys>
= 0. In other words, the Dirac quantization conditions (with
the first-class constraints ΠE ≈ 0, p2x + 2mpt ≈ 0) are beauti-
fully satisfied. Finally, the physicality criterion Qbjphys > =
0 implies that the two physical states jphys′ > and jphys >
belong to the same cohomological class w.r.t. the nilpotent
BRST charge Qb if they differ by a BRST exact state (i.e., j
phys′ > = jphys > +Qbjχ > for nonnull jχ > ).

3. Nilpotent and Anticommuting (Anti-)BRST
Symmetries for the Phase Variables: MBTSA

This section is devoted to the derivation of the transforma-
tions sbx = C _x, sbpx = C _px, sbt = C_t, sbpt = C _pt , sabx = �C _x, sab
px = �C _px, sabt = �C_t, and sabpt = �C _pt by exploiting the theoret-
ical tricks of MBTSA. Before we set out to perform this
exercise, it is essential to pinpoint the off-shell nilpo-
tency and absolute anticommutativity properties of the
(anti-)BRST symmetry transformations on the phase var-
iables (cf. Equation (6)). It can be easily checked that
the off-shell nilpotency requirement (i.e., s2ðaÞbS = 0, S = x,
px, t, pt) leads to the (anti-)BRST symmetry transforma-
tions for the (anti)ghost variables as

sab�C = �C _�C,
sbC = C _C:

ð14Þ

Furthermore, the absolute anticommutativity require-
ment fsb, sabgS = 0 for the generic phase variable S = x,
px, t, pt leads to the following:

sb, sabf gS = i B + �B + i �C _C − _�CC
� 	h i

_S⇒ B + �B + i �C _C − _�CC
� 	

= 0:

ð15Þ

In other words, the absolute anticommutativity property
(sbsab + sabsb = 0) is satisfied if and only if we invoke the sanc-

tity of the CF-type restriction B + �B + ið�C _C − _�CCÞ = 0. It goes
without saying that the above cited requirements of the off-
shell nilpotency and absolute anticommutativity properties
are very sacrosanct within the framework of the BRST
approach to gauge and/or reparameterization invariant
theories.

Against the backdrop of the above discussions, we set
out to deduce the (anti-)BRST symmetry transformations
sabS = �C _S and sbS = C _S (with S = x, px , t, pt) and the CF-
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type restrictions B + �B + ið�C _C − _�CCÞ = 0 within the frame-
work of MBTSA. Towards this end in our mind, first of all,
we generalize the classical function gðτÞ (in τ⟶ τ′ = gðτÞ
≡ τ − εðτÞ) onto a ð1, 2Þ-dimensional supermanifold as

g τð Þ⟶ ~g τ, θ, θ
� 	

= τ − θ�C τð Þ − θC τð Þ + θθk τð Þ, ð16Þ

where ð�CÞC variables are the (anti)ghost variables of Equation
(6) and kðτÞ is a secondary variable that has to be determined
from the consistency conditions (that include the off-shell nil-
potency as well as absolute anticommutativity requirements).
It will be noted that, due to the mappings sb ↔ ∂θjθ=0 and
sab ↔ ∂θjθ=0 [14–16], we have taken the coefficients of θ and

θ in Equation (16) as the (anti)ghost variables ð�CÞC. This
has been done due to our observation in the infinitesimal
reparameterization symmetry transformation ðδrÞ (where δr
τ = −εðτÞ) at the classical level. Following the basic tenet of
BRST formalism, the infinitesimal parameter εðτÞ has been
replaced (in the BRST-quantized theory) by the (anti)ghost
variables, thereby leading to the (anti-)BRST symmetry trans-
formations sabτ = −�C and sbτ = −C.

For our present 1D diffeomorphism (i.e., reparameteriza-
tion) invariant theory, the generic variable SðτÞ can be gener-
alized to a supervariable ½~Sð~gðτ, θ, θÞ, θ, θÞ� on the ð1, 2Þ
-dimensional supermanifold [22] with the following super
expansion along all the Grassmannian directions of the ð1,
2Þ-dimensional supermanifold, namely,

~S ~g τ, θ, θ
� 	

, θ, θ
	h i

= S ~g τ, θ, θ
� 	h i

+ θ�R ~g τ, θ, θ
� 	h i

+ θR ~g τ, θ, θ
� 	h i

+ θθQ ~g τ, θ, θ
� 	h i

,

ð17Þ

where the expression for ~gðτ, θ, θÞ is given in Equation (16).
It should be noted that all the primary as well as secondary
supervariables on the r.h.s. of (17) are a function of the ð1,
2Þ-dimensional super infinitesimal diffeomorphism transfor-
mation (16). At this stage, we can perform the Taylor expan-
sions for all the supervariables as

θθQ τ − θ�C − θC + θθk
� 	

= θθQ τð Þ,

θR τ − θ�C − θC + θθk
� 	

= θR τð Þ + θθ�C τð Þ _R τð Þ,

θ�R τ − θ�C − θC + θθk
� 	

= θ�R τð Þ − θθC τð Þ _�R τð Þ,

S τ − θ�C − θC + θθk
� 	

= S τð Þ − θ�C τð Þ _S τð Þ − θC τð Þ _S τð Þ
+ θθ k τð Þ _S τð Þ − �C τð ÞC τð Þ€S τð Þ

h i
:

ð18Þ

Collecting all these terms and substituting them into (17),
we obtain the following super expansion for the supervari-
able on the ð1, 2Þ-dimensional supermanifold, namely,

~S ~g τ, θ, θ
� 	

, θ, θ
h i

= S τð Þ + θ �R − �C _S
� 	

+ θ R − C _S
� 	

+ θθ Q + �C _R − C _�R + k _S + C�C€S
h i

:

ð19Þ

We now exploit the horizontality condition (HC) which
physically implies that all the scalar variables should not
transform at all under any kind of spacetime, internal, super-
symmetric, etc., transformations. With respect to the 1D
space of the trajectory of the particle, all the supervariables
on the l.h.s. and r.h.s. of Equation (18) are scalars. The HC,
in our case, is

~S ~g τ, θ, θ
� 	

, θ, θ
	h i

= S τð Þ: ð20Þ

The above equality implies that all the coefficients of θ, θ,
and θθ of Equation (19) should be set equal to zero. In other
words, we have the following:

R = C _S,
�R = �C _S,
Q = C _�R − �C _R − k _S + �CC€S:

ð21Þ

Substitutions of the values of R and �R into the expression
for Q lead to the following:

Q = − �C _C + _�CC
� 	

_S − k _S − �CC€S: ð22Þ

As explained before Equation (20) (i.e., exploiting the key
properties of scalars), it is evident that (17) can be finally
written with ~S½~gðτ, θ, θÞ, θ, θ� = ~Sðτ, θ, θÞ as

~S τ, θ, θ
	h i

= S τð Þ + θ�R τð Þ + θR τð Þ + θθQ τð Þ
≡ S τð Þ + θ sabSð Þ + θ sbSð Þ + θθ sbsabSð Þ,

ð23Þ

where, due to the well-known mappings sb ↔ ∂θjθ=0 and

sab ↔ ∂θjθ=0 [14–16], the coefficients of θ and θ are the anti-
BRST and BRST symmetry transformations (cf. Equation
(6)). We point out that the key properties of scalars on the
r.h.s. of Equation (17) imply that we have S½~gðτ, θ, θÞ� = S
ðτÞ, R½~gðτ, θ, θÞ� = RðτÞ, �R½~gðτ, θ, θÞ� = �RðτÞ, and Q½~gðτ, θ,
θÞ� =QðτÞ.

A comparison between (21) and (23) implies that we have
already derived the nilpotent (anti-)BRST symmetry trans-
formations R = sb S = C _S and �R = sab S = �C _S. In other words,
we have obtained sbx = C _x, sbpx = C _px, sbt = C_t, sbpt = C _pt ,
sabx = �C _x, sabpx = �C _px, sabt = �C_t, and sabpt = �C _pt . Further-
more, it is evident that

sbsabS =Q = − �C _C + _�CC
� 	

_S − k _S − �CC€S: ð24Þ

7Advances in High Energy Physics



The requirement of the absolute anticommutativity fsb,
sabgS = 0 implies that sbsabS = −sabsbS which, in turn, leads
to the following relationships:

sbsabS = sb�R =Q ≡ − �C _C + _�CC
� 	

_S − k _S − �CC€S,

−sabsbS = −sabR =Q ≡ − �C _C + _�CC
� 	

_S − k _S − �CC€S:
ð25Þ

The explicit computations of the following, using the
(anti-)BRST symmetry transformations of the phase vari-
ables in Equations (6) and (14), are

sb�R = iB _S − �C _C _S − �CC€S ≡Q,

−sabR = −i�B _S − _�CC _S − �CC€S ≡Q:
ð26Þ

Equating (25) and (26), we obtain the following interest-
ing relationship:

k = − _�CC − iB ≡ i�B − �C _C⇒ B + �B + i �C _C − _�CC
� 	

= 0: ð27Þ

In other words, it is the consistency conditions of the
BRST formalism that lead to the determination of kðτÞ in
Equation (16) within the ambit of MBTSA. A close look at
Equations (25)–(27) establishes that a precise determination
of QðτÞ in (23) leads to (i) the validity of the absolute
anticommutativity (i.e., fsb, sabgS = 0) of the off-shell nilpo-
tent (anti-)BRST symmetries and (ii) the deduction of the
(anti-)BRST invariant (This statement is true only when the
whole theory is considered on a submanifold of the Hilbert
space of the quantum variables where the CF-type restriction

B + �B + ið�C _C − _�CCÞ = 0 is satisfied. In other words, we

explicitly compute sb½B + �B + ið�C _C − _�CCÞ� = ðd/dτÞ½B + �B + i

ð�C _C − _�CCÞ�C − ½B + �B + ið�C _C − _�CCÞ� _C and sab ½B + �B + ið�C _C

− _�CCÞ� = ðd/dτÞ½B + �B + ið�C _C − _�CCÞ��C − ½B + �B + ið�C _C − _�C

CÞ� _�C which imply that sðaÞb½B + �B + ið�C _C − _�CCÞ� = 0 is true
only on the abovementioned submanifold.) CF-type restric-

tion B + �B + ið�C _C − _�CCÞ = 0 on our theory. This statement
(i.e., the (anti-)BRST invariance) is true only when the whole
theory is considered on a submanifold of the Hilbert
space of the quantum variables where the CF-type restric-
tion B + �B + ið�C _C − _CCÞ = 0 is satisfied. In other words,

we explicitly compute sb½B + �B + ið�C _C − _�CCÞ� = ðd/dτÞ½B +
�B + ið�C _C − _�CCÞ�C − ½B + �B + ið�C _C − _�CCÞ� _C and sb½B + �B + i

ð�C _C − _�CCÞ� = ðd/dτÞ½B + �B + ið�C _C − _�CCÞ��C − ½B + �B + ið�C _C

− _�CCÞ� _�C which imply that sðaÞb½B + �B + ið�C _C − _�CCÞ� = 0 is
true only on the abovementioned submanifold.

We conclude this section with the following useful and
crucial remarks. First, we set out to derive the (anti-)BRST
symmetry transformations (corresponding to the classical
reparameterization symmetry transformations) for the phase
variables (cf. Equation (6)). We have accomplished this goal
in Equation (21). Second, we have derived the CF-type

restriction B + �B + ið�C _C − _�CCÞ = 0 within the purview of

MBTSA (cf. Equation (27)) which is actually hidden in the
determination of QðτÞ in Equation (23). Third, for the appli-
cation of the theoretical potential of MBTSA, we have taken
the full super expansion of the generic supervariable (cf.
Equation (17)) along all the possible Grassmannian directions
of the ð1, 2Þ-dimensional supermanifold. Fourth, unlike the
application of the BT superfield/supervariable approach to
the gauge theories [14–16] where spacetime does not change,
in the case of MBTSA, the super diffeomorphism transforma-
tion (16) has been taken into account in all the basic as well as
secondary supervariables. Fifth, taking into account the inputs
from Equations (21) and (26), we obtain the following super
expansion of the generic variable SðτÞ, namely,

~S
hð Þ

τ, θ, θ
� 	

= S τð Þ + θ �C _S
� 	

+ θ C _S
� 	

+ θθ iB _S − �C _C _S − �CC€S
h i

≡ S τð Þ + θ sabSð Þ
+ θ sbSð Þ + θθ sbsabSð Þ,

ð28Þ

where S = x, px, t, pt and the superscript ðhÞ on the supervari-
able ~Sðτ, θ, θÞ denotes that this supervariable has been
obtained after the application of HC. Finally, the standard nil-
potent (anti-)BRST symmetry transformations (8) dictate that
we can have the following (anti)chiral super expansions for the
supervariables corresponding to ð�CÞC, namely,

C τð Þ⟶ F cð Þ τ, θð Þ = C τð Þ + θ i�B
� �

≡ C τð Þ + θ sabCð Þ,
�C τð Þ⟶ �F acð Þ τ, θ

� 	
= �C τð Þ + θ iBð Þ ≡ �C τð Þ + θ sb�C

� �
,

ð29Þ

where the superscripts ðcÞ and ðacÞ denote the chiral and
antichiral supervariables. The above observation gives us a
clue that we should exploit the theoretical strength of ACSA
to BRST formalism for our further discussions.

4. Coupled Lagrangians and Quantum
(Anti-)BRST Symmetries Corresponding to
the Classical Reparameterization
Symmetry Transformations

In addition to the quantum (anti-)BRST symmetries in (6),
(8), and (14), we derive all the other off-shell nilpotent and
absolutely anticommuting (anti-)BRST symmetries corre-
sponding to the classical infinitesimal and continuous repar-
ameterization symmetry transformations (2). We exploit the
strength of the sacrosanct requirements of off-shell nilpo-
tency and absolute anticommutativity properties. In this con-
text, we point out that we have already derived sbC = C _C and

sab�C = �C _�C by invoking the sanctity of the off-shell nilpotency
ðs2ðaÞb = 0Þ property for the phase variables (i.e., s2ðaÞbS = 0,
S = x, px, t, pt). It is interesting to note that the following
absolute anticommutativity requirements, namely,
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sb, sabf gC = 0⇒ sb�B = _�BC − �B _C,

sb, sabf g�C = 0⇒ sabB = _B�C − B _�C,
ð30Þ

lead to the derivation of the sb�B and sabB. We can readily
check that s2b�B = 0 and s2abB = 0 are satisfied due to our
knowledge of the BRST and anti-BRST symmetry transfor-

mations sbC = C _C and sab�C = �C _�C and the fermionic ðC2

= �C2 = 0, C�C + �CC = 0Þ nature of the (anti)ghost variables
ð�CÞC. We further note that fsb, sabgB = 0 and fsb, sabg�B
= 0. The requirement of the absolute anticommutativity
on the EðτÞ variable leads to

sb, sabf gE τð Þ = d
d τ

i B + �B + i �C _C − _�CC
� 	n o

E τð Þ
h i

: ð31Þ

Thus, we emphasize that the absolute anticommutativ-
ity property ðsb sab + sab sb = 0Þ on the phase variables (cf.
Equation (15)) as well as on the Lagrange multiplier
variable (cf. Equation (31)) is satisfied if and only if the
CF-type restriction is invoked. In the full blaze of glory,
the quantum (anti-)BRST symmetry transformations (cor-
responding to the infinitesimal reparameterization symme-
try transformations (2)) are as follows:

sabx = �C _x,
sabpx = �C _px ,
sabt = �C_t,
sabpt = �C _pt ,

sabE = d
d τ

�CE
� �

,

sabC = i�B,

sab�C = �C _�C,
sab�B = 0,

sabB = _B�C − B _�C,

ð32Þ

sbx = C _x,
sbpx = C _px,
sbt = C_t,
sbpt = C _pt ,

sbE = d
d τ

CEð Þ,

sb �C = i B,
sb C = C _C,
sb B = 0,

sb �B = _�BC − �B _C:

ð33Þ

The above fermionic symmetry transformations are off-
shell nilpotent and absolutely anticommuting provided

that the whole theory is considered on a submanifold of
the space of quantum variables where the CF-type restric-

tion B + �B + ið�C _C − _�CCÞ = 0 is satisfied.
The existence of the above CF-type restriction leads to the

derivation of the coupled (but equivalent) Lagrangians (i.e.,
LB and L�B) as follows:

LB = Lf + sbsab
i E2

2 −
�C C
2

� �
,

L�B = Lf − sabsb
i E2

2 −
�C C
2

� �
:

ð34Þ

We point out that the terms inside the square brackets are
the same as in Equation (10) for the BRST analysis of the clas-
sical gauge symmetry transformations (4). Furthermore, in
contrast to the unique (anti-)BRST invariant Lagrangian
(cf. Equation (11)) (corresponding to the classical gauge sym-
metry transformations), we have obtained here a set of
coupled (but equivalent) (anti-)BRST invariant Lagrangians
in Equation (34). This has happened because of the fact that
the CF-type restriction ðb + �b = 0Þ is trivial in the case of the

former while it is a nontrivial restriction ½B + �B + ið�C _C − _�CCÞ
= 0� in the context of the latter.

One can readily compute the operation of sðaÞb on the
quantities in the square brackets of Equation (34). In the full
blaze of their glory, the coupled (but equivalent) Lagrangians
LB and L�B are as follows (It will be worthwhile to mention
here that the form of the gauge-fixing and Faddeev-Popov
ghost terms is the same as in the cases of NSUSY (i.e., scalar)
and SUSY (i.e., spinning) relativistic particles [23, 24].):

LB = Lf + B E _E − i 2 _�CC + �C _C
� 	h i

+ B2

2 − iE _E _�CC − iE2 _�C _C − _�C�C _CC,

L�B = Lf − �B E _E − i 2�C _C + _�CC
� 	h i

+
�B2

2 − iE _E�C _C − iE2 _�C _C − _�C�C _CC,

ð35Þ

where the subscripts B and �B on the Lagrangians are appro-
priate because LB depends uniquely on the Nakanishi-
Lautrup auxiliary variable B (where �B is not present at all).
Similarly, the Lagrangian L�B is uniquely dependent on �B.
They are coupled because the EL-EOMs with respect to B
and �B from LB and L�B, respectively, yield

B = −E _E + 2i _�CC + i�C _C,
�B = E _E − 2i�C _C − i _�CC,

ð36Þ

which lead to the deduction of the CF-type restrictions B +
�B + ið�C _C − _�CCÞ = 0. Furthermore, the condition LB ≡ L�B also

demonstrates the existence of the CF-type restriction B + �B

+ ið�C _C − _�CCÞ = 0 on our theory (cf. Appendix A below). It
will be worthwhile to mention here that the form of the
gauge-fixing and Faddeev-Popov ghost terms in Equation
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(35) is the same as in the cases of NSUSY (i.e., scalar) and
SUSY (i.e., spinning) relativistic particles [23, 24].

At this stage, we are in the position to study the
(anti-)BRST symmetries of the Lagrangians LB and L�B.
It is straightforward to note that we have the following:

sbLB =
d
d τ

CLf + B2C − iB�C _CC + E _EBC + E2B _C
h i

, ð37Þ

sabL�B =
d
d τ

�CLf + �B2�C − i�B _�C�CC − E _E�B�C − E2�B _�C
h i

:

ð38Þ
The above observations demonstrate that the action

integrals S1 =
Ð∞
−∞dτLB and S2 =

Ð∞
−∞dτL�B remain invari-

ant under the SUSY-type (i.e., fermionic) off-shell nilpo-
tent, continuous, and infinitesimal (anti-)BRST symmetry
transformations for the physical variables that vanish off
at τ = ±∞. At this crucial juncture, we establish the
equivalence of the coupled Lagrangians LB and L�B w.r.t.
the (anti-)BRST symmetry transformations ½sðaÞb�. In this
context, we apply sab on LB and sb on L�B to obtain the
following:

sab LB =
d
d τ

�CLf + E _E i _�C�CC + B�C
� 	

+ E2 i _�C�C _C + B _�C
� 	h

+ B2�C + i 2B − �B
� � _�C�CC� + B + �B + i �C _C − _�CC

� 	h i

� 2i _�C�C _C − 2B _�C − E _E _�C + i€�C�CC
� 	

−
d
d τ

B + �B + i �C _C − _�CC
� 	h i

B�C + E2 _�C
h i

,

ð39Þ

sbL�B =
d
d τ

CLf + E _E i�CC _C − �BC
� 	

+ E2 i _�CC _C − �B _C
� 	h

+ �B2C − i 2�B − B
� �

�CC _C� + B + �B + i �C _C − _�CC
� 	h i

� −2i _�CC _C − 2�B _C + E _E _C + i�C€CC
� 	

+ d
d τ

B + �B + i �C _C − _�CC
� 	h i

+E2 _C − �BC
h i

,

ð40Þ
which demonstrate that the coupled Lagrangians LB and
L�B (and corresponding action integrals) respect both
(i.e., BRST and anti-BRST) symmetry transformations
together provided that the whole theory is considered on
a supermanifold in the Hilbert space of quantum vari-

ables where the CF-type restriction B + �B + ið�C _C − _�CCÞ =
0 is satisfied. It should be recalled that, under the latter
restriction, we also have the absolute anticommutativity
property (i.e., fsb, sabg = 0) of the (anti-)BRST symmetry
transformations.

We end this section with the following key comments.
First, the properties of the off-shell nilpotency and absolute
anticommutativity are sacrosanct in the realm of the BRST
approach to gauge and/or diffeomorphism invariant theories.

Second, physically, the first property (i.e., off-shell nilpo-
tency) implies that these fermionic symmetry transforma-
tions are of supersymmetric type as they transform bosonic
variables to fermionic variables and vice versa. Third, the
property of the absolute anticommutativity encodes the lin-
ear independence of the BRST and anti-BRST symmetry
transformations. Fourth, the absolute anticommutativity
property owes its origin to the existence of the CF-type
restrictions which are connected with the concepts of gerbes
[7, 8]. Fifth, as the classical gauge theory is characterized by
the first-class constraints, in an exactly similar fashion, the
quantum gauge and/or diffeomorphism (i.e., (anti-)BRST)
invariant theories are characterized by the existence of the
CF-type restrictions within the ambit of BRST formalism.
Sixth, the coupled Lagrangians LB and L�B are equivalent
because both of them respect BRST and anti-BRST symmetry
transformations as is clear from Equations (37)–(40) pro-
vided that the whole theory is considered on the submanifold
of the total Hilbert space of the quantum variables where the

CF-type restriction B + �B + ið�C _C − _�CCÞ = 0 is satisfied.

5. Quantum Off-Shell Nilpotent (Anti-)BRST
Symmetries of the Other Variables: ACSA

In this section, we derive the nilpotent (anti-)BRST sym-
metry transformations ½sðaÞb� for all the other variables
(cf. Equations (32) and (33)) besides the phase space vari-
ables (x, px, t, and pt) whose (anti-)BRST symmetries have
already been derived in Section 3 by exploiting the theo-
retical potential of MBTSA. To achieve the above goal,
we exploit the ideas behind ACSA to BRST formalism
[25–29]. In this context, first of all, we focus on the deri-

vation of the BRST symmetry transformations sbB = 0, sb
�B = _�BC − �B _C, sbC = C _C, and sbE = _EC + E _C (cf. Equation
(33)). For this purpose, we generalize the ordinary vari-
ables (BðτÞ, �BðτÞ, CðτÞ, and EðτÞ) onto a ð1, 1Þ-dimen-
sional antichiral super submanifold as follows:

B τð Þ⟶ B τ, θ
� 	

= B τð Þ + θf1 τð Þ,

�B τð Þ⟶ �B τ, θ
� 	

= �B τð Þ + θf2 τð Þ,

C τð Þ⟶ F τ, θ
� 	

= C τð Þ + θb1 τð Þ,

E τð Þ⟶ Σ τ, θ
� 	

= E τð Þ + θf3 τð Þ,

ð41Þ

where we note that f1, f2, and f3 are the fermionic second-
ary variables and b1ðτÞ is the bosonic secondary variable

because of the fermionic ðθ2 = 0Þ nature of the Grassman-
nian variable θ which characterizes the antichiral super
submanifold (along with the bosonic evolution parameter
τ). It is elementary to note that the observation sb B = 0
implies the following super expansion (in view of the fact
that ∂θ ↔ sb), namely,
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B bð Þ τ, θ
� 	

= B τð Þ + θ 0ð Þ ≡ B τð Þ + θ sb Bð Þ, ð42Þ

where the superscript ðbÞ on the antichiral supervariable
Bðτ, θÞ denotes that the coefficient of θ yields the BRST
symmetry transformation sb B = 0 due to the trivial equal-
ity Bðτ, θÞ = BðτÞ which emerges from the observation that
the Nakanishi-Lautrup auxiliary variable BðτÞ is a BRST
invariant quantity (cf. Equation (33)). In other words, we
have found out that the secondary variable f1ðτÞ = 0 in
the super expansions (41).

At this stage, we find other nontrivial BRST invariant
quantities for the derivation of the secondary variables b1,
f 2, and f 3 of Equation (41). We observe that (We have specif-
ically taken here sbðC _xÞ = 0 for our purpose. However, one
can take the general expression sbS = C _SðS = x, px, t, ptÞ for

the derivation of b1ðτÞ = C _C.) sbðC _xÞ = 0, sb½ _�BC − �B _C� = 0,
and sb½E _C + _EC� = 0. We have specifically taken here sbðC _xÞ
= 0 for our purpose. However, one can take the general expres-
sion sbS = C _SðS = x, px, t, ptÞ for the derivation of b1ðτÞ = C _C.
The basic tenet of the ACSA to BRST formalism requires that
the quantities in the square brackets have to be independent
of the Grassmannian variable θ when they are generalized
onto a ð1, 1Þ-dimensional super submanifold, namely,

F τ, θ
� 	

_X
h,acð Þ

τ, θ
� 	

= C τð Þ _x τð Þ,

B τ, θ
� 	

F τ, θ
� 	

− B τ, θ
� 	

_F τ, θ
� 	

= _�B τð ÞC τð Þ − �B τð Þ _C τð Þ,

Σ τ, θ
� 	

_F τ, θ
� 	

+ _Σ τ, θ
� 	

F τ, θ
� 	

= E τð Þ _C τð Þ + _E τð ÞC τð Þ,
ð43Þ

where Xðh,acÞ is the antichiral limit of the full expansion of
XðhÞðτ, θ, θÞ obtained after the application of HC (cf. Equa-
tion (28)), namely,

X hð Þ τ, θ, θ
� 	

= x τð Þ + θ �C _x
� �

+ θ C _xð Þ + θθ iB _x − �C _C _x − �CC€x
h i

,

ð44Þ
which has been obtained (cf. Equation (28)) in Section 3
using the theoretical strength of MBTSA. In other words,
from the top entry of Equation (43), we have the following
restriction:

F τ, θ
� 	

_X
h,acð Þ

τ, θ
� 	

= C τð Þ _x τð Þ⇒ C τð Þ + θb1 τð Þ
h i

� _x + θ _C _x + C€x
� 	h i

= C τð Þ _x τð Þ:
ð45Þ

From the above relationship, we obtain b1ðτÞ = C _C.
Thus, we have the following:

F bð Þ τ, θ
� 	

= C τð Þ + θ C _C
� 	

≡ C τð Þ + θ sbCð Þ, ð46Þ

where the superscript ðbÞ on the l.h.s. of the supervariable
denotes that the coefficient of θ is nothing but the BRST sym-

metry transformation sbC. We have to use the above super
expansion in the second entry from the top in (43) to obtain
the following:

B τ, θ
� 	

F bð Þ τ, θ
� 	

− B τ, θ
� 	

_F
bð Þ

τ, θ
� 	

= _�B τð ÞC τð Þ − �B τð Þ _C τð Þ:
ð47Þ

In other words, we have the following equality:

_�B + θ _f 2 τð Þ
h i

C τð Þ + θ C _C
� 	h i

− �B τð Þ + θf2 τð Þ
h i

� _C τð Þ + θ C€C
� 	h i

= _�B τð ÞC τð Þ − �B τð Þ _C τð Þ,
ð48Þ

which yields the following condition on the secondary vari-
able f2, namely,

_f 2C − f2 _C − _�B _CC + �B€CC = 0: ð49Þ

It is straightforward to note that f2 = _�BC − �B _C satisfies the
above condition in a precise manner. We point out that the
last entry (from the top) of Equation (43) can be rewritten,
in view of our the super expansion in Equation (46), as
follows:

Σ τ, θ
� 	

_F
bð Þ

τ, θ
� 	

+ _Σ τ, θ
� 	

F bð Þ τ, θ
� 	

= E τð Þ _C τð Þ + _E τð ÞC τð Þ:
ð50Þ

The substitutions of expansions from (41) and (46)
lead to the following condition on the secondary variable
f3ðτÞ (present in the expansion of Σðτ, θÞ), namely,

f3 _C + _f 3C − E€CC − _E _CC = 0, ð51Þ

which is satisfied by the choice f3 = E _C + _EC. Hence, we
have the following super expansions (with the BRST sym-
metry transformations (33) as input), namely,

B bð Þ τ, θ
� 	

= �B τð Þ + θ _�BC − �B _C
� 	

≡ �B τð Þ + θ sb�B
� �

,

Σ bð Þ τ, θ
� 	

= E τð Þ + θ E _C + _EC
� 	

≡ E τð Þ + θ sbEð Þ,
ð52Þ

where the coefficients of θ (in view of ∂θ ↔ sb) are the
BRST symmetry transformations (33). For the convenience
of the readers, we have performed the explicit computa-

tions of f3 = E _C + _EC and f2 = _�BC − �B _C in Appendix B. It
is clear that we have already computed the BRST transfor-

mations sbB = 0, sbC = C _C, sb�B = _�BC − �B _C, and sbE = E _C +
_EC by exploiting the virtues of ACSA in Equations (42),
(46), and (52).

We concentrate now on the derivation of the anti-BRST
symmetry transformations (32) by exploiting the theoretical
strength of ACSA to BRST formalism. It is obvious that, in
Section 3, we have already computed sabS = �C _SðS = x, px, t,
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ptÞ and sabC = i�B by exploiting MBTSA to BRST formalism.
Our objective in the present part of our section is to derive

sab�B = 0, sab�C = �C _�C, sabB = _B�C − B _�C, and sabE = E _�C + _E�C by
exploiting ACSA to BRST formalism. In this context, first
of all, we generalize the ordinary variables onto a ð1, 1Þ
-dimensional chiral super submanifold as

�B τð Þ⟶ B τ, θð Þ = �B τð Þ + θ�f 1 τð Þ,
B τð Þ⟶ B τ, θð Þ = B τð Þ + θ�f 2 τð Þ,
�C τð Þ⟶ �F τ, θð Þ = �C τð Þ + θ�b1 τð Þ,
E τð Þ⟶ Σ τ, θð Þ = E τð Þ + θ�f 3 τð Þ,

ð53Þ

where f1, f2, and f3 are the fermionic secondary variables,
�b1ðτÞ is a bosonic secondary variable, and the above ð1, 1Þ
-dimensional chiral super submanifold is parameterized by
ðτ, θÞ. It is straightforward to note that sab�B = 0 implies that
Bðτ, θÞ = BðτÞ, and as a consequence, we have �f 1ðτÞ = 0
which leads to

B abð Þ τ, θð Þ = �B τð Þ + θ 0ð Þ ≡ �B τð Þ + θ sab�B
� �

, ð54Þ

where the superscript ðabÞ on the chiral supervariable
denotes that we have obtained sab �B = 0 as the coefficient of
θ. The other useful and interesting anti-BRST invariant
quantities of our interest (cf. Equation (32)) are

sab _B�C − B _�C
h i

= 0,

sab E _�C + _E�C
h i

= 0,

sab �C _x

 �

= 0:

ð55Þ

The quantities in the square brackets can be generalized
onto the ð1, 1Þ-dimensional chiral super submanifold. Fol-
lowing the fundamental requirement(s) of ACSA to BRST
formalism, these quantities must be independent of the
Grassmannian variable θ. In other words, we have the follow-
ing restrictions on the chiral supervariables:

B τ, θð Þ�F τ, θð Þ − B τ, θð Þ _�F τ, θð Þ = _B τð Þ�C τð Þ − B τð Þ _�C τð Þ,
Σ τ, θð Þ _�F τ, θð Þ + _Σ τ, θð Þ�F τ, θð Þ = E τð Þ _�C τð Þ + _E τð Þ�C τð Þ,

�F τ, θð Þ _X h,cð Þ
τ, θð Þ = �C τð Þ _x τð Þ,

ð56Þ

where Xðh,cÞðτ, θÞ is the chiral limit of the super expansion in
Equation (44). In other words, we have the following explicit
expression for the supervariable Xðh,cÞðτ, θÞ, namely,

X h,cð Þ τ, θð Þ = x τð Þ + θ �C _x
� �

: ð57Þ

Taking the expansions from (53) and (57), we find that

the last entry of Equation (56) yields �b1ðτÞ = �C _�C. Hence, we
have obtained the following super expansion:

�F abð Þ τ, θð Þ = �C τð Þ + θ �C _�C
� 	

≡ �C τð Þ + θ sab�C
� �

, ð58Þ

where the superscript ðabÞ on the chiral supervariable on the
l.h.s. denotes that it has been derived after the application of
the anti-BRST invariant restriction in (56). The coefficient of
θ is nothing but the anti-BRST symmetry transformation

sab�C = �C _�C. This equation also shows that ∂θ ↔ sab and it
leads to the anti-BRST symmetry for �C.

We utilize now the two top entries of (56) where we use

the explicit expansion for �FðabÞðτ, θÞ of (58) in the following
restrictions on the supervariables, namely,

B τ, θð Þ �F abð Þ τ, θð Þ − B τ, θð Þ _�F abð Þ
τ, θð Þ = _B τð Þ �C τð Þ − B τð Þ _�C τð Þ,

Σ τ, θð Þ _�F abð Þ
τ, θð Þ + _Σ τ, θð Þ�F abð Þ τ, θð Þ = E τð Þ _�C τð Þ + _E τð Þ�C τð Þ:

ð59Þ

The substitutions from (53) and (58) lead to

_�f 2�C − �f 2
_�C − _B _�C�C + B€�C�C = 0,

�f 3
_�C + _�f 3�C − E€�C�C − E _�C�C = 0:

ð60Þ

It is straightforward, following the theoretical tricks of
Appendix B, to find out the solutions for the secondary var-
iables �f 2ðτÞ and �f 3ðτÞ which are as follows:

�f 2 τð Þ = _B�C − B _�C,
�f 3 = E _�C + _E�C:

ð61Þ

Substitutions of these secondary variables into the super
expansions (53) lead to the determination of the anti-BRST
symmetry transformations for the variables BðτÞ and EðτÞ
as the coefficients of θ in the following:

Σ abð Þ τ, θð Þ = E τð Þ + θ E _�C + _E�C
� 	

≡ E τð Þ + θ sabE τð Þ½ �,

B abð Þ τ, θð Þ = B τð Þ + θ _B�C − B _�C
� 	

≡ B τð Þ + θ sabB τð Þ½ �,
ð62Þ

where the superscript ðabÞ on the chiral supervariable
denotes that these supervariables have been obtained after
the applications of the anti-BRST invariant restrictions
(56). Moreover, the above observation establishes that sab
⇔ ∂θ which implies that the nilpotency ðs2ab = 0, ∂2θ = 0Þ
properties of sab and ∂θ are connected with each other. Thus,
we have obtained all the anti-BRST symmetry transforma-
tions (besides the phase variables) in our Equations (54),
(58), and (62). This completes our discussion on the deriva-
tion of the off-shell nilpotent and absolutely anticommuting
(anti-)BRST symmetry transformations (32) and (33) within
the ambit of ACSA to BRST formalism.
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6. Symmetry Invariance of the
Lagrangians: ACSA

In this section, we establish the equivalence of the coupled
Lagrangians LB and L�B as far as the (anti-)BRST symmetry
invariance (within the purview of ACSA to BRST formalism)
is concerned. We accomplish this objective by generalizing the
ordinary Lagrangians to their counterpart super Lagrangians as

L�B ⟶ ~L
cð Þ
�B τ, θð Þ = ~L

cð Þ
f τ, θð Þ − B abð Þ τ, θð Þ

� Σ abð Þ τ, θð Þ _Σ abð Þ
τ, θð Þ − i 2 �F abð Þ τ, θð Þ _F abð Þ

τ, θð Þ
nh

+ _�F
abð Þ

τ, θð ÞF abð Þ τ, θð Þg� + 1
2B

abð Þ τ, θð ÞB abð Þ τ, θð Þ

− iΣ abð Þ τ, θð ÞΣ abð Þ τ, θð Þ _�F abð Þ
τ, θð Þ _F abð Þ

τ, θð Þ − iΣ abð Þ

� τ, θð Þ _Σ abð Þ
τ, θð Þ�F abð Þ τ, θð Þ _F abð Þ

τ, θð Þ − _�F
abð Þ

τ, θð Þ�F abð Þ

� τ, θð Þ _F abð Þ
τ, θð ÞF abð Þ τ, θð Þ,

ð63Þ

LB ⟶ ~L
acð Þ
B τ, θ

� 	
= ~L

acð Þ
f τ, θ

� 	
+ B bð Þ τ, θ

� 	

� Σ bð Þ τ, θ
� 	

_Σ
bð Þ

τ, θ
� 	

− i 2 _�F
bð Þ

τ, θ
� 	

F bð Þ τ, θ
� 	��

+ �F bð Þ τ, θ
� 	

_F
bð Þ

τ, θ
� 	

g� + 1
2B

bð Þ τ, θ
� 	

B bð Þ τ, θ
� 	

− iΣ bð Þ τ, θ
� 	

Σ bð Þ τ, θ
� 	

_�F
bð Þ

τ, θ
� 	

_F
bð Þ

τ, θ
� 	

− iΣ bð Þ τ, θ
� 	

_Σ
bð Þ

τ, θ
� 	

_�F
bð Þ

τ, θ
� 	

F bð Þ τ, θ
� 	

− _�F
bð Þ

τ, θ
� 	

�F bð Þ τ, θ
� 	

_F
bð Þ

τ, θ
� 	

F bð Þ τ, θ
� 	

,

ð64Þ

where ~L
ðcÞ
f and ~L

ðacÞ
f are the generalizations of the first-order

Lagrangian ðLf Þ to its counterpart chiral and antichiral super
Lagrangians as

~L
cð Þ
f τ, θð Þ = P h,cð Þ

x τ, θð Þ _X h,cð Þ
τ, θð Þ + P h,cð Þ

t τ, θð Þ _T h,cð Þ
τ, θð Þ

−
Σ abð Þ τ, θð Þ

2 P h,cð Þ
x τ, θð ÞP h,cð Þ

x τ, θð Þ + 2mP h,cð Þ
t τ, θð Þ

h i
,

~L
acð Þ
f τ, θ

� 	
= P h,acð Þ

x τ, θ
� 	

_X
h,acð Þ

τ, θ
� 	

+ P h,acð Þ
t τ, θ

� 	
_T

h,acð Þ

� τ, θ
� 	

−
Σ bð Þ τ, θ

� 	
2 P h,acð Þ

x τ, θ
� 	

P h,acð Þ
x τ, θ

� 	
+ 2mP h,acð Þ

t τ, θ
� 	h i

,

ð65Þ

where the superscripts ðcÞ and ðacÞ denote the chiral and antic-
hiral generalizations and the rest of the supervariables with
superscripts ðbÞ and ðabÞ have already been explained earlier
in Section 5. The supervariables with superscripts ðh, cÞ and ð
h, acÞ are the chiral and antichiral limits of the super phase var-

iables ðXðhÞ, PðhÞ
x , TðhÞ, and PðhÞ

t Þ that have been obtained after
the application of HC. Thus, these are the counterparts of the
ordinary phase variables (x, px, t, and pt) and they have been
explained in Section 3. In the above Equation (65), the super
phase variables with superscript ðh, cÞ and ðh, acÞ can be

expressed in terms of the generic supervariable as follows:

S τð Þ⟶ S h,cð Þ τ, θð Þ = S τð Þ + θ �C _S τð Þ
h i

,

S τð Þ⟶ S h,acð Þ τ, θ
� 	

= S τð Þ + θ C _S τð Þ
h i

,
ð66Þ

where the (anti)chiral supervariables on the l.h.s. stand for the
super phase variables (X, Px, T, and Pt) with the proper chiral
and antichiral superspace coordinates ðτ, θÞ and ðτ, θÞ as their
arguments. The set of supervariables (X, Px, T, and Pt) is the
generalization of the ordinary phase variables (x, px, t, and pt)
to their (anti)chiral counterparts onto the ð1, 1Þ-dimensional
(anti)chiral super submanifolds of the general ð1, 2Þ-dimen-
sional supermanifold. It is straightforward to check that the fol-
lowing is true, namely,

∂
∂ θ

~L
cð Þ
f τ, θð Þ = d

d τ
�CLf

 �

⇔ sabLf =
d
d τ

�CLf

 �

,

∂
∂ θ

~L
acð Þ
f τ, θ

� 	
= d
d τ

CLf½ �⇔ sbLf =
d
d τ

CLf½ �:
ð67Þ

In other words, we have captured the (anti-)BRST
invariance of the first-order Lagrangian ðLf Þ in view of the
mappings sb ↔ ∂θ and sab ↔ ∂θ. Since in the ordinary space
the (anti-)BRST symmetry transformations acting on Lf
produce the total derivatives (cf. Equation (67)), the action
integral S =

Ð +∞
−∞dτLf remains invariant under the transfor-

mations sðaÞb.
At this stage, we focus on the (anti-)BRST invariance of the

coupled Lagrangians LB and L�B (cf. Equations (37) and (38)).
We can express these invariances within the ambit of ACSA
(in view of the mappings sb ↔ ∂θ and sab ↔ ∂θ), namely,

∂
∂ θ

~L
cð Þ
�B τ, θð Þ = d

d τ
�CLf − e_e�B�C − e2�B _�C + �B2�C − i�B _�C�CC

h i
= sabL�B,

ð68Þ

∂
∂ θ

~L
acð Þ
B τ, θ

� 	
= d
d τ

CLf + e_eBC + e2B _C + B2C − iB�C _CC
h i

= sbLB,

ð69Þ

where the super Lagrangians ~L
ðcÞ
�B ðτ, θÞ and ~LðacÞB ðτ, θÞ have been

already quoted in Equations (63) and (64). It is interesting to
note that the r.h.s. of (68) and (69) are the same as we have
found in the ordinary space (cf. Equations (37) and (38)). To
prove the equivalence of the Lagrangians LB and L�B w.r.t. the
(anti-)BRST symmetry transformations (cf. Equations (32)
and (33)) within the purview of ACSA, we generalize the ordi-
nary Lagrangians LB and L�B as follows:
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LB ⟶ ~L
cð Þ
B τ, θð Þ = ~L

cð Þ
f τ, θð Þ + B abð Þ τ, θð Þ

� Σ abð Þ τ, θð Þ _Σ abð Þ
τ, θð Þ − i 2 _�F

abð Þ
τ, θð Þ F abð Þ τ, θð Þ

��

+ �F abð Þ τ, θð Þ _F abð Þ
τ, θð Þg� + 1

2 B abð Þ τ, θð ÞB abð Þ τ, θð Þ

− iΣ abð Þ τ, θð ÞΣ abð Þ τ, θð Þ _�F abð Þ
τ, θð Þ _F abð Þ

τ, θð Þ
− iΣ abð Þ τ, θð Þ _Σ abð Þ

τ, θð Þ _�F abð Þ
τ, θð Þ F abð Þ τ, θð Þ

− _�F
abð Þ

τ, θð Þ �F abð Þ τ, θð Þ _F abð Þ
τ, θð Þ F abð Þ τ, θð Þ,

ð70Þ

L�B ⟶ ~L
acð Þ
�B τ, θ

� 	
= ~L

acð Þ
f τ, θ

� 	
− B bð Þ τ, θ

� 	

� Σ bð Þ τ, θ
� 	

_Σ
bð Þ

τ, θ
� 	

− i 2�F bð Þ τ, θ
� 	

_F
bð Þ

τ, θ
� 	

+ _�F
bð Þ

��

� τ, θ
� 	

F bð Þ τ, θ
� 	

g� + 1
2B

bð Þ τ, θ
� 	

B bð Þ τ, θ
� 	

− iΣ bð Þ τ, θ
� 	

Σ bð Þ τ, θ
� 	

_�F
bð Þ

τ, θ
� 	

_F
bð Þ

τ, θ
� 	

− iΣ bð Þ τ, θ
� 	

_Σ
bð Þ

τ, θ
� 	

�F bð Þ τ, θ
� 	

_F
bð Þ

τ, θ
� 	

− _�F
bð Þ

τ, θ
� 	

�F bð Þ τ, θ
� 	

_F
bð Þ

τ, θ
� 	

F bð Þ τ, θ
� 	

,

ð71Þ

where all the notations and symbols have already been
explained earlier. To find out the result of the operations of sb
on L�B and sab on LB, we observe the following (in view of the
mappings sb ↔ ∂θ and sab ↔ ∂θ), namely,

∂
∂ θ

~L
cð Þ
B τ, θð Þ = d

d τ
�CLf + E _E i _�C�CC + B�C

� 	h

+ E2 i _�C�C _C + B _�C
� 	

+ B2�C + i 2B − �B
� � _�C�CCi

+ B + �B + i �C _C − _�CC
� 	h i

2i _�C�C _C − E _E _�C − 2B _�C + i€�C�CC
� 	

−
d
d τ

B + �B + i �C _C − _�CC
� 	h i

B�C + E2 _�C
� 	

≡ sabLB,

ð72Þ

∂
∂ θ

~L
acð Þ
�B τ, θ

� 	
= d
d τ

CLf − E _E i�C _CC + �BC
� 	h

− E2 i _�C _CC + �B _C
� 	

+ �B2C + i 2�B − B
� �

�C _CC
i

+ B + �B + i �C _C − _�CC
� 	h i

i�C€CC + 2i _�C _CC − 2�B _C + E _E _C
h i

+ d
d τ

i �C _C − _�CC
� 	

+ B + �B
h i

E2 _C − �BC
� 	

≡ sbL�B,

ð73Þ

within the framework of ACSA. It is self-evident, from the r.h.s.
of (72) and (73), that we have the BRST invariance of L�B and
anti-BRST invariance of LB if and only if our whole theory is
considered on the submanifold of the Hilbert space of quantum

variables where the CF-type restriction B + �B + ið�C _C − _�CCÞ = 0
is satisfied.

We end this section with the following crucial remarks.
First of all, we have captured the BRST and anti-BRST invari-
ances of LB and L�B, respectively, in the terminology of ACSA
on the (anti)chiral super submanifolds (cf. Equations (68)
and (69)). Second, we have also demonstrated the anti-
BRST invariance of LB and BRST invariance of L�B in the
superspace formalism (cf. Equations (72) and (73)) where
the theoretical techniques of ACSA have played very impor-
tant roles. Third, we have also expressed the (anti-)BRST
invariance of the first-order Lagrangian Lf in Equation (67).
Finally, we have proven the equivalence of LB and L�B within
the framework of ACSA in Equations (68), (69), (72),
and (73).

7. Nilpotency and Absolute Anticommutativity
Properties of the (Anti-)BRST Charges: ACSA

Our present section is divided into two sections. In Section
7.1, we discuss the off-shell nilpotency and absolute anticom-
mutativity of the conserved (anti-)BRST charges in the ordi-
nary space. Section 7.2 deals with the above properties within
the realm of ACSA to BRST formalism. In other words, we
capture the off-shell nilpotency and absolute anticommuta-
tivity of the conserved fermionic (anti-)BRST charges in the
superspace by taking the theoretical inputs from ACSA.

7.1. Nilpotency and Anticommutativity: Ordinary Space. The
perfect symmetry invariances of L�B under the anti-BRST
symmetry transformations (cf. Equation (38)) and LB under
the BRST symmetry transformations (cf. Equation (37))
allow us to compute the Noether conserved charges by using
the standard techniques of the Noether theorem (applied to
the action integrals corresponding to the Lagrangians L�B
and LB) as

Q�B =
�C E
2 p2x + 2mpt

� �
+ �B2�C − i�B _�C�CC − �BE _E�C − �BE2 _�C,

QB =
C E
2 p2x + 2mpt

� �
+ BE2 _C − iB�C _CC + BE _EC + B2C,

ð74Þ

where conserved ð _Q�B = 0, _QB = 0Þ (anti-)BRST charges are
denoted by Qð�BÞB. The conservation law ð _Q�B = 0, _QB = 0Þ
can be proven by using the EL-EOMs derived from the
coupled Lagrangians L�B and LB. For readers’ convenience,
we prove the conservation ð _QB = 0Þ of the BRST charge by
using the EL-EOMs derived from LB in Appendix C.

First of all, we concentrate on the proof of the off-shell
nilpotency properties of the (anti-)BRST charges Qð�BÞB. In
this context, we note that the following EL-EOMs w.r.t. the
variable E from L�B and LB, respectively, yield the following:

_�BE − iE _�C _C + iE�C€C −
1
2 p2x + 2mpt
� �

= 0,

_BE + iE _�C _C − iE€�CC + 1
2 p2x + 2mpt
� �

= 0:
ð75Þ
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The above equations can be used to recast Q�B and QB as
follows:

Q 1ð Þ
�B = E2 _�B�C − �B _�C + i _�C�C _C

� 	
− i�B _�C�CC − �BE _E�C + �B2�C,

Q 1ð Þ
B = E2 B _C − _BC − i _�C _CC

� 	
− iB�C _CC + BE _EC + B2C:

ð76Þ

Using the following EL-EOMs w.r.t. the variables C
and �B, respectively, from L�B, namely,

i�B _�C + 2i _�B�C − 3iE _E _�C − iE2€�C − i _E
2�C − iE€E�C + €�C�CC + 2 _�C�C _C = 0,

�B = E _E − i 2�C _C + _�CC
� 	

,

ð77Þ

we obtain the following exact and interesting expression
for the anti-BRST charge:

Q 1ð Þ
�B ⟶Q 2ð Þ

�B = E2 _�B�C − �B _�C + i _�C�C _C
� 	

+ iE2€�C�CC

+ 2iE _E _�C�CC ≡ sab iE2 �C _C − _�CC
� 	h i

:
ð78Þ

At this juncture, we apply the basic principle behind
the relationship between the continuous symmetry trans-

formations (e.g., sab) and its generator ½Qð2Þ
�B � which implies

that

sab Q
2ð Þ
�B = −i Q 2ð Þ

�B ,Q 2ð Þ
�B

n o
= 0⇒ Q 2ð Þ

�B

h i2
= 0⇔ s2ab = 0: ð79Þ

Thus, we observe that the off-shell nilpotency ð½Qð2Þ
�B �2

= 0Þ of the anti-BRST charge Qð2Þ
�B and the anti-BRST

symmetry transformations ðsabÞ are interrelated. Thus, we
have proven the off-shell nilpotency of the anti-BRST

charge Qð2Þ
�B . In an exactly similar fashion, we exploit the

following EL-EOMs w.r.t. the variables �C and B from the
Lagrangian LB:

iB _C + 2i _BC + 3iE _E _C + iE2€C + i _E
2
C + iE€EC + �C€CC + 2 _�C _CC = 0,

B = −E _E + i 2 _�CC + �C _C
� 	

,

ð80Þ

to recast the BRST charge Qð1Þ
B into another interesting

form (i.e., Qð2Þ
B ) as

Q 1ð Þ
B ⟶Q 2ð Þ

B = E2 B _C − i _�C _CC − _BC
� 	

− 2iE _E�C _CC − iE2�C€CC

≡ sb iE2 _�CC − �C _C
� 	h i

,

ð81Þ

which turns out to be an exact quantity w.r.t. sb. Thus, we
find that we have the following:

sb Q
2ð Þ
B = −i Q 2ð Þ

B ,Q 2ð Þ
B

n o
= 0⇒ Q 2ð Þ

B

h i2
= 0⇔ s2b = 0: ð82Þ

In other words, we have proven the off-shell nilpo-

tency ð½Qð2Þ
B �2 = 0Þ of the BRST charge Qð2Þ

B . Once again,
we find that the off-shell nilpotency ðs2b = 0Þ of the
BRST symmetry transformations and the off-shell nilpo-

tency ð½Qð2Þ
B �2 = 0Þ are intertwined in an intimate manner.

We now focus on the proof of the absolute anticommutativ-
ity property of the BRST charge with the anti-BRST charge and

vice versa. First of all, let us focus on the BRST charge Qð2Þ
B (cf.

Equation (81)). Using the CF-type restriction B + �B + ið�C _C −
_�CCÞ = 0, we can easily check the following transformation:

Q 2ð Þ
B ⟶Q 3ð Þ

B = E2 _�BC − 2i _�C _CC − �B _C
� 	

− 2iE _E�C _CC ≡ sab iE2 _CC
h i

:

ð83Þ

In other words, we have been able to express the above
BRST charge as an exact form w.r.t. the anti-BRST symmetry
transformations ðsabÞ. This is an interesting observation because
using the relationship between the continuous symmetry trans-
formations and their generators, we can obtain the following
from (83), namely,

sabQ
3ð Þ
B = −i Q 3ð Þ

B ,Q 3ð Þ
�B

n o
= 0⇔ s2ab = 0: ð84Þ

Thus, we have been able to demonstrate that the absolute
anticommutativity of the BRST charge with the anti-BRST
charge is connected with the off-shell nilpotency ðs2ab = 0Þ of
the anti-BRST symmetry transformation ðsabÞ. In an exactly
similar fashion, we can have a different form of the anti-BRST

charge Qð2Þ
�B (cf. Equation (78)) by using the CF-type restriction

B + �B + ið�C _C − _�CCÞ = 0. In other words, we have the following
interesting transformation:

Q 3ð Þ
�B ⟶Q 3ð Þ

�B = E2 B _�C + 2i _�C�C _C − _B�C
� 	

+ 2iE _E _�C�CC ≡ sb iE2 _�C�C
h i

:

ð85Þ

It is straightforward to note that we have the following
relationship:

sbQ
3ð Þ
�B = −i Q 3ð Þ

�B ,Q 3ð Þ
B

n o
= 0⇔ s2b = 0: ð86Þ

In other words, we point out that the absolute anticommu-
tativity of the anti-BRST charge with the BRST charge is inti-
mately connected with the off-shell nilpotency ðs2b = 0Þ of the
BRST symmetry transformations ðsbÞ. This completes our dis-
cussions on the off-shell nilpotency and absolute anticommuta-
tivity of the conserved (anti-)BRST charges in the ordinary
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space. In a subtle manner, the observations in (83) and (85)

prove the validity of the CF-type restriction B + �B + ið�C _C − _�C
CÞ = 0 on our theory.

7.2. Nilpotency and Anticommutativity: ACSA. The key
observations of Section 7.1 can be translated into the super-
space by using the basic terminology of ACSA. Keeping in
our mind the mappings ∂θ ↔ sb and ∂θ ↔ sab, we note that
the (anti-)BRST charges Qð�BÞB (cf. Equations (78) and (81))
can be expressed as

Q�B =
∂
∂ θ

iE abð Þ τ, θð ÞE abð Þ τ, θð Þ �F abð Þ τ, θð Þ _F abð Þ
τ, θð Þ

nh

− _�F
abð Þ

τ, θð ÞF abð Þ τ, θð Þ
oi

=
ð
dθ iE abð Þ τ, θð ÞE abð Þ

h

� τ, θð Þ �F abð Þ τ, θð Þ _F abð Þ
τ, θð Þ − _�F

abð Þ
τ, θð ÞF abð Þ τ, θð Þ

� 
i
,

ð87Þ

QB =
∂
∂ θ

iE bð Þ τ, θ
� 	

E bð Þ τ, θ
� 	

_�F
bð Þ

τ, θ
� 	

F bð Þ τ, θ
� 	��

− �F bð Þ τ, θ
� 	

_F
bð Þ

τ, θ
� 	oi

=
ð
d θ i E bð Þ τ, θ

� 	
E bð Þ

h

� τ, θ
� 	

_�F
bð Þ

τ, θ
� 	

F bð Þ τ, θ
� 	

− �F bð Þ τ, θ
� 	

_F
bð Þ

τ, θ
� 	� 
i

:

ð88Þ

It is straightforward to observe that we have the following:

∂
∂ θ

Q�B = 0⇔ sabQ�B = 0⇔Q2
�B = 0⇔ ∂2θ = 0,

∂
∂ θ

QB = 0⇔ sbQB = 0⇔Q2
B = 0⇔ ∂2

θ
= 0:

ð89Þ

Thus, the off-shell nilpotency of the (anti-)BRST charges is
connected with the nilpotency ð∂2θ = 0, ∂2

θ
= 0Þ of the transla-

tional generators ð∂θ, ∂θÞ along the Grassmannian directions
of the chiral and antichiral ð1, 1Þ-dimensional super submani-
folds. This observation is consistent with our discussion of the
nilpotency property in the ordinary space if we remember the
mappings sb ↔ ∂θ and sab ↔ ∂θ [14–16].

As far as the absolute anticommutativity property is con-
cerned, we note that the expressions of the (anti-)BRST
charges in (83) and (85) can be translated into the superspace
where we can exploit the theoretical tools of ACSA. To
accomplish this goal, we keep in our knowledge the map-
pings sb ↔ ∂θ and sab ↔ ∂θ to recast the expressions (83)
and (85) as

Q 3ð Þ
�B = ∂

∂ θ
iE bð Þ τ, θ

� 	
E bð Þ τ, θ

� 	
_�F

bð Þ
τ, θ

� 	
�F bð Þ τ, θ

� 	� �

≡
ð
dθ iE bð Þ τ, θ

� 	
E bð Þ τ, θ

� 	
_�F

bð Þ
τ, θ

� 	
�F bð Þ τ, θ

� 	� �
,

Q 3ð Þ
B = ∂

∂ θ
−i E abð Þ τ, θð ÞE abð Þ τ, θð Þ _F abð Þ

τ, θð ÞF abð Þ τ, θð Þ
h i

≡
ð
dθ −iE abð Þ τ, θð ÞE abð Þ τ, θð Þ _F abð Þ

τ, θð ÞF abð Þ τ, θð Þ
h i

:

ð90Þ

It is now straightforward to check that the following are
true, namely,

∂θQ
3ð Þ
�B = 0⇔ sbQ

3ð Þ
�B = 0⇔ Q 3ð Þ

�B ,Q 3ð Þ
B

n o
= 0⇔ ∂2

θ
= 0,

∂θQ
3ð Þ
B = 0⇔ sabQ

3ð Þ
B = 0⇔ Q 3ð Þ

B ,Q 3ð Þ
�B

n o
= 0⇔ ∂2θ = 0,

ð91Þ

which establishes the fact that the ACSA to BRST formalism
distinguishes between the two types of absolute anticommu-
tativity properties. In other words, we observe that the abso-
lute anticommutativity of the BRST charge with the anti-
BRST charge is connected with the nilpotency ð∂2θ = 0Þ of
the translational generator ð∂θÞ along the Grassmannian
direction of the ð1, 1Þ-dimensional chiral super submanifold.
On the contrary, the absolute anticommutativity of the anti-
BRST charge with the BRST charge is connected with the nil-
potency ð∂2

θ
= 0Þ of the translational generator ð∂θÞ along the

Grassmannian direction of the ð1, 1Þ-dimensional antichiral
super submanifold.

8. Conclusions

In our present endeavor, we have purposely taken a repara-
meterization invariant NR and NSUSY system so that we
could discuss theoretical aspects that are different from our
earlier works on the NSUSY relativistic scalar and SUSY rel-
ativistic spinning particles [23, 24]. We have demonstrated,
however, in our present investigation that (i) the CF-type
restriction and (ii) the sum of gauge-fixing and Faddeev-
Popov ghost terms are the same for our present NR and
NSUSY system as have been shown by us for the relativistic
particles (in our earlier works [23, 24]). The above observa-
tions are interesting results of our present investigation
which establish the universality of the (anti-)BRST invariant
CF-type restriction for the 1D diffeomorphism invariant (i.e.,
reparameterization) theories.

The CF-type restriction(s) are the hallmark of a quantum
theory that is BRST-quantized. In fact, for a D-dimensional
diffeomorphism invariant theory, it has been shown [22,
33] that the universal CF-type restriction for a BRST-quan-
tized theory is Bμ + �Bμ + i ð�Cρ ∂ρ Cμ + Cρ ∂ρ �CμÞ = 0, where
μ, ρ = 0, 1, 2,⋯,D − 1, Bμ and �Bμ are the Nakanishi-

Lautrup auxiliary fields, and the (anti)ghost fields ð�CμÞCμ

correspond to the D-dimensional diffeomorphism parameter
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εμðxÞ in the infinitesimal transformation xμ ⟶ xμ′ = xμ −
εμðxÞ. The universality of the above CF-type restriction
implies that, for our 1D diffeomorphism (i.e., reparameteri-

zation) invariant theory, the CF-type restriction is B + �B + i

ð�C _C − _�C CÞ = 0. This is what we have obtained from various
theoretical tricks in our present endeavor. The existence of
the CF-type restriction is very fundamental to a BRST-
quantized theory as it is connected with the geometrical
objects called gerbes [7, 8]. Physically, the existence of the
CF-type restriction leads to the independent nature of the
BRST and anti-BRST symmetries (and corresponding con-
served charges) at the quantum level (that are connected with
a given classical local symmetry).

Our present work (and earlier works [23, 24]) can be gener-
alized to the cases of (super)string and gravitational theories
which are also diffeomorphism invariant. In fact, in our earlier
work on a bosonic string theory [34], we have shown the exis-
tence of the CF-type restriction in the context of its BRST quan-
tization and it has turned out to be the 2D version of the
universal CF-type restriction for the D-dimensional diffeo-
morphism invariant theory. It is gratifying to pinpoint the fact
that we have derived the CF-type restrictions Ba + �Ba + ið�Cm

∂mCa + Cm∂m�C
aÞ = 0 (with a,m = 0, 1) for a model of bosonic

string theory [34]. This has happened because the bosonic
string theory has the 2D diffeomorphism invariance on the
2D worldsheet. We have applied the beautiful blend of MBTSA
and ACSA to derive all the (anti-)BRST symmetries as well as
the 2D version of the CF-type restriction in the case of a bosonic
string theory of our interest [35]. In our present investigation,
we have utilized only one and/or two Grassmannian variables
because there are only two nilpotent symmetries in the theory.
If a theory is endowed with the nilpotent (anti-)BRST as well
as (anti-)co-BRST symmetries, then we have to invoke four
numbers of the Grassmannian variables. We are currently
exploring such kinds of possibilities.

Appendix

A. The CF-Type Restriction from LB ≡ L�B

In this appendix, we provide the step-by-step derivation of
the CF-type restriction by requiring the equivalence of the
coupled Lagrangians LB and L�B (cf. Equation (35)). A close
look at them demonstrates that if we demand LB ≡ L�B, the
terms that are common would cancel out. For instance, we

have cancelations of terms Lf , −iE2 _�C _C, and − _�C�C _CC that
are present in both LB and L�B. Thus, we are left with the fol-
lowing equality:

B2

2 + B E _E − i 2 _�CC + �C _C
� 	h i

− iE _E _�CC ≡
�B2

2
+ �B E _E − i 2�C _C + _�CC

� 	h i
− iE _E�C _C:

ðA:1Þ

From the above equation, it is evident that we have

E _E B + �B + i �C _C − _�CC
� 	h i

, ðA:2Þ

on the l.h.s. when we bring all the terms from the r.h.s. to the
l.h.s. At this stage, excluding (A.2), the leftover terms on the
l.h.s. and the r.h.s. are

B2

2 −
�B2

2 − 2iB _�CC − iB�C _C − 2i�B�C _C − i�B _�CC = 0: ðA:3Þ

The above equation can be expressed as

B2

2 −
�B2

2 − i B + �B
� � _�C C − i B + �B

� �
�C _C − i B _�C C − i �B �C _C = 0:

ðA:4Þ

The rearrangements of the terms produce the following:

B2

2 −
�B2

2 − i B + �B + i �C _C − _�CC
� 	h i

_�CC

− i B + �B + i �C _C − _�CC
� 	h i

�C _C − iB _�CC − i�B�C _C = 0:

ðA:5Þ

Taking into account (A.2), we have the following:

E _E − i _�CC − i�C _C
h i

B + �B + i �C _C − _�CC
� 	h i

+ B2

2 −
�B2

2 − iB _�CC − i�B�C _C = 0:
ðA:6Þ

Substituting for −iB _�CC = −ði/2ÞB _�CC − ði/2ÞB _�CC and −i
�B�C _C = −ði/2Þ�B�C _C − ði/2Þ�B�C _C and rearranging the terms,
we end up with the following final result:

B + �B + i �C _C − _�CC
� 	h i

E _E + 1
2 B − �B − 3i _�CC + �C _C

� 	n o� �
= 0:

ðA:7Þ

The above equation establishes the existence of the CF-

type restriction B + �B + i ð�C _C − _�C CÞ = 0 on our theory due
to the equivalence of the coupled (but equivalent) Lagrang-
ians (i.e., LB ≡ L�B). This is due to the fact that, in no way,

we can state the other combination E _E + ð1/2ÞfB − �B − 3ið _�C
C + �C _CÞg = 0. On the contrary, the CF-type restriction B +
�B + ið�C _C − _�CCÞ = 0 has been proven from various angles
(cf. Equation (36)).

We end this appendix with the concluding remark that
we have derived the CF-type restriction on our theory from
theoretical requirements related to the symmetries of the
coupled (but equivalent) Lagrangians and the absolute antic-
ommutativity properties. However, our present derivation of
the CF-type restriction is more direct as well as transparent.

B. On the Derivation of f3 = E _C + _EC and f2 = _�B
C − �B _C

The theoretical content of this appendix is, first of all,
devoted to the explicit derivation of f3ðτÞ in the expansion

17Advances in High Energy Physics



of Σðτ, θÞ in the antichiral super expansions (41). Towards
this objective in mind, we focus on Equation (51) where the
first-order differential equation w.r.t. the evolution parame-
ter τ for f3 has been expressed. We can rewrite it as

f3 _C + _f 3C − _E _CC − E€CC = 0⇒ d
d τ

f3C½ � − d
d τ

_EC + E _C
� 	

C
h i

= 0,

ðB:1Þ

where we have used the fermionic property ðC2 = 0Þ of the
ghost variable ðCÞ. The above equation can be reexpressed
in a different but useful form as the total derivative w.r.t. τ:

d
d τ

f3 − E _C + _EC
� 	n o

C
h i

= 0: ðB:2Þ

Integrating the above equation from τ = −∞ to τ = +∞
(which are the limiting cases for τ in our theory), we obtain
the following relationship:

f3 − E _C + _EC
� 	h i

C = 0: ðB:3Þ

Wewould like to point out that, while deriving (B.3) from
(B.2), we have assumed that all the physical variables of the
Lagrangian LB and the secondary variable f3ðτÞ vanish off
at τ = ±∞. For C ≠ 0, we obtain the desired result f3 = E _C
+ _EC. We have taken C ≠ 0 because the whole set of BRST
symmetry transformations in Equation (33) is true onlywhen
the ghost variable CðτÞ has the nontrivial and nonzero value.

We now concentrate on the precise determination of f2
ðτÞ of the super expansions (41). In other words, we wish

to show that f2 = _�BC − �B _C. For this purpose, we note that
we have a first-order differential equation w.r.t. the evolution
parameter τ for the secondary variable f2ðτÞ in Equation
(49). This can be reexpressed as follows:

f2 _C + _f 2C − 2f2 _C − 2 _�B _CC + _�B _CC + �B€CC = 0, ðB:4Þ

where we have added and subtracted f2 _C and _�B _C C. The
above equation implies that we have now its modified form
(with total derivatives) as

d
d τ

f2C½ � − 2 f2 _C + _�B _CC
� 	

+ d
d τ

�B _CC
h i

= 0⇒ d
d τ

f2C + �B _CC
h i

− 2 f2 −
_�BC

� 	
_C

h i

= 0:

ðB:5Þ

Using the fermionic ðC2 = _C
2 = 0Þ property of the ghost

variables C and _C, we can recast the above equation in the

following interesting form where ½ f2 − ð _�BC − �B _CÞ� appears
very nicely in the individual terms of the following difference,
namely,

d
d τ

f2 −
_�BC − �B _C

� 	n o
C

h i
− 2 f2 −

_�BC − �B _C
� 	n o

_C
h i

= 0:

ðB:6Þ

We can expand the total derivative in the first term
to obtain

d
d τ

f2 −
_�BC − �B _C

� 	n oh i
C − f2 −

_�BC − �B _C
� 	n o

_C
h i

= 0:

ðB:7Þ

Defining f2 − ð _�BC − �B _CÞ = χ leads us to the following:

d
d τ

χ

� �
C − χ _C = 0⇒ _χC = χ _C: ðB:8Þ

Multiplying from the right by C and taking into
account the fermionic (i.e., C2 = 0) nature of the ghost
variable C, we obtain the following:

0 = χ _CC⇒ χ = 0  forC _C ≠ 0
� 	

: ðB:9Þ

It should be noted that we have the off-shell nilpotent
BRST symmetry transformation sbC = C _C (cf. Equation
(33)). As a consequence, we have the combination of
the variables C _C ≠ 0. If the symmetry of a theory is the
guiding principle behind its beauty, it is physically correct
to assume that sbC = C _C ≠ 0. In fact, if we take C _C = 0,
the whole beauty and sacrosanct properties (i.e., off-shell
nilpotency and absolute anticommutativity) of the (anti-
)BRST symmetry transformations of our present theory
will be spoiled. As a consequence, the CF-type restriction
will no longer remain (anti-)BRST invariant. It should be
recalled, however, that we have invoked the CF-type
restriction in proving the equivalence of the Lagrangians
(cf. Equation (35)) w.r.t. the (anti-)BRST symmetry transfor-
mations. Hence, our conclusion in (B.9) is correct which leads

to the derivation of f2 = _�BC − �B _C from χ = 0.

C. On the Proof of the Conservation Law

We take up here the expression for the BRST charge QB (cf.
Equation (74)) that has been derived using the Noether the-
orem (cf. Section 7). We exploit the EL-EOM derived from
the Lagrangian LB to recast the expression for _QB, namely,

_QB =
_C E
2 p2x + 2mpt

� �
+ C _E

2 p2x + 2mpt
� �

+ CE px _px +mptð Þ
+ 2E _EB _C + E2B _C + E2B€C + _E

2
BC + E€EBC + E _E _BC

+ E _EB _C + 2B _BC − i _B�C _CC − iB _�C _CC − iB�C€CC,
ðC:1Þ
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into the following form:

_QB = −iE2€�C _CC − iE _E _�C _CC + 3E _EB _C + E2B€C + _E
2
BC

+ E€EBC + 2B _BC + B2 _C − i _B�C _CC − iB _�C _CC − iB�C€CC,
ðC:2Þ

where we have used the EL-EOMs from LB as

_px = 0,
_pt = 0,

1
2 p2x + 2mpt
� �

= − _BE + iE€�CC − iE _�C _C:

ðC:3Þ

The expression (C.2) can be further changed to a reduced
form as follows:

_QB = iB _�C _CC − i _B�C _CC − iE _E _�C _CC − iE2€�C _CC, ðC:4Þ

if we use the EL-EOM from LB w.r.t. the variable �C as

2 _BC + B _C + 3E _E _C + E2€C + _E
2
C + E€EC − i�C€CC − 2i _�C _CC = 0:

ðC:5Þ

The expression in (C.4) can be proven to be equal to zero
by using the following EL-EOM from LB w.r.t. the variable C,
namely,

i _B�C − iB _�C + iE _E _�C + iE2€�C − €�C�CC − 2 _�C�C _C = 0: ðC:6Þ

We end this appendix with the remark that, in an exactly
similar fashion, we can prove the conservation law ð _Q�B = 0Þ
of the anti-BRST charge (cf. Equation (74)) which has been
derived by exploiting the theoretical tricks of the Noether
theorem.
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