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Abstract: In order to improve the accuracy of load identification and study the influence of transverse
distribution, a novel method was proposed for the moving load identification based on strain influ-
ence line and the load transverse distribution under consideration. The load identification theory
based on strain influence line was derived, and the strain integral coefficient was proposed for the
identification. A series of numerical simulations and experiments were carried out to verify the
method. The numerical results showed that the method without considering the load transverse
distribution was not suitable for solving the space problem, and the method with the load transverse
distribution under consideration has a high identification accuracy and excellent anti-noise perfor-
mance. The experimental results showed that the speed identification error was smaller than ±5%,
and the vehicle speed had no obvious influence on the identification results of the vehicle weight.
Moreover, the average identification error of the vehicle weight was smaller than ±10%, and the
error of more than 90% of samples was smaller than ±5%.

Keywords: moving load identification; strain influence line; load transverse distribution; strain
integral coefficient; identification error

1. Introduction

The pace of urban infrastructure construction was further increased with the devel-
opment of the national economy, the bridge had become an indispensable structural form
of transportation infrastructure. Therefore, the safety operation, long-term performance
maintenance, and real-time state assessment are very important for bridges. The traditional
safety inspection of bridge structures was mainly based on manual inspection. However,
with the intensive and large-scale development of vehicles, the phenomenon of vehicle
overloading was ubiquitous. Moreover, the safety load rating of the old bridge was rela-
tively low, the results obtained by manual inspection may lag behind the development of
the structural state, so the safety of bridges has drawn widespread concern in the society.

Therefore, it is important to install structural health monitoring (SHM) system on the
bridge, which can monitor the working state and damage condition of bridge structures in
a real-time manner. Li et al. [1] elaborated the efficiency and ascendancy of the proposed
distributed fiber optic sensing system in SHM. Cardini et al. [2] presented an approach to
use strain data from a multi-girder, composite steel bridge for long-term SHM. Brownjohn
et al. [3] described the motivations for and recent history of SHM applications to various
forms of civil infrastructure and provided case studies on specific types of structure. Wong
et al. [4] studied the health monitoring of cable-supported bridges involving the integration
of instrumentation, analytical and information technologies. Li et al. [5] described three
commonly used fiber optic sensors, and presented an overview of current research and
development in the field of SHM with civil engineering applications. In general, the SHM
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system can monitor the internal response of the structure, such as strain, displacement,
and other parameters as well as the external effects of the structure, such as temperature,
load, etc. [6,7]. Vehicle load is the most important external effect on the bridge, and the
working state of the bridge can be effectively evaluated if the actual load acting on the
structure is identified. Kim et al. [8] proposed that the evaluation of vehicle loads for bridge
safety assessment may be adjusted according to the traffic conditions, such as the traffic
volume, the proportion of heavy vehicles, and the consecutive vehicle traveling patterns.
In addition, he presented a method for evaluating the reliability of an in-service highway
bridge, and the bridge performance was evaluated by considering traffic conditions [9].
Ghosh et al. [10] presented a framework for joint seismic and live-load fragility assessment
of highway bridges. Therefore, it is of great significance to the study of load identification.

In recent years, due to the rapid development of signal processing and computer
processing technologies, some load identification methods and weighing techniques with a
wider application and higher accuracy have been proposed and studied. Some scholars
have studied static weighing techniques with excellent accuracy. Pinkaew et al. [11] used
the least-squares method based on conventional regularization to identify the static gross
weight of the vehicle. Han et al. [12] presented an adaptive algorithm to improve the
efficiency of static weighing. Richardson et al. [13] systematically summarized a variety
of weighing techniques. However, the disadvantages of static weighing technology are:
It is troublesome to install, as well as costly and time-consuming. In order to solve
these disadvantages, weigh-in-motion (WIM) techniques have been widely developed
and applied since the 1980s. Among them, the pavement-based WIM system required
installing sensors on the road, which lead to high installation and maintenance costs
as well as a great impact on the traffic [14,15]. The further development of the bridge
weigh-in-motion (B-WIM) systems has the advantage that the installation and maintenance
process has little impact on the traffic [16]. However, its defect is that it needs to add
additional equipment to assist the function, which increases the operating cost, and it
is greatly affected by the outside, these have limited its application [17–19]. Several
methods have been developed in recent years to identify the moving loads. Zhu et al. [20]
identified moving loads on top of a continuous beam using measured vibration responses
and orthogonal function approximation method, but the road surface roughness and the
variation of the speed lead to a large error. Yang et al. [21] used the method of the BP neural
network in bridge moving loads identification, and the influences of different activation
function combinations and algorithms on identification results were discussed. It was
found that the transfer function in different combinations has little effect on the results,
but the different training methods have a great influence on the results. Wang et al. [22]
presented a dynamic displacement influence line method for moving load identification on
bridge, and the simulation of multi-axle moving train loads was carried out, which was
identified with annealing genetic algorithm, but its practical performance is questionable.
Some researchers used the strain response measured by strain sensors to identify the
moving load. Chen et al. [23] presented a B-WIM system to measure the vehicle velocity,
wheelbase, and axial and gross weight merely based on a single set of long-gauge fiber
Bragg grating (FBG) sensors. Zhang et al. [24] established the correlations among the
peak values of static macrostrain curves and vehicle loads based on the macrostrain
influence line theory. Wang et al. [25] used strain-monitoring data and influence line
theory to identify the moving train load parameters, including train speed, gross train
weight, and axle weights. They were characterized by good accuracy and easy operation
but these methods were greatly affected by noise. Yang et al. [26] presented a method
for moving load identification based on the influence line theory and distributed optical
fiber sensing technique, and the numerical results showed that the method had excellent
resistance to noise. However, the method does not consider the influence of load transverse
distribution, and the experiment results of the actual bridge showed that the method
had a large identification error. Zuo et al. [27] proposed a vehicle weight identification
method using the measured strain responses of the T-girders caused by the passing vehicle
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accordingly, and the load transverse distribution was considered. However, the study did
not effectively compare the methods without considering the load transverse distribution,
and the influence of speed on the load identification error was not considered.

In order to improve the accuracy of load identification and study the influence of
transverse distribution, a moving load identification method was proposed based on strain
influence line and the load transverse distribution under consideration. The feasibility and
effect of this method were verified by numerical simulations and model bridge experiments.

2. Theoretical Background
2.1. Identification Theory of Influence Lines

According to the strain influence line theory [28] and material mechanics for a simply
supported beam, as shown in Figure 1, the strain of the mid-span point C can be expressed
as below:

εc =

{ Phx
2EI

PhL
2EI
(
1− x

L
) 0 < x < L

2
L
2 < x < L

(1)

where x is the distance between the moving load P and the beam end A, L is the beam span,
h is the height of the neutral axis, I is the section inertia moment of point C, and E is the
elastic modulus.
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Figure 1. Moving load acting on the simply supported beam.

Generally, the moving load on the bridge is a multi-axle vehicle load, so the mea-
sured strain response can be seen as the superposition of multiple concentrated loads [29].
Figure 2 shows a three-axle vehicle load as a sample. The strain equation of mid-span
section under vehicle load can be expressed as below:

ε(x) = ε1(x− x1) + ε2(x− x2) + ε3(x− x3) (2)

where x is the distance between the vehicle’s first axis and the left end of the bridge, x1,
x2, and x3 are the distances between each axle and the first axle, P1, P2, and P3 are the axle
loads, respectively.
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From the above case of three-axle vehicle, the strain response of the mid-span beam
under the n-axle vehicle load can be expressed as below:

ε(x) =
n

∑
i=1

εn(x− xn) (3)

By introducing Equation (3) into Equation (1), the following equation can be obtained:

εn(x− xn) = Pn f (x− xn) (4)

in which:

f (x) =
{ hx

2EI
hL
2EI
(
1− x

L
) 0 < x < L

2
L
2 < x < L

(5)

When the multi-axle vehicle passes through the bridge, the area enclosed by the
mid-span strain function and the x axis can be expressed as:

A =
∫ +∞

−∞
ε(x)dx (6)

By introducing Equation (3) into Equation (6), the following equation can be obtained:

A =
∫ +∞

−∞

n

∑
i=1

Pn f (x− xn)dx =
n

∑
i=1

Pn

∫ +∞

−∞
f (x− xn)dx (7)

Consequently, the total weight P of the vehicle can be expressed as:

P =
n

∑
i=1

Pn =
A∫ +∞

−∞ f (x− xn)dx
=

A
α

(8)

in which:

α =
∫ +∞

−∞
f (x− xn)dx (9)

where α is the mid-span strain integral coefficient, it is related to the envelope area of the
strain influence line. The α can be calibrated by Equation (9) when a known vehicle load
passes through the bridge. Then, the α can be used to identify the vehicle load.

2.2. Moving Load Identification Method Considering the Load Transverse Distribution

When the vehicle load acts on the bridge, the load is not only transmitted in the
longitudinal direction, but also in the horizontal direction. Therefore, the force analysis
of the bridge under the vehicle load is a space calculation problem. Then, the internal
force analysis of the bridge section can be carried out through the influence surface. The
influence surface of the bridge internal force can be expressed by a two-valued function
η(x, y), then the internal force value of section a can be expressed as S = P · η(x, y), in
which S is the internal force value of the section, and P is the vehicle load. In addition,
η(x, y) can be separated into the product of two single-valued functions by the separation
variable method. That is η(x, y) = η1(x)·η2(y), in which η1(x) is the internal force influence
line of the beam section, and η2(y) is the change curve of the load ratio when the unit load
acts in different positions along the horizontal direction. Then, the internal force value P’
of the beam section can be expressed as P′ = P · η2(y), equivalent to assigned the load to
the beam along the horizontal direction when the load P acts on point a(x, y).

For the simply supported T-beam bridge, as shown in Figure 3, it is approximately
assumed that S = P · η(x, y) ≈ P · η1(x) · η2(y), which neglects the spatial effect of the
bridge and turns it into a plane problem. When a moving load acts on the bridge deck and
its position changes with the x coordinate but y coordinate is constant, then the P · η2(y)
is constant too. That is the direction of the load transverse distribution coefficient along
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the beam span does not change. Therefore, each beam can be analyzed individually when
analyzing the internal force influence line of the beam section, and the equivalent load of
each beam can be obtained according to the load transverse distribution coefficient.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 17 

 

( )nf x x dxα
+∞

−∞
= −  (9) 

where α is the mid-span strain integral coefficient, it is related to the envelope area of the 
strain influence line. The α can be calibrated by Equation (9) when a known vehicle load 
passes through the bridge. Then, the α can be used to identify the vehicle load. 

2.2. Moving Load Identification Method Considering the Load Transverse Distribution 
When the vehicle load acts on the bridge, the load is not only transmitted in the 

longitudinal direction, but also in the horizontal direction. Therefore, the force analysis of 
the bridge under the vehicle load is a space calculation problem. Then, the internal force 
analysis of the bridge section can be carried out through the influence surface. The 
influence surface of the bridge internal force can be expressed by a two-valued function 
η(x, y), then the internal force value of section a can be expressed as ( )η= ⋅ ,S P x y , in 
which S is the internal force value of the section, and P is the vehicle load. In addition, η(x, 
y) can be separated into the product of two single-valued functions by the separation 
variable method. That is ( ) ( ) ( )η η η= 1 2,x y x y , in which η1(x) is the internal force 

influence line of the beam section, and η2(y) is the change curve of the load ratio when the 
unit load acts in different positions along the horizontal direction. Then, the internal force 
value P’ of the beam section can be expressed as ( )η= ⋅ 2'P P y , equivalent to assigned 

the load to the beam along the horizontal direction when the load P acts on point ( ),a x y
. 

For the simply supported T-beam bridge, as shown in Figure 3, it is approximately 
assumed that ( ) ( ) ( )1 2,S P x y P x yη η η= ⋅ ≈ ⋅ ⋅ , which neglects the spatial effect of the 
bridge and turns it into a plane problem. When a moving load acts on the bridge deck 
and its position changes with the x coordinate but y coordinate is constant, then the 

( )2P yη⋅  is constant too. That is the direction of the load transverse distribution 
coefficient along the beam span does not change. Therefore, each beam can be analyzed 
individually when analyzing the internal force influence line of the beam section, and the 
equivalent load of each beam can be obtained according to the load transverse 
distribution coefficient. 

z

y

x

x
y

P

a

S=P·η(x,y)

P′ 

a

x

z

S=P'·η1(x)

x

. 

Figure 3. The internal force calculation under vehicle load. 
Figure 3. The internal force calculation under vehicle load.

Take the two-axle vehicle as an example to analyze the internal force (as shown in
Figure 4). The axle weight is P11, P12, P21, and P22, respectively, and its action position is
(x1, y1), (x1, y2), (x2, y1), (x2, y2), respectively. The y coordinate values of the four wheel
loads are constant when the vehicle travels parallel to the x coordinate on the bridge, that
is, the transverse distribution coefficient of each wheel load is constant. When analyzing
the internal force of a single beam, the equivalent load

(
Pn

1 , Pn
2
)

acting on it can be obtained
by the following equation:{

Pn
1 = P11 · η2(y1) + P12 · η2(y2)

Pn
2 = P21 · η2(y1) + P22 · η2(y2)

(n = 1, 2, 3, 4, 5) (10)
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The total weight of the vehicle can be expressed as:

P = P11 + P12 + P21 + P22 =
5

∑
n=1

(Pn
1 + Pn

2 ) (11)
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According to the influence line theory, when the strain integral coefficient of one
beam section is known, the total weight of the moving load can be calculated through the
monitored strain integral value on the section.

Assuming that the above vehicle loads drive parallel to the x coordinate from one end
to the other end of the beam, the measured strain integral values of the mid-span section
of each beam bottom are A2, A3, A4 and A5, respectively. In addition, it is assumed that
the mid-span strain integral coefficients of each beam bottom are α1, α2, α3, α4, and α5,
respectively. The following equation can be obtained:

P =
5

∑
n=1

(Pn
1 + Pn

2 ) =
5

∑
n=1

An

αn
(12)

From Equation (12), it can be seen that the mid-span strain integral coefficient of each
beam bottom must be obtained first in order to get the total weight P of the vehicle. The P,
A1, A2, A3, A4, and A5 in Equation (12) can be obtained by test. Therefore, the essence of
calculating the strain integral coefficient is to solve a five-element linear equation. Keeping
the vehicle weight constant but changing the driving position (five different values of y1
and y2), the equation group can be obtained as below:

A11
α1

+ A12
α2

+ A13
α3

+ A14
α4

+ A15
α5

= P
A21
α1

+ A22
α2

+ A23
α3

+ A24
α4

+ A25
α5

= P
A31
α1

+ A32
α2

+ A33
α3

+ A34
α4

+ A35
α5

= P
A41
α1

+ A42
α2

+ A43
α3

+ A44
α4

+ A45
α5

= P
A51
α1

+ A52
α2

+ A53
α3

+ A54
α4

+ A55
α5

= P

(13)

In order to obtain the strain integral coefficient, its reciprocal can be calculated first:{
1
α

}
= {A}−1{P} (14)

After obtaining the strain integral coefficient by the above method, the vehicle load
identification can be carried out subsequently. Moreover, it should be noted that the
theoretical derivation above is aimed at the simply supported T-beam bridge, but the
method is still applicable to the similar bridge types, such as box girder bridges.

3. Numerical Simulation
3.1. Model Building

In order to verify the effectiveness of the above method, a numerical analysis model
of T-beam bridge was established, as shown in Figure 5, the model beam is 3 m in length,
1.175 m in width, 0.21 m in height, the section size is shown in Figure 5a,b. The density
of the mode material is 1170 kg/m3, the Poisson’s ratio is 0.35. The elastic modulus of 1#
beam is E1 = 3.25 × 104 MPa, and the elastic modulus of 2#~5# beams are E2 = 1.02 E1,
E3 = 1.05 E1, E4 = 1.07 E1, E5 = 1.1 E1, respectively.

Assuming that the vehicle load acting on the bridge was represented by four time-
varying forces, its equation can be expressed as below:{

P11 = P12 = P(0.2 + 0.025 sin(6.67πt))
P21 = P22 = P(0.3 + 0.025 sin(6.67πt))

(15)

where, P11 and P12 represented the front wheel loads, P21 and P22 represented the rear
wheel loads, P was the total weight of the vehicle. The vehicle wheelbase was 300 mm, the
wheel-track was 180 mm, and the vehicle speed was 1 m/s, as shown in Figure 5c.
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The vehicle load P was divided into three grades, 10 kg, 20 kg, and 30 kg, respectively.
The load grade of 10 kg was used to calibrate the strain integral coefficient, and the other
load grades were used to test. As shown in Figure 6, the bridge model was divided into
three lanes, and the vehicle acted on the left, middle, and right positions of each lane. Thus,
the vehicle load position was divided into nine conditions.
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3.2. Simulation Results Analysis
3.2.1. Analysis of the Identification Results without Considering the Load
Transverse Distribution

For the identification method without considering the load transverse distribution,
it is only necessary to know the mid-span strain integral coefficient α of a single beam.
Firstly, the following simulation conditions were carried out: (1) Vehicle driving in the
middle of the first lane with 10 kg weight at 1 m/s, (2) vehicle driving in the middle of
the second lane with 10 kg weight at 1m/s, (3) vehicle driving in the middle of the third
lane with 10 kg weight at 1m/s. According to each working conditions, the corresponding
mid-span strain influence line (1#, 3#, 5# beam) were obtained, as shown in Figure 7, then
the corresponding strain integral coefficient was obtained in Table 1.
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Table 1. The strain integral coefficient.

Vehicle Driving Position The Middle of the
First Lane

The Middle of the
Second Lane

The Middle of the
Third Lane

Beam number 1# 3# 5#
Total weight (kg) 10 10 10

The integral value of strain
influence line (10−6 m) 14.46 7.57 13.48

Strain integral coefficient (10−8) 14.75 7.73 13.75

Figure 8 shows the load identification results obtained according to the strain integral
coefficient. Taking the strain integral coefficient of 3# beam as an example, it can be seen
that the identification error was smaller than 10% when the vehicle load drove in the
second lane. Especially when the vehicle load drove in the middle of the second lane, the
error was almost zero. However, the identification error was large when the vehicle drove
in the first and third lane. Therefore, it was not suitable for load identification. For the
load identification results obtained according to the strain integral coefficient of 1# beam
and 5# beam, the identification error was close to zero when the vehicle load drove in the
middle of the first and third lane. However, the identification accuracy was still poor when
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the vehicle load drove in the left or the right line. In addition, the farther away from the
vehicle position of coefficient calibration, the worse the identification accuracy was. In
summary, the load identification accuracy was closely related to the driving position of
the vehicle load when the influence of load transverse distribution was not considered.
The identification accuracy was relatively high when it was close to the vehicle position of
coefficient calibration, conversely, the identification accuracy was poor. Therefore, it was
no longer suitable for load identification.
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3.2.2. Analysis of the Identification Results Considering the Load Transverse Distribution

For the identification method considering the load transverse distribution, it was
necessary to obtain the strain integral coefficient of each beam by Equation (14). Firstly,
the following simulation conditions were carried out with the vehicle load of 10 kg: (1)
Vehicle driving in the left of the first lane, (2) vehicle driving in the right of the first lane, (3)
vehicle driving in the middle of the second lane, (4) vehicle driving in the left of the third
lane, (5) vehicle driving in the right of the third lane. According to Equations (13) and (14),
the strain integral coefficient of each beam was obtained (as shown in Table 2). It can be
seen that the strain integral coefficient of each beam bottom was basically proportional to
the reciprocal of the stiffness, and the reason for the error was that the load identification
method considering the load transverse distribution, which ignores the influence of spatial
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effect and diaphragm in the theoretical derivation. The obtained strain integral coefficient
was used to identify the load of the test sample, and the results are shown in Figure 9. It
can be seen that the identification accuracy was very high no matter where the vehicle
was, and the error was close to zero. Therefore, compared with the identification method
without considering the load transverse distribution, the identification method considering
the load transverse distribution has obvious advantages.

Table 2. The mid-span strain integral coefficient of each beam bottom.

1# Beam 2# Beam 3# Beam 4# Beam 5# Beam

Strain integral coefficient (10−8) 29.17 28.84 27.93 27.70 26.61

Ratio to integral coefficient of 1# beam 1 0.989 0.957 0.949 0.912

Ratio to reciprocal 1# beam stiffness 1 0.980 0.952 0.936 0.910
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3.2.3. Analysis of the Anti-Noise Performance

Two kinds of noise (5% and 10%) were added to the numerical simulation to verify the
anti-noise performance of the method. The strain values of the test sample were extracted,
and 5% and 10% of the noise were added as condition 1 and condition 2, and the noise can
be expressed as:

ε′(x) = ε(x) + β·rand(n)·var(x) (16)

where ε’(x) is the strain output after the added noise, ε(x) is the original strain input, β is
the noise level, rand is short for random and rand(n) is a set of values with the mean is
0 and the variance is 1, var is short for variance and var(x) is the variance of the original
strain input.

When the vehicle load (20 kg) drives in the middle of the second lane, the mid-span
strain time history with different kinds of noise of 3# beam bottom is shown in Figure 10.
It can be seen that there is only a slight fluctuation of the strain output when the noise
level is 5%, which can better simulate the environmental noise. The strain output has an
obvious difference for the original value when the noise level reaches 10%, both of these
two working conditions are representative. The load identification results with different
levels of noise are shown in Figure 11. It can be seen that the load identification error
with different noise levels was slightly larger compared with the no-noise condition. The
load identification errors were nearly the same when the noise levels were 5% and 10%.
In addition, the overall error was smaller than 0.5%, which showed a good identification
accuracy. Therefore, the method can keep the identification accuracy under different kinds
of noise, and the noise reduction for the following analysis processing can be ignored.
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4. Verification by Experiment
4.1. Experimental Setup

To test the feasibility of the proposed method, a series of bridge model experiments
were conducted. The experimental platform was made of an acceleration platform, test
bridge, and deceleration platform, which is shown in Figure 12a. The model bridge was
made according to the size of the numerical simulation bridge, as shown in Figure 5, the
material of the model bridge is polymethyl methacrylate (as shown in Figure 12b), and its
density is 1170 kg/m3, the Poisson’s ratio is 0.35, and the elastic modulus is 3.25 × 104 MPa.

The experimental vehicle models were divided into two-axle and three-axle vehicles,
as shown in Figure 13, and the way to change the vehicle weight was to add counterweight
in the vehicle. In addition, the long-gauge FBG strain sensors were used to collect and
analyze the data in the experiment [1]. Based on the influence line method considering the
load transverse distribution, five FBG strain sensors were arranged in the mid-span of each
beam bottom, as shown in Figure 12b.
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Figure 13. Vehicle model in the experiment: (a) Two-axle vehicle, (b) three-axle vehicle.

4.2. Analysis of Experiment Results

The MOI’s S130 model acquisition instrument was used to collect the data of FBG
sensors in the experiment, and the measured data were used for load identification. When
the vehicle drives in the second lane with the speed of 1.33 m/s, the typical long-gauge
strain time history curve of each beam bottom is shown in Figure 14.
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4.2.1. Speed Identification

Firstly, the vehicle speed was identified. Assuming that the vehicle crosses the bridge
with a constant speed, the integral Equation (17) of strain influence line can be obtained by
modifying Equation (6):

A =
∫ +∞

−∞
ε(x)dx =

∫ +∞

−∞
ε(t)vdt = v

∫ +∞

−∞
ε(t)dt (17)

As shown in Figure 14, it corresponds to the starting point t1 of the wave peak
when the front axle of the vehicle contacts the bridge, and it corresponds to the ending
point t2 when the rear axle of the vehicle leaves the bridge. Then the vehicle speed V
can be calculated according to the time difference and the driving distance, as shown in
Equation (18):

v =
d

∆t
=

L + x
t2 − t1

(18)

where, x is the vehicle wheelbase, L is the bridge length. In this experiment, the vehicle
weight was 16.95 kg, and the vehicle speed was divided into nine levels by changing the
speed of traction motor, as shown in Table 3. Meanwhile, each experimental condition was
repeated three times. According to the above method, the strain data of 3# beam bottom
were used to identify the vehicle speed, and the results are shown in Figure 15. It can be
seen that the average relative errors of the speed identification were smaller than ±4%, and
they were within an acceptable range, which shows the great performance of the method.

Table 3. Speed levels.

Vehicle Speed (m/s) 0.86 1.33 1.81 2.19 2.59 3.06 3.53 4.01 4.39
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4.2.2. Influence of Speed on Load Identification

Based on the vehicle speed obtained from inversion, the strain time history curve was
converted into strain influence line. Then, the load identification was carried out by the
method considering the load transverse distribution. The samples with the weight of 28 kg
and speed of 0.86 m/s were selected to calibrate the strain integral coefficient. It should be
noted that the driving path of the vehicle was limited to three lanes, so the five equations
that were shown in Equation (13) cannot be obtained. However, the optimal solution of the
strain integral coefficient can be obtained by using three equations, as shown in Table 4.
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Table 4. The mid-span strain integral coefficient of each beam bottom.

1# Beam 2# Beam 3# Beam 4# Beam 5# Beam

The strain integral coefficient (10−7) 8.11 8.33 8.04 7.23 7.08

According to Equation (17), the integral value of the influence line is independent of
the vehicle speed, but the identification accuracy of the speed has an effect on the integral
value. The actual speed and inversion speed were used to identify the vehicle weight of
the above 18 samples, which was mentioned in Section 4.2.1, and the results are shown
in Figure 16. It can be seen that the speed had no obvious influence on vehicle weight
identification, and the average identification error was smaller than ±5%. In addition, it
should be noted that the results obtained by using the actual speed to calculate the vehicle
weight were more accurate than those obtained by using the inversion speed. Moreover, the
average identification error was smaller than 2% when using the actual speed to identify
the vehicle weight.
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4.2.3. The Identification Results of Vehicle Weight

As the vehicle speed has no obvious influence on the identification results of the
vehicle weight, the vehicle speed was set as 1.33 m/s in the following analysis. The two-axle
vehicle and three-axle vehicle were divided into four grades of weight in the experiment.
Each grade of vehicle weight was tested in three lanes, and the load identification results
were shown in Figure 17. It can be seen that no matter which lane the vehicle drives, the
vehicle weight identification error of each sample can be controlled within±10%. The error
of more than 90% of samples was smaller than ±5%, and the error was relatively larger
compared with the simulation results, which was within an acceptable range. In addition,
the error fluctuation of load identification was small, and the variance was smaller than
2%. Compared with reference [26], the method proposed in this paper greatly improves
the identification accuracy. Therefore, it can be considered that the load identification
method considering the load transverse distribution was effective. The error sources
should be analyzed in the following aspects: (1) The vehicle weight identification is based
on the speed identification, so the error of vehicle speed will affect the result of vehicle
weight identification, (2) although there are lane restrictions in the experiment, the vehicle’s
trajectory is not always in a straight line along the bridge span direction, and its trajectory
is relatively random.
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5. Conclusions

In this paper, considering the load transverse distribution, a novel moving load
identification method was proposed based on distributed strain sensing technique and
influence line. The load identification accuracy and anti-noise performance were greatly
improved, and it was more universal for a variety of bridge types. In addition, a series of
numerical simulations and experiments were conducted to verify the proposed method.
The main conclusions are as follows:

1. Through the verification of numerical simulation, the method without considering the
load transverse distribution was not suitable for solving the space problem, and the
method considering the load transverse distribution has a high identification accuracy
and excellent performance of anti-noise performance.

2. The results of the model test showed that the average relative error of the speed iden-
tification was smaller than ±4%, which shows the great performance of the method.

3. The speed has no obvious influence on the vehicle weight identification, and the
average identification error was smaller than ±5%. In addition, it should be noted
that the results obtained by using the actual speed to calculate the vehicle weight
were more accurate than those obtained by using the inversion speed.

4. The relative error of the vehicle weight identification was smaller than ±10%, and the
error of more than 90% of samples was smaller than ±5%.
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