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Abstract: Approximately 10% of agricultural land is subject to periodic flooding, which reduces
the growth, survivorship, and yield of most crops, reinforcing the need to understand and enhance
flooding resistance in our crops. Here, we generated RNA-Seq data from leaf and root tissue of
domesticated sunflower to explore differences in gene expression and alternative splicing (AS)
between a resistant and susceptible cultivar under both flooding and control conditions and at
three time points. Using a combination of mixed model and gene co-expression analyses, we were
able to separate general responses of sunflower to flooding stress from those that contribute to the
greater tolerance of the resistant line. Both cultivars responded to flooding stress by upregulating
expression levels of known submergence responsive genes, such as alcohol dehydrogenases, and
slowing metabolism-related activities. Differential AS reinforced expression differences, with reduced
AS frequencies typically observed for genes with upregulated expression. Significant differences were
found between the genotypes, including earlier and stronger upregulation of the alcohol fermentation
pathway and a more rapid return to pre-flooding gene expression levels in the resistant genotype.
Our results show how changes in the timing of gene expression following both the induction of
flooding and release from flooding stress contribute to increased flooding tolerance.

Keywords: Helianthus annuus L.; crop; abiotic stress; flooding; alcohol dehydrogenase; transcrip-
tomics; alternative splicing; co-expression network; mixed model; fermentation pathway

1. Introduction

Historically, people have inhabited regions with abundant water for multiple reasons,
but most of all, for successful agriculture. However, the association with water means that
flooding typically is common as well, which can result in significant crop losses, especially
for crops that lack resistance to flooding. Model-based estimates of crop losses resulting
from flooding stress suggest that such losses are likely to increase dramatically with climate
change due to the increased frequency and magnitude of coastal storms [1]. Moreover,
there is some evidence that such predicted impacts are already being observed [2]. Thus,
there is a need to better understand how some plants are able to resist flooding, with the
long-term goal of developing crops with greater resilience to flooding stress.

From a plant physiological standpoint, flooding results in reduced gas exchange in
submerged roots and shoots, which can slow down rates of respiration and photosynthe-
sis [3] or lead to damage at the cellular level (e.g., in lipids, proteins and DNA) due to
increased levels of reactive oxygen species (ROS) [4]. Plants that are frequently exposed
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to flooding, however, have developed several strategies to respond and adapt to flooding
stress, both physiologically and morphologically. These strategies include quiescence,
anaerobic energy production, rapid shoot growth to escape flooding, and the development
of aerenchyma to facilitate internal gas exchange.

In the quiescence or “sit and wait” strategy, plants conserve energy such as ATP and
carbohydrates to survive while submerged and to recover growth once flooding ends [3,5].
For example, tolerance to water submergence was shown to be negatively correlated with
growth in 86 Arabidopsis accessions with natural variation for flooding tolerance, consistent
with the quiescence strategy [6].

When oxygen, the essential substrate for respiration, becomes limited, plants are no
longer able to produce enough ATPs to meet cellular demands [7]. Under oxygen limiting
conditions, regeneration of nicotinamide adenine dinucleotide (NAD) occurs via two
fermentation pathways: (i) lactic acid fermentation and ii) alcohol fermentation [7–9]. Lactic
acid fermentation results in the potentially damaging accumulation of lactate, whereas
alcohol (ethanol) fermentation is considered to be less harmful. Therefore, the extent of
ethanol production is thought to be positively correlated with a plant’s tolerance to flooding
stress [10].

Wide-ranging development of air-filled aerenchyma tissue can also contribute to flood-
ing resistance by facilitating gas exchange between the shoot and the root [11]. However,
this mechanism is ineffective for complete submergence, which typically triggers rapid
shoot growth to reach contact with air. The latter is referred to as an “escape strategy” [12]
and occurs in both wild and crop plants [3,13,14]. The development of adventitious roots
containing aerenchyma represents another escape strategy by minimizing the distance
between tissues that are in contact with air (above the waterline) and root tips [14–16].
Adventitious root growth is promoted by increased ethylene gas [17,18] and is mediated by
a combination of hormonal signals and reactive oxygen species [19]. The timing of adventi-
tious root emergence is determined by the degree of flooding stress and the development
stage of the plant, and it varies across plant species [16].

Transcriptomic analysis can provide additional clues regarding the mechanisms under-
lying resistance to flooding stress [20,21]. An example comes from soybean, which displays
extensive variation for waterlogging tolerance [22–26]. Transcriptional responses were
explored by RNA-Seq, and flooding stress was associated with downregulation of photo-
synthesis and chlorophyll synthesis related genes, consistent with reduced photosynthetic
efficiency (i.e., quiescence) observed at the whole plant level [27]. Likewise, a combination
of transcriptome and proteome analyses showed that alcohol fermentation related genes
were significantly upregulated in soybean under flooding stress [28], indicating a role for
fermentation as well. Arora et al. [29] conducted RNA-Seq in a flooding tolerant maize
inbred line under waterlogging and identified differentially expressed genes involved in
several key pathways, including energy-production, programmed cell death, aerenchyma
formation, and ethylene responsiveness, suggesting that multiple mechanisms underlie
responses to flooding stress. There is also evidence that some submergence-activated genes
are clustered in the genome and that genes within these clusters are more highly expressed
across angiosperms than submergence-activated genes outside of such clusters [30].

Alternative splicing (AS) offers a post-transcriptional mechanism for fine-tuning
expression levels according to developmental stage, tissue or organ type, stress condition,
or time [31]. In plants, the most common mode of AS is intron retention, whereas, in
animals, exon skipping or shuffling is most frequent [32,33]. Most of these AS events
(especially intron retention events) include premature stop codons, and transcripts are
often subjected to degradation via nonsense-mediated decay, leading to downregulation of
dosage [34–36]. Using RT–PCR, Syed et al. [37] found that in soybean, the SUB1 gene (a
master controller of flooding resistance in rice) mediates flooding stress responses via AS,
and PRR3 (a clock-associated gene) exhibits a flooding specific splicing pattern that appears
to contribute to homeostasis. In maize, inbred lines tolerant of waterlogging exhibited
differential splicing at prolyl 4-hydroxylases (which are thought to be oxygen sensors
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under hypoxia stress), compared to intolerant lines when exposed to flooding stress [38].
In Arabidopsis thaliana, transcriptomic analyses revealed water submergence-specific AS
events in pathways regulating energy reserves such as gluconeogenesis [39]. However, we
are unaware of other studies that have investigated genome-wide AS under flooding stress.

While transcriptomic responses to flooding stress have been investigated in a number
of crops, much remains to be understood about which responses are common across
many taxa and which are taxon-specific. In addition, previous studies typically have
not examined interactions of genotypes with environment and time to determine the
identity and timing of expression changes exclusive to tolerant lines. Here we report
on transcriptomic responses to flooding in sunflower (Helianthus annuus L.), which is
one of the world’s most important oilseed crops, with global production valued at more
than 20 Billion USD annually (FAOSTAT < http://www.fao.org/faostat/en/#data/QV>).
However, yield is limited by several abiotic stresses, including drought, heat, salt, and
flooding stress [40–44]. In North America, sunflowers sometimes experience short bouts
of flooding in the spring, which results in the submergence of seeds, roots or even entire
seedlings [45]. While such short-term flooding may not be lethal, yield and oil quality may
be reduced [40].

Several potential adaptation strategies to flooding stress have been reported previ-
ously for both wild and cultivated sunflowers, including aerenchyma development and
anaerobic energy production. Wample and Reid [46] reported that flooding induces the
production of adventitious roots de novo, as well as swelling (hypertrophy) of the lower
stem (hypocotyl) in cultivated sunflower. Both putative adaptations involve aerenchyma
formation and are thought to represent a flooding escape strategy by promoting tissue
gas exchange [46,47]. Likewise, evidence of increased anaerobic energy production has
been reported for wild sunflowers that occupy habitats that frequently experience spring
flooding [48]. A similar mechanism appears to be present in cultivated sunflower: flooding
promotes the synthesis of ethanol, which is successfully metabolized thanks to an increase
in alcohol dehydrogenase (ADH) activity [49].

Previously, we characterized phenotypic traits of 288 inbred sunflower lines from a
cultivated sunflower association mapping (SAM) population under both flooding stress
and benign conditions [44]. We measured multiple traits for possible flooding responses,
such as biomass and chlorosis reduction, hypocotyl hypertrophy and adventitious root
numbers, and identified candidate genes underlying these responses. We found that
cultivated sunflower varied widely in flooding tolerance and that there was no inherent
tradeoff between flooding tolerance and performance in the control treatment. On the
other hand, we failed to find an effect of hypocotyl hypertrophy or adventitious root
development on flooding tolerance, perhaps because they represent a general response
to flooding across all cultivars. However, because of the ability of some of the genotypes
to maintain growth without obvious negative impacts on photosynthesis (e.g., chlorosis),
we suspected that increased anaerobic energy production might account for the success of
tolerant phenotypes.

In the current study, we have extended our analyses of flooding tolerance in sunflower
by studying expression and AS responses to flooding stress in one tolerant and susceptible
line. We identified the genes that are differentially expressed or differentially spliced in
response to flooding stress by generalized linear models or logistic regressions, respectively.
Moreover, we used mixed model approaches to identify interactions between genotype,
environment (in this case, control and flooding conditions), and time points during and
post-flooding. We also conducted a gene co-expression network analysis to identify ex-
pression networks and to explore their connectedness and structure in resistant versus
susceptible lines when responding to flooding stress. Our goal was not only to obtain
a genome-wide assessment of molecular responses to flooding in sunflower but also to
provide additional clues regarding how flooding tolerance is achieved. We hypothesize
that pathways associated with aerenchyma formation and alcohol fermentation pathways
play key roles in general and specific responses to flooding, respectively.

http://www.fao.org/faostat/en/#data/QV
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2. Materials and Methods
2.1. Plant Material and Flooding Stress Treatment

Out of 288 lines of the SAM population, we chose a resistant line (HA351) and a
susceptible line (RHA428) based on vegetative growth performance and photosynthetic
efficiency under the flooding stress (Figure 1). The plants were germinated and grown
following the protocol of Gao et al. [44]. Achenes were cleaned using 75% ethanol and
0.02% plant preservative mixture (PPM™; Plant Cell Technology Inc., Washington, DC,
USA), scarified by cutting off a small segment from the blunt end of the achene, and then
placed on damp filter paper in a Petri dish in the dark for three days. After germination,
seed coats were removed, and seedlings were exposed to light for three days before they
were transplanted into one-gallon pots. Each pot consisted of a 2:1 ratio of Sunshine Mix #1
(Sun Gro Horticulture, Vancouver, BC, Canada) and sand, respectively. The plants were
grown in the greenhouse at the University of British Columbia (Vancouver, BC, Canada)
under a regime of 14 h light and a temperature of 25 ◦C day/19 ◦C night. When the plants
were three weeks old, half were placed in large plastic bins filled with tap water to impose
flooding stress. The water level was kept at 1–2 cm above the soil surface throughout the
stress treatment. After nine days, the pots were removed from the bins and returned to
pre-flooding conditions for six days to allow recovery. Leaf and root tissue were collected
from each plant, flash frozen in liquid nitrogen and kept at −80 ◦C until RNA extraction.
Tissue was collected at three time points: (i) 24 h after flooding stress was imposed (1st day
of flooding), (ii) the last day (8th day of flooding) of the flooding treatment and (iii) 6 days
after the flooding treatment ended (6th day of recovery). These time points were chosen
based on the results of Gao et al. [44].
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Figure 1. Phenotypic comparisons between resistant (HA351) and susceptible (RHA428) lines. (A) Shoot biomass (g, dry
weight) and (B) relative chlorophyll concentration of leaves (using a chlorophyll meter) from Gao et al. [44] that were
performed across two cycles (CYI and CYII, independent experiments).

A total of 96 samples were collected: 2 genotypes × 2 tissues × 2 treatments × 3 time
points × 4 biological replicates. For each biological replicate, leaflets and roots were pooled
from three individual plants. Total RNA was extracted using the Ambion RNAqueous
kit (AM1912, Invitrogen, Austin, TX, USA), and DNA contaminants were removed by
the Ambion Turbo DNA-free kit (AM1907, Thermo Fisher, Waltham, MA, USA 02,451).
A total of 96 libraries were prepared using the Illumina TruSeq stranded mRNA sample
preparation kit and sequenced on an Illumina HiSeq 4000 (PE75) by Genome Quebec in
Montréal (Québec, Canada). Sequence data from this project have been deposited in the
National Center for Biotechnology Information Sequence Read Archive under accession
number PRJNA492303.

A total of 48 seedlings (2 genotypes × 2 treatments × 3 time points × 4 biological
replicates) were measured following the protocols of Gao et al. [44]: shoot biomass (SB, g
of dry weight), leaf biomass (LB, g of dry weight), leaf area (LA, cm2), leaf number (LN),
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plant height (PH, mm), stem diameter (SD, mm), chlorophyll concentration (CC, relative
chlorophyll concentration unit via a chlorophyll meter), leaf mass per area (LMA, g/m2),
hypocotyl diameter (HD, mm) and adventitious roots development (number of adven-
titious roots, ARN) (Table S1). Raw trait values were then employed in a co-expression
analysis (see below) to identify correlations with co-expression modules.

2.2. RNA-Seq Data Processing

The quality of the 96 transcriptomes (75 bp paired-end raw reads, single-stranded) was
assessed by FastQC (Version 0.11.8) (Andrews, Accessed 13 October 2017). Trimmomatic
(Version 0.36) was used to discard low-quality reads and trim adaptor sequences [50]. The
filtered reads were mapped to the sunflower reference genome [51] using STAR (Version
2.5.2b) with non-default parameters of alignIntronMax 10,000 [52]. We mapped reads
against the reference genome instead of a transcriptome assembly to avoid multi-mapping
of reads onto different isoforms of the same gene, which is critical for accurate analyses
of alternative splicing. Mapped reads were quantified by featureCounts in the Subread
package (Version 1.4.6) [53]. To further increase the effectiveness of the data analysis,
HTSFilter (Version 1.12.0) [54] was used to remove genes with low constant expression
levels. Analyses of root and leaf samples were conducted separately due to the strong
difference between the two (Figure S1).

2.3. Analyses of Differential Gene Expression and Alternative Splicing

For each time point, we identified differentially expressed genes (DEG) between
the two conditions (control and flooding) using a false discovery rate (FDR) < 0.01 with
fold-change of −1 > log2FC or 1 < log2FC as calculated by edgeR (Version 3.18.1) [55], a
Bioconductor package. Statistics of DEGs obtained from this approach are provided in
Table S2. We converted raw read counts to reads per kilobase of transcript per million
mapped reads (TPM) for downstream analyses. To visualize differences in expression,
principal component analysis (PCA) was performed using prcomp in R package [56].

The alternative splicing analysis was conducted using custom Python scripts fol-
lowing the protocol of Tack et al. [57]. It identified the following major alternative
splicing events: intron retention (IR), an alternative donor (ALTD), alternative accep-
tor (ALTA), alternative position (ALTP), exon skipping (SKIP), cryptic intron (CRIN) and
cryptic exon (CREX). Reads mapping to the alternative and constitutive gene models were
counted and quantified in terms of relative abundance per sample or percent splicing index
(PSI) [58]. We employed logistic regression (FDR < 0.01 with fold-change of −1 > log2FC
or 1 < log2FC) to identify differentially spliced (DAS) genes since the proportion of alter-
native splicing events is between 0 and 1 (calculated using a custom R script deposited
on https://github.com/dejonggr/differential_as). We compared the log2FC between the
two genotypes (pooling three time points together) to determine whether they differ in
their response to flooding stress. Statistics for DAS genes obtained from this approach are
provided in Table S3.

2.4. Mixed Effect Model Analyses of Variation in Gene Expression and Alternative Splicing

We used generalized linear mixed effect models to identify genes that responded
differently in expression or AS to genotype, environment, time-point or the interaction
between genotype and environment (G × E). We incorporated genotype, environment,
time point and their interaction as fixed effects and individuals as random effects. We
used a gamma family distribution with an inverse link function and a Gaussian family
distribution with a logit transformation for expression (TPM value) and alternative splicing
frequency data (PSI value), respectively. We used an FDR to correct for multiple compar-
isons across the entire experiment with an FDR cutoff of 0.1 to avoid false positives [59].
We performed independent contrasts to compare differences in expression or AS levels
between genotypes, environment or time points and corrected for multiple comparisons
using the false discovery rate. All genes were tested for G × E in the mixed-effects model.

https://github.com/dejonggr/differential_as
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In addition, we split each gene’s data into three time points. Each time point was tested for
G × E in a fixed-effects model. All analyses were done using the programming language
R. Mixed effect models were performed using lme4 R package (Version 1.1-25) [60] and
lmerTest (Version 3.1-3) [61] and analysis of variance was done using the “car” software
package (Version 3.0-10) [62].

2.5. Gene Co-Expression Network Analysis

We used a weighted gene co-expression network analysis (WGCNA) (Version 1.69) [63]
to identify co-expressed clusters of genes that respond to flooding stress in sunflower
cultivars. The co-expression modules were assigned based on the TPM data of all expressed
genes with a cutoff of at least three TPM in one condition throughout the four replicates
(a total of 38,835 genes). Root and leaf samples were analyzed separately. Phenotypic
trait data (Table S1) were used to test for correlations with the transcriptome data. The
minimum module size was 100 genes, and the soft threshold power β was set to 12.
The deep split was set to 2, and the network type was signed hybrid. Modules with
the highest positive absolute correlation coefficient value with phenotypic data, and the
lowest P value, were selected for further analyses. Genes with high connectivity were
considered to be hub genes. Co-expression gene networks for the resistant and susceptible
lines were generated independently using the same parameters to permit comparison. A
consensus network analysis was conducted using the same parameters as described above
to identify consensus modules and to better assess overall similarities and dissimilarities
between the resistant and susceptible line. Networks were illustrated using Cytoscape
(Version 3.7.2) [64].

2.6. Enrichment Comparisons

For all gene sets, gene ontology (GO) enrichment analyses were performed using
agriGO Version 2.0 [65] with the Yekutieli multi-test adjustment method (false discovery
rate < 0.1) [66], a minimum of five mapping entries and Plant GO slim annotations. The
results are shown via REVIGO [67] TreeMaps that summarize enriched GO terms and their
relationships.

3. Results
3.1. RNA-Seq Data

To assess gene expression responses of cultivated sunflower to flooding stress, we
conducted RNA-Seq on 96 libraries, representing two genotypes (resistant and susceptible),
two environments (flooding and control), three time points (1st day of flooding treatment,
8th day of flooding treatment, and 6th day of recovery), two tissue types (root and shoot),
and four biological replicates (Table 1). A total of 6,045,909,253 reads were obtained in this
experiment (an average of 63 million reads per sample). After filtering out low-quality
reads and genes with low constant expression levels, 3,016,817,944 clean Illumina RNA-Seq
reads for 48,611 expressed genes were used to identify DEGs.

3.2. Differentially Expressed Genes (DEG) that Respond to Flooding Stress and Exhibit Genotype
× Environment (G × E) Interactions

We found 2338 genes (1510 upregulated, 828 downregulated) from leaf tissue and
9089 genes (4417 upregulated, 4672 downregulated) from root tissue that were differentially
expressed under flooding stress (E) (FDR < 0.01) (Figure 2, Table S2). This root-dominant
pattern of differential gene expression is shown in Table 2 and is displayed in Venn diagrams
and scatter plots (Figure S2). In addition, more differentially expressed genes were found
during the flooding periods (time-point 1 and 2) compared to the recovery period (time-
point 3), especially in root tissue (Figure 2 and Figure S2, Table 2). Interestingly, the
number of differentially expressed genes in roots of the susceptible line at the time-point 3
(1247 genes) was far more than the resistant line (306 genes), suggesting that both genes



Agronomy 2021, 11, 92 7 of 21

responding to the flooding stress and those at the recovery stage, may contribute to flooding
tolerance (Table 2 and Table S2, Figure S2).

Table 1. Different variables and comparisons employed in transcriptomic analyses.

Variables Comparisons

Tissue types Leaf vs. root

Genotypes (G) HA351 (resistant) vs.
RHA428 (susceptible)

Treatments (E) Control vs. flooding

Time-points (1,2,3) 1st day of flooding vs. 8th day flooding vs. 6th day of recovery

G × E (HA351 vs. RHA428) × (control vs. flooding)

G × E at 1,2 or 3 (HA351 vs. RHA428) × (control vs. flooding) at three different
time-points

Example: G × E1_root
That is, DEGs from a mixed ANOVA of genotype (HA351 vs.
RHA428) × treatment (control vs. flooding) interactions at

time-point 1 in root tissue.
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Table 2. Number of differentially expressed genes (DEG) and differentially spliced genes (DAS) under
flooding stress for the resistant (HA351) and susceptible (RHA428) cultivars at different time-points.

Tissue Type Leaf Root

Cultivar: Time-Point
DEG DAS DEG DAS

Up Down Up Down Up Down Up Down

HA351: 1st day of flooding 6 35 22 136 781 554 220 136

HA351: 8th day flooding 355 151 48 420 1178 1416 153 377

HA351: 6th day of recovery 5 23 32 19 123 183 193 153

RHA428: 1st day of flooding 22 48 11 2 1106 644 791 113

RHA428: 8th day flooding 1006 294 31 183 2243 2825 23 233

RHA428: 6th day of recovery 6 6 3 39 451 796 143 234
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Principle components analysis (PCA) offered further insights into gene expression
patterns (Figure 3 and Figure S3). In root tissue, PC1 explained 23% of gene expression
variation, which was partitioned mainly by treatment (control vs. flooding conditions).
PC2 largely explained differences in genotype (resistant vs. susceptible lines), accounting
for 13.4% of the variation, whereas PC3 appears to distinguish time-point 1 from the
rest of the time-points and explains 10.4% of the variation. For leaf tissue, PC1 and PC2
explained 30.1% and 13.5% of gene expression variation, respectively, but the variation
was not partitioned according to the fixed factors in our model. However, PC3 partitions
samples by genotype (resistant versus susceptible) and explains 10.5% of the variation.
This incongruence between leaf and root tissues may be accounted for by the direct contact
of roots, but not leaves, to flooding stress. Indeed, the greater response of roots than leaves
to flooding stress is seen throughout the experiment.
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HA351 = resistant line, RHA428 = susceptible line.

To investigate which genes show differential expression between the resistant and
susceptible lines due to the flooding treatment and/or the timing of the treatment, we used
a mixed model approach (Figure 4; Table S2). After the FDR correction (0.1 or less), we
found that G × E interactions were significant for 1256 genes in leaf tissue and 1093 genes in
root tissue. Of these genes, we then searched for the subset that differed significantly (two-
fold, FDR < 0.1) between lines under flooding stress but not under control conditions. In
leaf tissue (G × E_leaf), we found 8 genes that were significantly upregulated and 31 genes
that were significantly downregulated in the resistant line compared to the susceptible
line. In the root tissue (G × E root), we found 20 genes that were significantly upregulated
and 41 genes that were significantly downregulated in the resistant line relative to the
susceptible line. These genes represent good candidates for explaining the differences
between the two lines in their resistance to the flooding stress (Table S2–G × E leaf and
G × E root).
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Figure 4. Example of results from mixed model analyses. (A) Heat map clustered by Euclidean distance showing top 10
differentially expressed genes (G × E1_root) with significantly higher expression in the resistant line compared to the
susceptible line in root tissue. (B) HanXRQChr05g0161051 (alcohol dehydrogenase) was significantly upregulated under
flooding stress at time-point 1 in root tissue of resistant line (G × E1_root).

For the time-point analysis, we searched for the genes that were significantly dif-
ferent between lines at one or more time-points in the flooding treatment but not in the
control treatment (Table S2). In leaf tissue, we found 91 genes that were upregulated and
178 genes that were downregulated in the resistant versus susceptible line at time-point 1
(G × E1_leaf). At time-points 2 and 3 (G × E2-3_leaf), 82 and 59 genes were upregulated,
and 182 and 208 genes were downregulated, respectively, in the resistant versus susceptible
line. In root tissue, we found 121, 1101, and 170 genes that were upregulated and 282,
287, and 118 genes that were downregulated at time-points 1, 2, and 3, respectively, in the
resistant versus susceptible line (G × E1-3_root). The identity and function of these genes
may offer clues regarding how shifts in the timing of expression of particular categories of
genes contribute to flooding resistance (Table S2– G × E1-3_leaf and G × E1-3_root).

3.3. Differentially Spliced Genes (DAS) That Respond to the Flooding Stress

We identified AS events and estimated their frequencies using the transcriptome data
described above (Table S4). As expected, intron retention events were most frequent and
exon skipping least frequent in both tissues. All AS events included premature stop codons,
suggesting that they could be subject to nonsense-mediated mRNA decay (NMD) and
downregulate the overall expression of the gene. An AS ratio was calculated to determine
the frequency of reads that mapped to the alternatively spliced gene model compared to
the constitutive gene model. Thus, upregulation or downregulation of AS refers to an
increase or decrease, respectively, of the AS ratio. We found 892 AS events (132 upregulated,
760 downregulated) from leaf tissue and 2734 events (1578 upregulated, 1156 downregu-
lated) from root tissue that varied significantly in frequency under flooding stress (Table S3).
Similar to the DEGs described above, differentially spliced events were more than twice as
common in root compared to leaf tissue. A total of 69 genes (11 upregulated, 58 downregu-
lated) from leaf tissue and 97 genes (56 upregulated, 41 downregulated) from root tissue
were differentially spliced in both genotypes under flooding stress.

We also conducted a PCA of differentially spliced genes under flooding stress (Figure S4).
Unlike the expression data, PC1 did not differentiate DAS in any variable. On the other
hand, PC2 of leaf tissue (7.6% of variation) and PC3 of root tissue (8.4% of variation) were
associated with the genotypic differences.

3.4. Putative Functions of Differentially Expressed Genes

Of the genes that were differentially expressed under flooding stress (E leaf), those
upregulated in leaf tissue were enriched in 71 GO terms (Table S5). Many of the significant
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GO terms were related to protein translation and response to an extracellular stimulus
(biological process; Figure S5A), ribosome (cellular component, Figure S5B), and structural
molecule activity (molecular function; Figure S5C). Fifty-five GO terms were significantly
enriched for genes that were downregulated in leaf tissue (E_leaf); GO terms relating
to secondary metabolism, homeostatic process and photosynthesis (biological process;
Figure S5D), cell wall and membrane (cellular component, Figure S5E), and catalytic activ-
ity and binding (molecular function; Figure S5F) were especially frequent. Overall, these
results indicate that in leaf tissue under flooding stress, genes involved in the production
of extracellular stimulus-responsive peptides (possibly due to ethylene and ROS) were
upregulated, whereas those related to secondary metabolism, energy production or photo-
synthesis were downregulated. Slowing down these and other metabolic pathways may
contribute to flooding tolerance.

For root tissue under flooding stress, upregulated genes (E_root) were enriched in
75 GO terms (Table S5). The most significant GO terms were enriched in response to an
extracellular stimulus (biological process; Figure S5G), cell wall and membrane (cellular
component, Figure S5H), catalytic activity and transferase activity (molecular function;
Figure S5I). Genes that were significantly downregulated in root tissue (E_root) were
enriched in 84 GO terms, especially secondary metabolism and response to abiotic stress
(biological process; Figure S5J), cell wall and membrane (cellular component, Figure S5K),
catalytic activity and transferase activity (molecular function; Figure S5L). Overall, root
tissue responded to flooding stress as expected, by upregulating expression levels of
flooding responsive genes. In addition, many metabolism-related activities appear to have
slowed, presumably due to a lack of oxygen and energy.

We also conducted GO enrichment analyses for the DEGs identified in the mixed
models (Table S5). As a reminder, in these analyses, upregulated genes are those that are
upregulated in the resistant line under flooding conditions when compared to the suscep-
tible line in either treatment and to the resistant line in the control treatment. Likewise,
downregulated genes are those that are downregulated in the resistant line in the flooding
treatment relative to the susceptible line in either treatment and to the resistant line under
control conditions.

In the leaf tissue (G × E_leaf), only eight genes with significant G × E were upregu-
lated, which is too few for GO enrichment analysis. Nonetheless, several of the genes were
notable and include HanXRQChr08g0214611 (zinc finger, RING/FYVE/PHD-type known
as XERICO) and HanXRQChr14g0450491 (high-affinity nitrate transporter 2.7). Thirty-one
genes with significant G × E interactions were downregulated; this set of genes was en-
riched in response to stress (biological process), extracellular region (cellular component),
and catalytic activity and binding (molecular function). Results of G × E analyses were
similar for each time point (G × E1-3_leaf): signaling-related genes were upregulated, and
response to stress genes were downregulated. This implies that stress response genes in
the resistant line are less responsive to flooding than in the susceptible line, which may
underlie the greater growth performance of the former.

In the root tissue (G × E_root), upregulated genes exhibiting significant G × E interac-
tions were related to GO: 0003824 “catalytic activity” (FDR = 0.031; molecular function) and
GO: 0005576 “extracellular region” (FDR = 0.049; cellular component), whereas, downregu-
lated genes were enriched in cellular component GO term of “intracellular organelle part”
(FDR = 0.0025). Genes with significant G × E interactions at time-point 1 (G × E1_root)
were most strongly enriched in GO:0003824 “catalytic activity” for both up- and down-
regulated genes; significant genes at time-point 2 (G × E2_root) were enriched in GO:
0009628 “response to abiotic stimulus” (FDR = 0.085) in the upregulated fraction and
GO: 0003824 “catalytic activity” (FDR = 8.00E-08) in the downregulated fraction, and
significant genes at time-point 3 (G × E3_root) were enriched in GO:0050896 “response
to stimulus” (FDR = 3.60E-05) in the upregulated subset and GO:0003824 “catalytic ac-
tivity” (FDR = 0.001) in the downregulated subset. These enrichment patterns indicate
that the resistant and susceptible line differ significantly both in the kinds of genes that
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respond to flooding stress and the timing of the response. Genes involved in catalytic
activity appear to play an especially critical role in flooding response. Notably, four ADH
genes (HanXRQChr05g0161031, HanXRQChr05g0161051, HanXRQChr06g0179461 and
HanXRQChr09g0243891) were upregulated at time-point 1 (G × E1_root), as well as two
additional ADH genes (HanXRQChr05g0161051 and HanXRQChr17g0559391) at time-
point 2 (G × E2_root). This implies that rapid upregulation of the fermentation pathway
contributes to the greater flooding tolerance of the resistant line.

3.5. Putative Function of Differentially Spliced Genes

Among the genes that had a significant change in AS frequency under flooding
(E_leaf), those with increased AS in leaf tissue were significantly enriched in carbohydrate
metabolism (biological process; Figure S6A), intracellular organelle part (cellular compo-
nent, Figure S6B), and pyrophosphatase activity (molecular function; Figure S6C). Genes
with decreased AS in leaf tissue were significantly enriched in embryo development (bio-
logical process; Figure S6D), intracellular organelle part (cellular component, Figure S6E),
and in transferase activity (molecular function; Figure S6F). Increased AS frequency may
reduce the expression level of metabolic genes via NMD, further downregulating metabolic
pathways under flooding stress.

Genes with significant increases in AS frequencies under flooding stress in root tissue
(E_root) were enriched in translation (biological process; Figure S6G), cell part (cellular
component, Figure S6H), and nuclease activity (molecular function; Figure S6I). Genes with
decreases in AS were enriched in embryo development (biological process; Figure S6J),
cell part (cellular component, Figure S6K), and nuclease activity (molecular function;
Figure S6L). This pattern of increased AS of metabolic process and decreased AS of embryo
development are accord with those in leaf tissue, suggesting the regulation of AS in both
leaf and root tissue work in a similar way and likely acts to fine-tune gene expression
responses to environmental change.

The mixed model analysis (Table S3) indicated that very few AS events exhibit sig-
nificant G × E interactions, so we were unable to be able to conduct GO enrichment
analyses. Therefore, individual DAS events were explored. For example, AS frequencies
of HanXRQChr09g0273081 (elongation factor 1-delta) and HanXRQChr11g0325531 (trans-
lation initiation factor IF2/IF5) were reduced at time-point 3 in leaf tissue (G × E3_leaf),
consistent with the reactivation of cell expansion and growth in the recovery stage. In root
tissue, HanXRQChr05g0161051 (alcohol dehydrogenase) had reduced AS in the resistant
line at time-point 1 (G × E1_root), and this may contribute to more efficient expression
via constitutive splicing in the fermentation pathway. HanXRQChr12g0371921 (myc-
type, basic helix-loop-helix) showed an increase in AS in the resistant line at time-point
1 (G × E1_root), and its molecular function (GO: 0003700) is related to DNA-binding
transcription factor activity.

Overall, the changes in AS reinforce expression changes under flooding stress, with
strong negative correlations observed (r ranges from −0.57 to −0.61 and P from 5.01 × 10−11

to 1.41 × 10−49) regardless of tissue type or treatment (Figure S11).

3.6. Gene Co-Expression Network Modules Underlying Responses to Flooding Stress

Co-expression networks were constructed using all 96 RNA-Seq transcriptomes, but
root and leaf transcripts were analyzed separately due to the large differences between
the two tissue types. We generated network modules for resistant and susceptible lines
independently using standard parameters (see Materials and Methods) and compared
them via consensus analysis following the protocol of Langfelder and Horvath [63]. We
were particularly interested in correlations that differed significantly between resistant and
susceptible data sets in strength or sign, thereby permitting identification of unique gene
co-expression networks in the flooding resistant sunflower cultivar.

The leaf tissue network for the resistant line was comprised of 34 clusters of co-
expressed genes. These module eigengenes (ME) were identified by the first component
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in a PCA, which was generated by the WGCNA package. Module-trait associations are
presented by a heat map (Figure S7A), which illustrates the correlations between the
MEs and phenotypic traits. Chlorophyll concentration is closely connected to flooding
resistance in sunflower due to its impact on photosynthesis [44]. We observed that genes
in module ME-black (Table S7) in the heat map are most positively correlated (correlation
coefficient = 0.57, P = 0.004) with chlorophyll concentration. ME-black consists of genes that
were enriched in the following GO terms (Table S8): response to an extracellular stimulus
(biological process; Figure S7B), plasma membrane (cellular component, Figure S7C),
and kinase activity (molecular function; Figure S7D). The ME-salmon module from the
consensus data analysis, which shows substantial overlap with the ME-black module from
the resistant line (Figure S8A), has a significant positive correlation (correlation coefficient
= 0.53, P = 0.007) with chlorophyll concentration in the resistant line (Figure S8B), but a
non-significant negative correlation in the susceptible line (correlation coefficient = −0.28,
P = 0.2; Figure S8C). Thus, these gene co-expression modules (Figure S8D) may contribute
to the different phenotypic responses to flooding between the resistant and susceptible line.

We further explored the ME-black module to determine whether it includes the differ-
entially expressed genes identified by the mixed model, and if so, how they are connected or
embedded within the gene co-expression network. We visualized the network by Cytoscape,
only including the top 10 hub genes (with the highest degree of connection) and the differ-
entially expressed genes in the G × E_leaf analysis (Table S7; Figure S7E). Many of the hub
genes were transcription factors, including HanXRQChr01g0029281 (zinc finger, PHD-type),
HanXRQChr04g0103501 (WRKY domain; Zn-cluster domain), HanXRQChr05g0160581
(NAC domain transcriptional regulator), and HanXRQChr07g0191711 (zinc finger, RING/
FYVE/PHD-type). Fifteen differentially expressed genes (nine upregulated and six down-
regulated) identified in the G × E analysis at time-point 1 (G × E1_leaf) were also found
(Table S2) in the ME-black module. Interestingly, HanXRQChr13g0404381 (lipoxygenase;
lipoxygenase, domain 3) was upregulated, and HanXRQChr09g0252851 (lipase class 3-
related protein) were downregulated in the resistant compared to the susceptible line,
suggesting regulation of lipids is critical at the beginning of flooding stress. The latter gene
continued to be downregulated in the resistant line at time-point 2 (G × E2_leaf) (Table S2).
By time point three (G × E3_leaf), all 15 differentially expressed genes were downregu-
lated in the resistant versus susceptible line (Table S2), consistent with our hypothesis that
the resistant line recovers more quickly than the susceptible line by turning down stress
response pathways.

In the root tissue, we identified 38 clusters of co-expressed genes in the resistant line.
The module-trait associations are presented by a heat map (Figure S9A). Since we do not
have root phenotypic trait data, any correlations between root tissue expression and phe-
notypic changes are expected to be indirect (e.g., development or growth rate). We chose to
focus on the ME-red module (Table S7) since it has the strongest positive correlation among
module-trait relationships, and it is positively correlated with leaf biomass (correlation
coefficient = 0.9, P = 3 × 10−9) and leaf area (correlation coefficient = 0.72, P = 8 × 10−5),
both which are significantly reduced by flooding stress (Table S1; also see [44]). ME-red
consists of the genes that were enriched in GO terms (Table S8) related to the response to en-
dogenous stimulus and carbohydrate metabolism (biological process; Figure S9B), cell wall
(cellular component, Figure S9C), and catalytic activity (molecular function; Figure S9D).
The ME-red module overlapped with a resistant-susceptible consensus module (ME-purple)
(Figure S10A). ME-purple of the consensus data have a significant correlation (correla-
tion coefficient = 0.55, P = 0.005) with the leaf area in the resistant line (Figure S10B), but
not in the susceptible line (correlation coefficient = −0.04, P = 0.9; Figure S1C). The lack
of consensus for this trait between resistant and susceptible lines is indicated as NA in
Figure S10D.

The ME-red module in the root tissue of the resistant line was further analyzed by
identification of hub genes. As before, we used Cytoscape for network visualization
with the top 10 hub genes (with the highest degree of connection), as well as differen-
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tially expressed genes from the G × E analysis (Table S7; Figure 5). The hub genes with
the highest degree of connectivity include HanXRQChr09g0248141 (hypoxia-responsive
family protein), HanXRQChr12g0380481 (transcription factor TGA like domain), and
HanXRQChr15g0464051 (Thiamine pyrophosphate dependent pyruvate decarboxylase
family protein). Twenty-one differentially expressed genes exhibiting significant G × E
interactions at time-point 1 (G × E1_root) were all upregulated in the resistant line
(Table S2) and belong to the ME-red module. Among the DEGs, three ADH homologs
(HanXRQChr05g0161031, HanXRQChr05g0161051, HanXRQChr06g0179461) were found.
One of these (HanXRQChr05g0161051) was also upregulated at time-point 2 (G × E2_root)
(Table S2). This is consistent with the results from the mixed model analyses described
previously, suggesting that more rapid and stronger upregulation of the fermentation
pathway in the resistant line may contribute to its greater tolerance to flooding.
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Figure 5. Results of gene co-expression network analysis in root tissue. (A) Venn diagram of ME-red and differ-
entially expressed genes with significant two-way genotype by treatment (i.e., environment) effects. GE indicates
genotype × environment interactions, and the number indicates the time-point. (B) Visualization of network connec-
tions among the most connected genes in ME-red, as generated by Cytoscape software. Orange circles are hub genes
with the highest connectivity. Green circles are alcohol dehydrogenase (ADH) homologs. White circles are differentially
expressed genes with significant genotype by treatment interactions when combined across the three time points (except for
the ADH homologs).

3.7. Comparison with Evolutionarily Conserved Submergence Activated Genes

A comprehensive study of submergence upregulated gene families (SURFs) was
reported recently by Reynoso et al. [30]. They analyzed root tissue of four flowering plant
species: rice, legume (Medicago truncatula), domesticated tomato (Solanum lycopersicum)
and its dryland-adapted wild relative (Solanum pennellii) to understand variation and
conservation of SURFs among species.

In our root expression data, we identified 35 homologs of conserved SURFs that re-
sponded significantly to flooding, of which 28 were upregulated and seven downregulated
(Table S2). Two of these SURFs (AT1G77120—alcohol dehydrogenase and AT4G33070—
pyruvate decarboxylase 1) were found to upregulated in the resistant line relative to the
susceptible line at time-points 1 and 2, and at time-point 1, respectively (Table S2). Pyruvate
decarboxylase initiates the ethanol fermentation process under anaerobic conditions by
converting pyruvate into acetaldehyde and carbon dioxide, providing additional evidence
for the importance of accelerated upregulation of the alcohol fermentation pathway.
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With respect to alternative splicing, a significant increase in AS frequency was found
for six homologs of SURF genes, whereas for three genes, a significant decrease in AS
frequency was observed (Table S3). Notably, one of the genes with reduced AS was
HanXRQChr05g0161021 (AT1G77120—alcohol dehydrogenase), further increasing the
number of functional transcripts of this gene under flooding stress.

3.8. Case Study of the Alcohol Fermentation Pathway

Given previous evidence pointing towards the importance of the alcohol fermentation
pathway in flooding tolerance in sunflower [49], as well as differences between the resistant
and susceptible line observed in the present study, we decided to take a more comprehen-
sive look at this gene family. We retrieved 65 ADH homologs in the sunflower genome
(Table S9) [51]. In leaf tissue, nine ADH homologs were differentially expressed (mostly
upregulated) under flooding stress; however, none had significant G × E interactions
(Table S9), suggesting that upregulation of ADH homologs is a general response to flooding
stress in leaf tissue. In contrast, many ADH homologs were differentially expressed under
flooding stress (both up and down) in the root tissue (Table S9), including five of which
were upregulated in the resistant line, but not the susceptible line. Four of these were up-
regulated at time-point 1 (G × E1_root) (HanXRQChr05g0161031, HanXRQChr05g0161051,
HanXRQChr06g0179461, and HanXRQChr09g0243891) (Table S9), and three were included
in the red module of the resistant line that was described in the co-expression network
analysis.

Noticeably, four ADH homologs that were responsive to flooding appear to be
tandemly duplicated on chromosome 5 (Figure 6A). All four had higher expression in the
resistant versus susceptible line under the flooding stress, with the strongest difference
observed for HanXRQChr05g0161051 (G × E1_root; FDR = 6.87 × 10−12). In addition,
as mentioned above, this gene showed a reduction in AS frequency in the resistant line
relative to the sensitive line at time-point 1 (G × E1_root; FDR = 9.95 × 10−6; Figure 6B).
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4. Discussion
4.1. Root Dominant Responses to Flooding Stress in Sunflower

Changes in expression and AS were greater in root than shoot tissue in all analyses
and at all time-points. This root-dominant response to flooding has been observed in
several other taxa, including Taxodium, a flooding-tolerant conifer. Taxodium plantlets
exhibited root dominant differential expression of the antioxidative defense, glycolysis, and



Agronomy 2021, 11, 92 15 of 21

fermentation pathways, which play a key role in adaptive flooding responses by reducing
damage from ROS species in the former pathway and maintaining ATP production in
the latter two pathways [68]. Likewise, gray poplar (Populus × canescens) displayed
greater transcriptional change in roots than leaves under flooding stress and upregulated
gene pathways were similar to those reported for Taxodium [69]. However, there are
exceptions to this pattern. For example, van Veen et al. [39] reported greater expression
divergence in shoot than root tissue in Arabidopsis under flooding stress. This may be
a consequence of different resistance strategies, with Arabidopsis exhibiting rapid shoot
growth to escape submergence, whereas sunflower (for example) appears to upregulate
anaerobic energy production in roots and produces adventitious roots. In contrast to shoot-
dominant expression divergence, Arabidopsis shows greater differential AS in roots when
exposed to flooding stress [39], an observation that aligns with our study. Establishing root
dominant AS as a general rule, however, awaits other studies of AS responses to flooding
across multiple tissue types.

4.2. General Responses to Flooding

We observed two main responses to flooding stress (E_leaf and root) that were com-
mon to both the resistant and susceptible lines: upregulation of ethylene-responsive tran-
scription factors and downregulation of metabolic, energy production, and photosynthesis-
related pathways. The accumulation of ethylene gas is considered to be the most consistent,
timely and reliable indicator of early flooding stress [70], and ethylene-responsive transcrip-
tion factors (ERFs) play an early and critical role in mediating transcriptomic responses
to flooding stress [71]. Ethylene regulates a hormonal cascade (abscisic acid, gibberellic
acid and auxin) that along with ROS promote adventitious root growth [11], and several
previous studies have shown that upregulation of ERFs is positively correlated with ad-
ventitious root formation (e.g., in cucumber [72] and rice [73]). ERFs were significantly
upregulated under flooding stress in sunflower at the first time point (E_leaf and root)
and may be responsible for the increase in adventitious rooting seen under flooding stress
in our phenotypic data (Table S1), as well as in our previous large-scale GWA study of
sunflower cultivars [44]. It is important to keep in mind, though, that upregulation of ERFs
and increased adventitious rooting are seen in both the resistant and susceptible lines, so
this appears to be a general response to flooding and not specific to the resistant genotype.

Another common response to flooding is reduced photosynthesis activity due to
lower availability of oxygen, which can lead to chlorosis, leaf abscission and a decline
in metabolic rates [12,20,74,75]. Better control of metabolic pathways and energy use
can reduce negative impacts from flooding stress [15,76]. In sunflower, we observed
phenotypic evidence of reduced photosynthesis activity (Figure 1, Table S1), and similar
results were reported previously by Gao et al. [44]. Reduced photosynthetic activity can also
be inferred from the downregulation of metabolic, energy production, and photosynthesis-
related pathways in both the resistant and susceptible cultivars in the flooding treatment
(Figure S5D). The downregulation of photosynthesis-related gene pathways following
flooding has previously been reported in several other plant species, including soybean [27]
and canola [77].

4.3. Changes in AS Levels Reinforce Expression Differences

Alternative splicing is a post-transcriptional mechanism that can increase the diversity
of the proteome and regulate gene expression [78–80]. The latter typically occurs via the
expression of alternative transcripts that are targeted to NMD [81,82]. Increases in the
frequency of AS for a given gene effectively lower the expression of functional transcripts.
This was observed by Filichkin and Mockler [83], who reported an increase in nonsense
isoforms (and a lower proportion of functional transcripts) in Arabidopsis thaliana following
temperature stress. On the other hand, decreasing frequencies of AS can restore the
function of genes that are inhibited by AS. For example, the DEHYDRATION-RESPONSIVE
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ELEMENT BINDING 2 (DREB2) transcription factor produces a non-functional transcript
under normal conditions but a functional transcript in response to abiotic stress [84,85].

In our experiment, regardless of genotype, tissue type or treatment, levels of AS were
strongly negatively correlated with levels of gene expression (Figure S11), thereby rein-
forcing expression divergence. For example, metabolism-related gene pathways exhibited
decreased expression levels and increased AS frequencies (i.e., fewer functional transcripts)
under flooding stress (E_leaf) (Figures S5 and S6). While the number of genes that had
significant differences in both expression and AS was relatively small, in most cases, dif-
ferences were in the opposite direction, leading to reinforcing effects on the number of
functional transcripts. This was most pronounced in leaf tissue (E_leaf), where genes that
showed increased expression and downregulated AS were most frequent (Figure S12).
Such a complementary pattern between expression and AS levels has been previously
reported in a study of homologous expression and AS patterns in canola under several
abiotic stresses [86]. A focus of future studies should be to validate these inferences using
proteomic approaches.

4.4. Expression Changes Specific to the Flooding Resistant Cultivar

The flooding resistant cultivar differed from the susceptible cultivar in three main
ways: earlier and stronger upregulation of the alcohol fermentation pathway muted
expression of stress-responsive genes in leaf tissue and more rapid recovery of pre-stress
expression levels. Below we discuss how these differences may lead to greater resistance
or tolerance.

The alcohol fermentation pathway represents a critical metabolic, and physiological
response mechanism to hypoxia in higher plants by providing the energy (NAD+) needed
for glycolysis to continue in the absence of oxygen [7–9,87]. The pathway is a highly
conserved adaptation to low oxygen, and upregulation of the pathway can enhance a
plant’s tolerance to flooding stress [10,88].

Alcohol dehydrogenase (ADH), the core enzyme in the alcohol fermentation pathway,
is considered to play an especially important role in flooding tolerance because it both
detoxifies toxic acetaldehyde and regenerates oxidized NAD+ [87]. We explored the ex-
pression of ADH homologs (orthologous to AT1G77120 in Arabidopsis thaliana). Our mixed
model analysis of genotype x treatment across the three different time points revealed that
a number of ADH homologs showed earlier and/or stronger expression in the resistant
than susceptible genotype when under flooding stress (G × E1_root vs. G × E2_root or
G × E3_root). These differences were further reinforced by significant downregulation
of ADH AS levels (leading to a larger fraction of functional transcripts) in the resistant
line relative to the susceptible line. Notably, five ADH homologs on chromosome 5 ap-
pear to be the product of tandem duplication, and they were upregulated much more
strongly under flooding in the resistant than susceptible line (G × E1_root) (Figure 6A).
Such duplications offer a means for increasing expression levels [89] and are known to
contribute to abiotic stress tolerance in plants. A well-known example is the polygenic
SUBMERGENCE 1 (SUB1) locus, which confers tolerance to flooding in rice [90]. In ad-
dition, most ADH homologs were found in a flooding resistance-related co-expression
network in root tissue, further supporting the importance of this gene family. The genes
found in this co-expression network largely overlap with hypoxia resistance networks
previously reported for other plants [39,91], except for the inclusion of alcohol fermentation
pathway in the sunflower network. The hub genes in this co-expression network, such as
HanXRQChr08g0216771 (phosphofructokinase) and HanXRQChr12g0380481 (transcription
factor TGA), likely represent key regulators of the alcohol fermentation pathway, although
this claim awaits functional validation.

In addition to the earlier and stronger expression of the alcohol fermentation pathway,
our results indicate that the upregulation of stress-responsive genes is muted in leaf tissue of
the resistant genotype and that the resistant genotype recovers pre-stress expression levels
more quickly than the sensitive genotype. The rapid recovery of metabolic homeostasis is
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often associated with stress tolerance [92,93], but whether this is a cause or consequence of
increased resistance is not clear in most cases. In sunflower, it may be that the sensitive
genotype over-responds to flooding, leading to reduced growth rates. This has been
reported for rice, in which overexpression of a stress-responsive gene, OsHOX24, reduces
root and shoot growth [94]. Alternatively, the greater energy production in roots of the
resistant genotype (and/or other changes not discussed here) may reduce the negative
impacts of flooding, leading to a less severe response and more rapid recovery.

5. Conclusions

We conducted a large-scale transcriptomics study to investigate the eco-physiological
responses of sunflower, an important oilseed crop, to flooding stress. Using mixed model
and co-expression network approaches, we explored the differential expression and AS
patterns to identify genes and genetic pathways that underlie general responses to flood-
ing stress, as well as those specific to a resistant cultivar. We found that upregulation
of ethylene-responsive transcription factors and adventitious root growth occurred in
both the sensitive and resistant cultivated lines and appear to represent a general critical
response to flooding stress. Our hypothesis that differential expression and AS of the
alcohol fermentation pathway contributes to the greater tolerance of the resistant line
was supported. Greater flooding tolerance of the resistant line is also associated with
muted expression of stress-responsive genes in leaf tissue and with a more rapid recovery
of “normal” expression after the stress period is over. A goal for the future will be to
extend our results across more genotypes and to validate expression and AS patterns with
proteomic data.
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